[1]
|
Hwang, H., Li, X., Kim, S. and Lee, J. (2022) Anthranilate Acts as a Signal to Modulate Biofilm Formation, Virulence, and Antibiotic Tolerance of Pseudomonas aeruginosa and Surrounding Bacteria. Microbiology Spectrum, 10, e01463-21. https://doi.org/10.1128/spectrum.01463-21
|
[2]
|
Song, S., Yin, W., Sun, X., Cui, B., Huang, L., Li, P., et al. (2020) Anthranilic Acid from Ralstonia solanacearum Plays Dual Roles in Intraspecies Signalling and Inter-Kingdom Communication. The ISME Journal, 14, 2248-2260. https://doi.org/10.1038/s41396-020-0682-7
|
[3]
|
Ren, X., Wei, Y., Zhao, H., Shao, J., Zeng, F., Wang, Z., et al. (2023) A Comprehensive Review and Comparison of L-Tryptophan Biosynthesis in Saccharomyces cerevisiae and Escherichia coli. Frontiers in Bioengineering and Biotechnology, 11, Article 1261832. https://doi.org/10.3389/fbioe.2023.1261832
|
[4]
|
Panozzo, C., Nawara, M., Suski, C., Kucharczyk, R., Skoneczny, M., Bécam, A., et al. (2002) Aerobic and Anaerobic NAD+ Metabolism in Saccharomyces cerevisiae. FEBS Letters, 517, 97-102. https://doi.org/10.1016/s0014-5793(02)02585-1
|
[5]
|
Kato, M. and Lin, S. (2014) Regulation of NAD+ Metabolism, Signaling and Compartmentalization in the Yeast Saccharomyces cerevisiae. DNA Repair, 23, 49-58. https://doi.org/10.1016/j.dnarep.2014.07.009
|
[6]
|
Cigana, C., Lorè, N.I., Bernardini, M.L. and Bragonzi, A. (2011) Dampening Host Sensing and Avoiding Recognition in Pseudomonas aeruginosa Pneumonia. BioMed Research International, 2011, Article ID: 852513. https://doi.org/10.1155/2011/852513
|
[7]
|
Parkins, M.D., Somayaji, R. and Waters, V.J. (2018) Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clinical Microbiology Reviews, 31, e00019. https://doi.org/10.1128/cmr.00019-18
|
[8]
|
Lee, J. and Zhang, L. (2014) The Hierarchy Quorum Sensing Network in Pseudomonas aeruginosa. Protein & Cell, 6, 26-41. https://doi.org/10.1007/s13238-014-0100-x
|
[9]
|
Lin, J., Cheng, J., Wang, Y. and Shen, X. (2018) The Pseudomonas Quinolone Signal (PQS): Not Just for Quorum Sensing Anymore. Frontiers in Cellular and Infection Microbiology, 8, Article 230. https://doi.org/10.3389/fcimb.2018.00230
|
[10]
|
Bredenbruch, F., Nimtz, M., Wray, V., Morr, M., Müller, R. and Häussler, S. (2005) Biosynthetic Pathway of Pseudomonas aeruginosa 4-Hydroxy-2-Alkylquinolines. Journal of Bacteriology, 187, 3630-3635. https://doi.org/10.1128/jb.187.11.3630-3635.2005
|
[11]
|
Cao, H., Krishnan, G., Goumnerov, B., Tsongalis, J., Tompkins, R. and Rahme, L.G. (2001) A Quorum Sensing-Associated Virulence Gene of Pseudomonas aeruginosa Encodes a LysR-Like Transcription Regulator with a Unique Self-Regulatory Mechanism. Proceedings of the National Academy of Sciences of the United States of America, 98, 14613-14618. https://doi.org/10.1073/pnas.251465298
|
[12]
|
Essar, D.W., Eberly, L., Hadero, A. and Crawford, I.P. (1990) Identification and Characterization of Genes for a Second Anthranilate Synthase in Pseudomonas aeruginosa: Interchangeability of the Two Anthranilate Synthases and Evolutionary Implications. Journal of Bacteriology, 172, 884-900. https://doi.org/10.1128/jb.172.2.884-900.1990
|
[13]
|
Essar, D.W., Eberly, L., Han, C.Y. and Crawford, I.P. (1990) DNA Sequences and Characterization of Four Early Genes of the Tryptophan Pathway in Pseudomonas aeruginosa. Journal of Bacteriology, 172, 853-866. https://doi.org/10.1128/jb.172.2.853-866.1990
|
[14]
|
Palmer, G.C., Jorth, P.A. and Whiteley, M. (2013) The Role of Two Pseudomonas aeruginosa Anthranilate Synthases in Tryptophan and Quorum Signal Production. Microbiology, 159, 959-969. https://doi.org/10.1099/mic.0.063065-0
|
[15]
|
Cervenka, I., Agudelo, L.Z. and Ruas, J.L. (2017) Kynurenines: Tryptophan’s Metabolites in Exercise, Inflammation, and Mental Health. Science, 357, eaaf9794. https://doi.org/10.1126/science.aaf9794
|
[16]
|
Platten, M., Nollen, E.A.A., Röhrig, U.F., Fallarino, F. and Opitz, C.A. (2019) Tryptophan Metabolism as a Common Therapeutic Target in Cancer, Neurodegeneration and Beyond. Nature Reviews Drug Discovery, 18, 379-401. https://doi.org/10.1038/s41573-019-0016-5
|
[17]
|
Kurnasov, O., Jablonski, L., Polanuyer, B., Dorrestein, P., Begley, T. and Osterman, A. (2003) Aerobic Tryptophan Degradation Pathway in Bacteria: Novel Kynurenine Formamidase. FEMS Microbiology Letters, 227, 219-227. https://doi.org/10.1016/s0378-1097(03)00684-0
|
[18]
|
Lima, W.C., Varani, A.M. and Menck, C.F.M. (2008) NAD Biosynthesis Evolution in Bacteria: Lateral Gene Transfer of Kynurenine Pathway in Xanthomonadales and Flavobacteriales. Molecular Biology and Evolution, 26, 399-406. https://doi.org/10.1093/molbev/msn261
|
[19]
|
Farrow, J.M. and Pesci, E.C. (2007) Two Distinct Pathways Supply Anthranilate as a Precursor of the Pseudomonas Quinolone Signal. Journal of Bacteriology, 189, 3425-3433. https://doi.org/10.1128/jb.00209-07
|
[20]
|
Knoten, C.A., Hudson, L.L., Coleman, J.P., Farrow, J.M. and Pesci, E.C. (2011) KynR, a Lrp/AsnC-Type Transcriptional Regulator, Directly Controls the Kynurenine Pathway in Pseudomonas aeruginosa. Journal of Bacteriology, 193, 6567-6575. https://doi.org/10.1128/jb.05803-11
|
[21]
|
Palmer, K.L., Aye, L.M. and Whiteley, M. (2007) Nutritional Cues Control Pseudomonas aeruginosa Multicellular Behavior in Cystic Fibrosis Sputum. Journal of Bacteriology, 189, 8079-8087. https://doi.org/10.1128/jb.01138-07
|
[22]
|
Coleman, J.P., Hudson, L.L., McKnight, S.L., Farrow, J.M., Calfee, M.W., Lindsey, C.A., et al. (2008) Pseudomonas aeruginosa PqsA Is an Anthranilate-Coenzyme A Ligase. Journal of Bacteriology, 190, 1247-1255. https://doi.org/10.1128/jb.01140-07
|
[23]
|
Dulcey, C.E., Dekimpe, V., Fauvelle, D., Milot, S., Groleau, M., Doucet, N., et al. (2013) The End of an Old Hypothesis: The Pseudomonas Signaling Molecules 4-Hydroxy-2-Alkylquinolines Derive from Fatty Acids, Not 3-Ketofatty Acids. Chemistry & Biology, 20, 1481-1491. https://doi.org/10.1016/j.chembiol.2013.09.021
|
[24]
|
Drees, S.L. and Fetzner, S. (2015) PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules. Chemistry & Biology, 22, 611-618. https://doi.org/10.1016/j.chembiol.2015.04.012
|
[25]
|
Drees, S.L., Li, C., Prasetya, F., Saleem, M., Dreveny, I., Williams, P., et al. (2016) PqsBC, a Condensing Enzyme in the Biosynthesis of the Pseudomonas aeruginosa Quinolone Signal: Crystal Structure, Inhibition, and Reaction Mechanism. Journal of Biological Chemistry, 291, 6610-6624. https://doi.org/10.1074/jbc.m115.708453
|
[26]
|
Schertzer, J.W., Brown, S.A. and Whiteley, M. (2010) Oxygen Levels Rapidly Modulate Pseudomonas aeruginosa Social Behaviours via Substrate Limitation of PqsH. Molecular Microbiology, 77, 1527-1538. https://doi.org/10.1111/j.1365-2958.2010.07303.x
|
[27]
|
Ilangovan, A., Fletcher, M., Rampioni, G., Pustelny, C., Rumbaugh, K., Heeb, S., et al. (2013) Structural Basis for Native Agonist and Synthetic Inhibitor Recognition by the Pseudomonas aeruginosa Quorum Sensing Regulator PqsR (MvfR). PLOS Pathogens, 9, e1003508. https://doi.org/10.1371/journal.ppat.1003508
|
[28]
|
Montagut, E.J. and Marco, M.P. (2021) Biological and Clinical Significance of Quorum Sensing Alkylquinolones: Current Analytical and Bioanalytical Methods for Their Quantification. Analytical and Bioanalytical Chemistry, 413, 4599-4618. https://doi.org/10.1007/s00216-021-03356-x
|
[29]
|
Choi, Y., Park, H., Park, S.J., Park, S., Kim, S., Ha, C., et al. (2011) Growth Phase-Differential Quorum Sensing Regulation of Anthranilate Metabolism in Pseudomonas aeruginosa. Molecules and Cells, 32, 57-66. https://doi.org/10.1007/s10059-011-2322-6
|
[30]
|
Costaglioli, P., Barthe, C., Claverol, S., Brözel, V.S., Perrot, M., Crouzet, M., et al. (2012) Evidence for the Involvement of the Anthranilate Degradation Pathway in Pseudomonas aeruginosa Biofilm Formation. MicrobiologyOpen, 1, 326-339. https://doi.org/10.1002/mbo3.33
|
[31]
|
Oglesby, A.G., Farrow, J.M., Lee, J., Tomaras, A.P., Greenberg, E.P., Pesci, E.C., et al. (2008) The Influence of Iron on Pseudomonas aeruginosa Physiology: A Regulatory Link between Iron and Quorum Sensing. Journal of Biological Chemistry, 283, 15558-15567. https://doi.org/10.1074/jbc.m707840200
|
[32]
|
Kim, S., Im, S., Yeom, D. and Lee, J. (2012) AntR-mediated Bidirectional Activation of antA and antR, Anthranilate Degradative Genes in Pseudomonas aeruginosa. Gene, 505, 146-152. https://doi.org/10.1016/j.gene.2012.05.004
|
[33]
|
Moreau-Marquis, S., Stanton, B.A. and O’Toole, G.A. (2008) Pseudomonas aeruginosa Biofilm Formation in the Cystic Fibrosis Airway. Pulmonary Pharmacology & Therapeutics, 21, 595-599. https://doi.org/10.1016/j.pupt.2007.12.001
|
[34]
|
Yang, L., Haagensen, J.A.J., Jelsbak, L., Johansen, H.K., Sternberg, C., Høiby, N., et al. (2008) In Situ Growth Rates and Biofilm Development of Pseudomonas aeruginosa Populations in Chronic Lung Infections. Journal of Bacteriology, 190, 2767-2776. https://doi.org/10.1128/jb.01581-07
|
[35]
|
Kim, S., Park, H. and Lee, J. (2015) Anthranilate Deteriorates the Structure of Pseudomonas aeruginosa Biofilms and Antagonizes the Biofilm-Enhancing Indole Effect. Applied and Environmental Microbiology, 81, 2328-2338. https://doi.org/10.1128/aem.03551-14
|
[36]
|
Li, X., Kim, S. and Lee, J. (2017) Anti-Biofilm Effects of Anthranilate on a Broad Range of Bacteria. Scientific Reports, 7, Article No. 8604. https://doi.org/10.1038/s41598-017-06540-1
|
[37]
|
Song, S., Sun, X., Guo, Q., Cui, B., Zhu, Y., Li, X., et al. (2022) An Anthranilic Acid-Responsive Transcriptional Regulator Controls the Physiology and Pathogenicity of Ralstonia solanacearum. PLOS Pathogens, 18, e1010562. https://doi.org/10.1371/journal.ppat.1010562
|
[38]
|
Chen, Y., Fu, Y., Xia, Y., Miao, Y., Shao, J., Xuan, W., et al. (2024) Trichoderma-Secreted Anthranilic Acid Promotes Lateral Root Development via Auxin Signaling and RBOHF-Induced Endodermal Cell Wall Remodeling. Cell Reports, 43, Article ID: 114030. https://doi.org/10.1016/j.celrep.2024.114030
|
[39]
|
Matsumoto, H., Fan, X., Wang, Y., Kusstatscher, P., Duan, J., Wu, S., et al. (2021) Bacterial Seed Endophyte Shapes Disease Resistance in Rice. Nature Plants, 7, 60-72. https://doi.org/10.1038/s41477-020-00826-5
|