|
[1]
|
Demole, E., Lederer, E. and Mercier, D. (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helvetica Chimica Acta, 45, 675-685. [Google Scholar] [CrossRef]
|
|
[2]
|
Li, C., Xu, M., Cai, X., Han, Z., Si, J. and Chen, D. (2022) Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-offs. International Journal of Molecular Sciences, 23, Article 3945. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, L., Zhang, F., Melotto, M., Yao, J. and He, S.Y. (2017) Jasmonate Signaling and Manipulation by Pathogens and Insects. Journal of Experimental Botany, 68, erw478. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yan, C. and Xie, D. (2015) Jasmonate in Plant Defence: Sentinel or Double Agent? Plant Biotechnology Journal, 13, 1233-1240. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wasternack, C. and Song, S. (2017) Jasmonates: Biosynthesis, Metabolism, and Signaling by Proteins Activating and Repressing Transcription. Journal of Experimental Botany, 68, 1303-1321.
|
|
[6]
|
Chini, A., Monte, I., Zamarreño, A.M., Hamberg, M., Lassueur, S., Reymond, P., et al. (2018) An OPR3-Independent Pathway Uses 4,5-Didehydrojasmonate for Jasmonate Synthesis. Nature Chemical Biology, 14, 171-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Miersch, O., Bohlmann, H. and Wasternack, C. (1999) Jasmonates and Related Compounds from Fusarium Oxysporum. Phytochemistry, 50, 517-523. [Google Scholar] [CrossRef]
|
|
[8]
|
Tsukada, K., Takahashi, K. and Nabeta, K. (2010) Biosynthesis of Jasmonic Acid in a Plant Pathogenic Fungus, Lasiodiplodia Theobromae. Phytochemistry, 71, 2019-2023. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Miersch, O., Regvar, M. and Wasternack, C. (1999) Metabolism of Jasmonic Acid in Pisolithus Tinctorius Cultures. Phyton, Annales Rei Botanicae, Horn, 39, 243-248.
|
|
[10]
|
Cole, S.J., Yoon, A.J., Faull, K.F. and Diener, A.C. (2014) Host Perception of Jasmonates Promotes Infection by Fusarium oxysporum Formae Speciales That Produce Isoleucine‐ and Leucine‐Conjugated Jasmonates. Molecular Plant Pathology, 15, 589-600. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chini, A., Gimenez-Ibanez, S., Goossens, A. and Solano, R. (2016) Redundancy and Specificity in Jasmonate Signalling. Current Opinion in Plant Biology, 33, 147-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tang, H., Lin, S., Deng, J., Keasling, J.D. and Luo, X. (2023) Engineering Yeast for the De Novo Synthesis of Jasmonates. Nature Synthesis, 3, 224-235. [Google Scholar] [CrossRef]
|
|
[13]
|
Li, M., Yu, G., Cao, C. and Liu, P. (2021) Metabolism, Signaling, and Transport of Jasmonates. Plant Communications, 2, Article 100231. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yan, J., Yao, R., Chen, L., Li, S., Gu, M., Nan, F., et al. (2018) Dynamic Perception of Jasmonates by the F-Box Protein COI1. Molecular Plant, 11, 1237-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Song, S., Liu, B., Zhai, J., Zhang, Y., Wang, K. and Qi, T. (2021) The Intragenic Suppressor Mutation Leu59Phe Compensates for the Effect of Detrimental Mutations in the Jasmonate Receptor COI1. The Plant Journal, 108, 690-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5): 1039-1046.
|
|
[17]
|
Takaoka, Y., Suzuki, K., Nozawa, A., Takahashi, H., Sawasaki, T. and Ueda, M. (2022) Protein-Protein Interactions between Jasmonate-Related Master Regulator MYC and Transcriptional Mediator MED25 Depend on a Short Binding Domain. Journal of Biological Chemistry, 298, Article 101504. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shi, R., Yu, J., Chang, X., Qiao, L., Liu, X. and Lu, L. (2023) Recent Advances in Research into Jasmonate Biosynthesis and Signaling Pathways in Agricultural Crops and Products. Processes, 11, Article 736. [Google Scholar] [CrossRef]
|
|
[19]
|
Goossens, J., Fernández-Calvo, P., Schweizer, F. and Goossens, A. (2016) Jasmonates: Signal Transduction Components and Their Roles in Environmental Stress Responses. Plant Molecular Biology, 91, 673-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, J., Gimenez-Ibanez, S., Geerinck, J., et al. (2011) The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses. The Plant Cell, 23, 701-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, F., Yao, J., Ke, J., Zhang, L., Lam, V.Q., Xin, X., et al. (2015) Structural Basis of JAZ Repression of MYC Transcription Factors in Jasmonate Signalling. Nature, 525, 269-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
An, C., Li, L., Zhai, Q., You, Y., Deng, L., Wu, F., et al. (2017) Mediator Subunit MED25 Links the Jasmonate Receptor to Transcriptionally Active Chromatin. Proceedings of the National Academy of Sciences, 114, E8930-E8939. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
An, C., Deng, L., Zhai, H., You, Y., Wu, F., Zhai, Q., et al. (2022) Regulation of Jasmonate Signaling by Reversible Acetylation of TOPLESS in Arabidopsis. Molecular Plant, 15, 1329-1346. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gimenez-Ibanez, S., Boter, M., Fernández-Barbero, G., Chini, A., Rathjen, J.P. and Solano, R. (2014) The Bacterial Effector Hopx1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLOS Biology, 12, e1001792. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhao, Q., Liu, F., Song, C., Zhai, T., He, Z., Ma, L., et al. (2023) Diffusible Signal Factor Primes Plant Immunity against Xanthomonas campestris pv. campestris (Xcc) via JA Signaling in Arabidopsis and Brassica Oleracea. Frontiers in Cellular and Infection Microbiology, 13, Article 1203582. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jing, Y., Liu, J., Liu, P., Ming, D. and Sun, J. (2019) Overexpression of TaJAZ1 Increases Powdery Mildew Resistance through Promoting Reactive Oxygen Species Accumulation in Bread Wheat. Scientific Reports, 9, Article No. 5691. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yang, Z., Huang, Y., Yang, J., Yao, S., Zhao, K., Wang, D., et al. (2020) Jasmonate Signaling Enhances RNA Silencing and Antiviral Defense in Rice. Cell Host & Microbe, 28, 89-103.E8. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, C., Ding, Z., Wu, K., Yang, L., Li, Y., Yang, Z., et al. (2016) Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Molecular Plant, 9, 1302-1314. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Brenya, E., Chen, Z., Tissue, D., Papanicolaou, A. and Cazzonelli, C.I. (2020) Prior Exposure of Arabidopsis Seedlings to Mechanical Stress Heightens Jasmonic Acid-Mediated Defense against Necrotrophic Pathogens. BMC Plant Biology, 20, Article No. 548. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ramirez‐Prado, J.S., Latrasse, D., Rodriguez‐Granados, N.Y., Huang, Y., Manza‐Mianza, D., Brik‐Chaouche, R., et al. (2019) The Polycomb Protein LHP1 Regulates Arabidopsis thaliana Stress Responses through the Repression of the MYC2‐Dependent Branch of Immunity. The Plant Journal, 100, 1118-1131. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Scalschi, L., Llorens, E., García-Agustín, P. and Vicedo, B. (2020) Role of Jasmonic Acid Pathway in Tomato Plant-Pseudomonas syringae Interaction. Plants, 9, Article 136. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Uji, Y., Kashihara, K., Kiyama, H., Mochizuki, S., Akimitsu, K. and Gomi, K. (2019) Jasmonic Acid-Induced VQ-Motif-Containing Protein OsVQ13 Influences the OsWRKY45 Signaling Pathway and Grain Size by Associating with OsMPK6 in Rice. International Journal of Molecular Sciences, 20, Article 2917. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ke, Y., Kang, Y., Wu, M., Liu, H., Hui, S., Zhang, Q., et al. (2019) Jasmonic Acid-Involved OsEDS1 Signaling in Rice-Bacteria Interactions. Rice, 12, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kong, Y., Wang, G., Chen, X., Li, L., Zhang, X., Chen, S., et al. (2021) osPHR2 Modulates Phosphate Starvation‐induced OsMYC2 Signalling and Resistance to Xanthomonas oryzae pv. oryzae. Plant, Cell & Environment, 44, 3432-3444. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, Q., Hu, A., Qi, J., Dou, W., Qin, X., Zou, X., et al. (2020) CsWAKl08, a Pathogen-Induced Wall-Associated Receptor-Like Kinase in Sweet Orange, Confers Resistance to Citrus Bacterial Canker via ROS Control and JA Signaling. Horticulture Research, 7, 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Campos, M.L., Kang, J. and Howe, G.A. (2014) Jasmonate-Triggered Plant Immunity. Journal of Chemical Ecology, 40, 657-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., et al. (1998) Separate Jasmonate-Dependent and Salicylate-Dependent Defense-Response Pathways in Arabidopsis Are Essential for Resistance to Distinct Microbial Pathogens. Proceedings of the National Academy of Sciences, 95, 15107-15111. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Stintzi, A., Weber, H., Reymond, P., Browse, J. and Farmer, E.E. (2001) Plant Defense in the Absence of Jasmonic Acid: The Role of Cyclopentenones. Proceedings of the National Academy of Sciences, 98, 12837-12842. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
McConn, M. and Browse, J. (1996) The Critical Requirement for Linolenic Acid Is Pollen Development, Not Photosynthesis, in an Arabidopsis Mutant. The Plant Cell, 8, 403-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Hu, Y., Jiang, Y., Han, X., Wang, H., Pan, J. and Yu, D. (2017) Jasmonate Regulates Leaf Senescence and Tolerance to Cold Stress: Crosstalk with Other Phytohormones. Journal of Experimental Botany, 68, 1361-1369. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yan, Y., Christensen, S., Isakeit, T., Engelberth, J., Meeley, R., Hayward, A., et al. (2012) Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense. The Plant Cell, 24, 1420-1436. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
AbuQamar, S., Chai, M., Luo, H., Song, F. and Mengiste, T. (2008) Tomato Protein Kinase 1b Mediates Signaling of Plant Responses to Necrotrophic Fungi and Insect Herbivory. The Plant Cell, 20, 1964-1983. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Thaler, J.S., Owen, B. and Higgins, V.J. (2004) The Role of the Jasmonate Response in Plant Susceptibility to Diverse Pathogens with a Range of Lifestyles. Plant Physiology, 135, 530-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kachroo, A. and Kachroo, P. (2009) Fatty Acid-Derived Signals in Plant Defense. Annual Review of Phytopathology, 47, 153-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Scalschi, L., Sanmartín, M., Camañes, G., Troncho, P., Sánchez‐Serrano, J.J., García‐Agustín, P., et al. (2014) Silencing of OPR3 in Tomato Reveals the Role of OPDA in Callose Deposition during the Activation of Defense Responses against Botrytis cinerea. The Plant Journal, 81, 304-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ameye, M., Audenaert, K., De Zutter, N., Steppe, K., Van Meulebroek, L., Vanhaecke, L., et al. (2015) Priming of Wheat with the Green Leaf Volatile Z-3-Hexenyl Acetate Enhances Defense against Fusarium graminearum but Boosts Deoxynivalenol Production. Plant Physiology, 167, 1671-1684. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
赵显阳. 外源茉莉酸甲酯(MeJA)对梨果实抗青霉病及其保鲜作用的研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2020.
|
|
[48]
|
Jia, H., Zhang, C., Pervaiz, T., Zhao, P., Liu, Z., Wang, B., et al. (2015) Jasmonic Acid Involves in Grape Fruit Ripening and Resistant against Botrytis Cinerea. Functional & Integrative Genomics, 16, 79-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Liu, D., Zhao, Q., Cui, X., Chen, R., Li, X., Qiu, B., et al. (2019) A Transcriptome Analysis Uncovers Panax Notoginseng Resistance to Fusarium Solani Induced by Methyl Jasmonate. Genes & Genomics, 41, 1383-1396. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wang, Z., Tan, X., Zhang, Z., Gu, S., Li, G. and Shi, H. (2012) Defense to Sclerotinia Sclerotiorum in Oilseed Rape Is Associated with the Sequential Activations of Salicylic Acid Signaling and Jasmonic Acid Signaling. Plant Science, 184, 75-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Moosa, A., Sahi, S.T., Khan, S.A. and Malik, A.U. (2019) Salicylic Acid and Jasmonic Acid Can Suppress Green and Blue Moulds of Citrus Fruit and Induce the Activity of Polyphenol Oxidase and Peroxidase. Folia Horticulturae, 31, 195-204. [Google Scholar] [CrossRef]
|
|
[52]
|
Zhu, F., Xi, D., Yuan, S., Xu, F., Zhang, D. and Lin, H. (2014) Salicylic Acid and Jasmonic Acid Are Essential for Systemic Resistance against Tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions®, 27, 567-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Ullrich, M., Peñaloza-Vázquez, A., Bailey, A.M. and Bender, C.L. (1995) A Modified Two-Component Regulatory System Is Involved in Temperature-Dependent Biosynthesis of the Pseudomonas syringae Phytotoxin Coronatine. Journal of Bacteriology, 177, 6160-6169. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Blüher, D., Laha, D., Thieme, S., Hofer, A., Eschen-Lippold, L., Masch, A., et al. (2017) A1-Phytase Type III Effector Interferes with Plant Hormone Signaling. Nature Communications, 8, Article No. 2159. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Bender, C.L., Alarcón-Chaidez, F. and Gross, D.C. (1999) Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases. Microbiology and Molecular Biology Reviews, 63, 266-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Geng, X., Jin, L., Shimada, M., Kim, M.G. and Mackey, D. (2014) The Phytotoxin Coronatine Is a Multifunctional Component of the Virulence Armament of Pseudomonas syringae. Planta, 240, 1149-1165. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fyans, J.K., Altowairish, M.S., Li, Y. and Bignell, D.R.D. (2015) Characterization of the Coronatine-Like Phytotoxins Produced by the Common Scab Pathogen Streptomyces scabies. Molecular Plant-Microbe Interactions®, 28, 443-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Bell, K.S., Sebaihia, M., Pritchard, L., Holden, M.T.G., Hyman, L.J., Holeva, M.C., et al. (2004) Genome Sequence of the Enterobacterial Phytopathogen Erwinia carotovora Subsp. Atroseptica and Characterization of Virulence Factors. Proceedings of the National Academy of Sciences, 101, 11105-11110. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Slawiak, M. and Lojkowska, E. (2009) Genes Responsible for Coronatine Synthesis in Pseudomonas syringae Present in the Genome of Soft Rot Bacteria. European Journal of Plant Pathology, 124, 353-361. [Google Scholar] [CrossRef]
|
|
[60]
|
Cheng, Z., Sun, L., Qi, T., Zhang, B., Peng, W., Liu, Y., et al. (2011) The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis. Molecular Plant, 4, 279-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., et al. (2002) Genome Sequence of the Plant Pathogen Ralstonia Solanacearum. Nature, 415, 497-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Gupta, A., Bhardwaj, M. and Tran, L.P. (2020) Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. International Journal of Molecular Sciences, 21, Article 7482. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Jiang, S., Yao, J., Ma, K., Zhou, H., Song, J., He, S.Y., et al. (2013) Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors. PLOS Pathogens, 9, e1003715. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Hu, Y., Jiang, L., Wang, F. and Yu, D. (2013) Jasmonate Regulates the INDUCER of CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in Arabidopsis. The Plant Cell, 25, 2907-2924. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
He, P., Chintamanani, S., Chen, Z., Zhu, L., Kunkel, B.N., Alfano, J.R., et al. (2004) Activation of a COI1‐Dependent Pathway in Arabidopsis by Pseudomonas syringae Type III Effectors and Coronatine. The Plant Journal, 37, 589-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Cui, H., Wang, Y., Xue, L., Chu, J., Yan, C., Fu, J., et al. (2010) Pseudomonas syringae Effector Protein AvrB Perturbs Arabidopsis Hormone Signaling by Activating MAP Kinase 4. Cell Host & Microbe, 7, 164-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Zhou, Z., Wu, Y., Yang, Y., Du, M., Zhang, X., Guo, Y., et al. (2015) An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas syringae Effector Protein AvrB for Stomatal Invasion. The Plant Cell, 27, 2032-2041. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Brooks, D.M., Hernández-Guzmán, G., Kloek, A.P., Alarcón-Chaidez, F., Sreedharan, A., Rangaswamy, V., et al. (2004) Identification and Characterization of a Well-Defined Series of Coronatine Biosynthetic Mutants of Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions®, 17, 162-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. and Howe, G.A. (2008) COI1 Is a Critical Component of a Receptor for Jasmonate and the Bacterial Virulence Factor Coronatine. Proceedings of the National Academy of Sciences, 105, 7100-7105. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., et al. (2008) A Critical Role of Two Positively Charged Amino Acids in the Jas Motif of Arabidopsis JAZ Proteins in Mediating Coronatine‐ and Jasmonoyl Isoleucine‐Dependent Interactions with the COI1 F‐Box Protein. The Plant Journal, 55, 979-988. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., et al. (2009) The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor. The Plant Cell, 21, 2220-2236. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., et al. (2010) Jasmonate Perception by Inositol-Phosphate-Potentiated COI1-JAZ Co-Receptor. Nature, 468, 400-405. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., et al. (2015) Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. The Plant Cell, 27, 2814-2828. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Kloek, A.P., Verbsky, M.L., Sharma, S.B., Schoelz, J.E., Vogel, J., Klessig, D.F., et al. (2001) Resistance to Pseudomonas syringae Conferred by an Arabidopsis thaliana Coronatine‐Insensitive (coi1) Mutation Occurs through Two Distinct Mechanisms. The Plant Journal, 26, 509-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Brooks, D.M., Bender, C.L. and Kunkel, B.N. (2005) The Pseudomonas syringae Phytotoxin Coronatine Promotes Virulence by Overcoming Salicylic Acid‐Dependent Defences in Arabidopsis thaliana. Molecular Plant Pathology, 6, 629-639. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S.Y. (2006) Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126, 969-980. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Zeng, W. and He, S.Y. (2010) A Prominent Role of the Flagellin Receptor FLAGELLIN-SENSING2 in Mediating Stomatal Response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology, 153, 1188-1198. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Gimenez‐Ibanez, S., Boter, M., Ortigosa, A., García‐Casado, G., Chini, A., Lewsey, M.G., et al. (2016) JAZ2 Controls Stomata Dynamics during Bacterial Invasion. New Phytologist, 213, 1378-1392. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Zheng, X., Spivey, N.W., Zeng, W., Liu, P., Fu, Z.Q., Klessig, D.F., et al. (2012) Coronatine Promotes Pseudomonas syringae Virulence in Plants by Activating a Signaling Cascade That Inhibits Salicylic Acid Accumulation. Cell Host & Microbe, 11, 587-596. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Du, M., Li, Y., Tian, X., Duan, L., Zhang, M., Tan, W., et al. (2014) The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton. PLOS ONE, 9, e97652. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Zhou, Y., Zhang, M., Li, J., Li, Z., Tian, X. and Duan, L. (2015) Phytotoxin Coronatine Enhances Heat Tolerance via Maintaining Photosynthetic Performance in Wheat Based on Electrophoresis and TOF-MS Analysis. Scientific Reports, 5, Article No. 13870. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Duke, S.O. and Dayan, F.E. (2011) Modes of Action of Microbially-Produced Phytotoxins. Toxins, 3, 1038-1064. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., et al. (2004) Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. The Plant Cell, 16, 3460-3479. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Kidd, B.N., Edgar, C.I., Kumar, K.K., Aitken, E.A., Schenk, P.M., Manners, J.M., et al. (2009) The Mediator Complex Subunit PFT1 Is a Key Regulator of Jasmonate-Dependent Defense in Arabidopsis. The Plant Cell, 21, 2237-2252. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Thatcher, L.F., Manners, J.M. and Kazan, K. (2009) Fusarium oxysporum Hijacks Coi1‐Mediated Jasmonate Signaling to Promote Disease Development in Arabidopsis. The Plant Journal, 58, 927-939. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Plett, J.M., Daguerre, Y., Wittulsky, S., Vayssières, A., Deveau, A., Melton, S.J., et al. (2014) Effector MISSP7 of the Mutualistic Fungus Laccaria bicolor Stabilizes the Populus JAZ6 Protein and Represses Jasmonic Acid (JA) Responsive Genes. Proceedings of the National Academy of Sciences, 111, 8299-8304. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Caillaud, M., Asai, S., Rallapalli, G., Piquerez, S., Fabro, G. and Jones, J.D.G. (2013) A Downy Mildew Effector Attenuates Salicylic Acid-Triggered Immunity in Arabidopsis by Interacting with the Host Mediator Complex. PLOS Biology, 11, e1001732. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Zhao, Y., Yang, B., Xu, H., Wu, J., Xu, Z. and Wang, Y. (2022) The Phytophthora Effector Avh94 Manipulates Host Jasmonic Acid Signaling to Promote Infection. Journal of Integrative Plant Biology, 64, 2199-2210. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Patkar, R.N., Benke, P.I., Qu, Z., Constance Chen, Y.Y., Yang, F., Swarup, S., et al. (2015) A Fungal Monooxygenase-Derived Jasmonate Attenuates Host Innate Immunity. Nature Chemical Biology, 11, 733-740. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Li, R., Weldegergis, B.T., Li, J., Jung, C., Qu, J., Sun, Y., et al. (2014) Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance. The Plant Cell, 26, 4991-5008. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Hind, S.R., Pulliam, S.E., Veronese, P., Shantharaj, D., Nazir, A., Jacobs, N.S., et al. (2011) The COP9 Signalosome Controls Jasmonic Acid Synthesis and Plant Responses to Herbivory and Pathogens. The Plant Journal, 65, 480-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Lozano-Durán, R., Rosas-Díaz, T., Gusmaroli, G., Luna, A.P., Taconnat, L., Deng, X.W., et al. (2011) Geminiviruses Subvert Ubiquitination by Altering CSN-Mediated Derubylation of SCF E3 Ligase Complexes and Inhibit Jasmonate Signaling in Arabidopsis thaliana. The Plant Cell, 23, 1014-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Salvaudon, L., De Morae, C.M., Yang, J., Chua, N. and Mescher, M.C. (2013) Effects of the Virus Satellite Gene βC1 on Host Plant Defense Signaling and Volatile Emission. Plant Signaling & Behavior, 8, e23317. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Yang, J., Iwasaki, M., Machida, C., Machida, Y., Zhou, X. and Chua, N. (2008) βC1, the Pathogenicity Factor of TYLCCNV, Interacts with AS1 to Alter Leaf Development and Suppress Selective Jasmonic Acid Responses. Genes & Development, 22, 2564-2577. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Lewsey, M.G., Murphy, A.M., MacLean, D., Dalchau, N., Westwood, J.H., Macaulay, K., et al. (2010) Disruption of Two Defensive Signaling Pathways by a Viral RNA Silencing Suppressor. Molecular Plant-Microbe Interactions®, 23, 835-845. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Westwood, J.H., Lewsey, M.G., Murphy, A.M., Tungadi, T., Bates, A., Gilligan, C.A., et al. (2014) Interference with Jasmonic Acid-Regulated Gene Expression Is a General Property of Viral Suppressors of RNA Silencing but Only Partly Explains Virus-Induced Changes in Plant-Aphid Interactions. Journal of General Virology, 95, 733-739. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Ziebell, H., Murphy, A.M., Groen, S.C., Tungadi, T., Westwood, J.H., Lewsey, M.G., et al. (2011) Cucumber Mosaic Virus and Its 2b RNA Silencing Suppressor Modify Plant-Aphid Interactions in Tobacco. Scientific Reports, 1, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Tan, X., Zhang, H., Yang, Z., Wei, Z., Li, Y., Chen, J., et al. (2022) NF-YA Transcription Factors Suppress Jasmonic Acid-Mediated Antiviral Defense and Facilitate Viral Infection in Rice. PLOS Pathogens, 18, e1010548. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
He, L., Chen, X., Yang, J., Zhang, T., Li, J., Zhang, S., et al. (2019) Rice Black‐Streaked Dwarf Virus‐Encoded P5‐1 Regulates the Ubiquitination Activity of SCF E3 Ligases and Inhibits Jasmonate Signaling to Benefit Its Infection in Rice. New Phytologist, 225, 896-912. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Han, K., Huang, H., Zheng, H., Ji, M., Yuan, Q., Cui, W., et al. (2020) Rice Stripe Virus Coat Protein Induces the Accumulation of Jasmonic Acid, Activating Plant Defence against the Virus While also Attracting Its Vector to Feed. Molecular Plant Pathology, 21, 1647-1653. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Huang, J., Yao, C., Sun, Y., Ji, Q. and Deng, X. (2022) Virulence-Related Regulatory Network of Pseudomonas syringae. Computational and Structural Biotechnology Journal, 20, 6259-6270. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Wang, T., Hua, C. and Deng, X. (2023) C-di-GMP Signaling in Pseudomonas syringae Complex. Microbiological Research, 275, Article 127445. [Google Scholar] [CrossRef] [PubMed]
|