[1]
|
Demole, E., Lederer, E. and Mercier, D. (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de l’essence de jasmin. Helvetica Chimica Acta, 45, 675-685. https://doi.org/10.1002/hlca.19620450233
|
[2]
|
Li, C., Xu, M., Cai, X., Han, Z., Si, J. and Chen, D. (2022) Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-offs. International Journal of Molecular Sciences, 23, Article 3945. https://doi.org/10.3390/ijms23073945
|
[3]
|
Zhang, L., Zhang, F., Melotto, M., Yao, J. and He, S.Y. (2017) Jasmonate Signaling and Manipulation by Pathogens and Insects. Journal of Experimental Botany, 68, erw478. https://doi.org/10.1093/jxb/erw478
|
[4]
|
Yan, C. and Xie, D. (2015) Jasmonate in Plant Defence: Sentinel or Double Agent? Plant Biotechnology Journal, 13, 1233-1240. https://doi.org/10.1111/pbi.12417
|
[5]
|
Wasternack, C. and Song, S. (2017) Jasmonates: Biosynthesis, Metabolism, and Signaling by Proteins Activating and Repressing Transcription. Journal of Experimental Botany, 68, 1303-1321.
|
[6]
|
Chini, A., Monte, I., Zamarreño, A.M., Hamberg, M., Lassueur, S., Reymond, P., et al. (2018) An OPR3-Independent Pathway Uses 4,5-Didehydrojasmonate for Jasmonate Synthesis. Nature Chemical Biology, 14, 171-178. https://doi.org/10.1038/nchembio.2540
|
[7]
|
Miersch, O., Bohlmann, H. and Wasternack, C. (1999) Jasmonates and Related Compounds from Fusarium Oxysporum. Phytochemistry, 50, 517-523. https://doi.org/10.1016/s0031-9422(98)00596-2
|
[8]
|
Tsukada, K., Takahashi, K. and Nabeta, K. (2010) Biosynthesis of Jasmonic Acid in a Plant Pathogenic Fungus, Lasiodiplodia Theobromae. Phytochemistry, 71, 2019-2023. https://doi.org/10.1016/j.phytochem.2010.09.013
|
[9]
|
Miersch, O., Regvar, M. and Wasternack, C. (1999) Metabolism of Jasmonic Acid in Pisolithus Tinctorius Cultures. Phyton, Annales Rei Botanicae, Horn, 39, 243-248.
|
[10]
|
Cole, S.J., Yoon, A.J., Faull, K.F. and Diener, A.C. (2014) Host Perception of Jasmonates Promotes Infection by Fusarium oxysporum Formae Speciales That Produce Isoleucine‐ and Leucine‐Conjugated Jasmonates. Molecular Plant Pathology, 15, 589-600. https://doi.org/10.1111/mpp.12117
|
[11]
|
Chini, A., Gimenez-Ibanez, S., Goossens, A. and Solano, R. (2016) Redundancy and Specificity in Jasmonate Signalling. Current Opinion in Plant Biology, 33, 147-156. https://doi.org/10.1016/j.pbi.2016.07.005
|
[12]
|
Tang, H., Lin, S., Deng, J., Keasling, J.D. and Luo, X. (2023) Engineering Yeast for the De Novo Synthesis of Jasmonates. Nature Synthesis, 3, 224-235. https://doi.org/10.1038/s44160-023-00429-w
|
[13]
|
Li, M., Yu, G., Cao, C. and Liu, P. (2021) Metabolism, Signaling, and Transport of Jasmonates. Plant Communications, 2, Article 100231. https://doi.org/10.1016/j.xplc.2021.100231
|
[14]
|
Yan, J., Yao, R., Chen, L., Li, S., Gu, M., Nan, F., et al. (2018) Dynamic Perception of Jasmonates by the F-Box Protein COI1. Molecular Plant, 11, 1237-1247. https://doi.org/10.1016/j.molp.2018.07.007
|
[15]
|
Song, S., Liu, B., Zhai, J., Zhang, Y., Wang, K. and Qi, T. (2021) The Intragenic Suppressor Mutation Leu59Phe Compensates for the Effect of Detrimental Mutations in the Jasmonate Receptor COI1. The Plant Journal, 108, 690-704. https://doi.org/10.1111/tpj.15464
|
[16]
|
魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5): 1039-1046.
|
[17]
|
Takaoka, Y., Suzuki, K., Nozawa, A., Takahashi, H., Sawasaki, T. and Ueda, M. (2022) Protein-Protein Interactions between Jasmonate-Related Master Regulator MYC and Transcriptional Mediator MED25 Depend on a Short Binding Domain. Journal of Biological Chemistry, 298, Article 101504. https://doi.org/10.1016/j.jbc.2021.101504
|
[18]
|
Shi, R., Yu, J., Chang, X., Qiao, L., Liu, X. and Lu, L. (2023) Recent Advances in Research into Jasmonate Biosynthesis and Signaling Pathways in Agricultural Crops and Products. Processes, 11, Article 736. https://doi.org/10.3390/pr11030736
|
[19]
|
Goossens, J., Fernández-Calvo, P., Schweizer, F. and Goossens, A. (2016) Jasmonates: Signal Transduction Components and Their Roles in Environmental Stress Responses. Plant Molecular Biology, 91, 673-689. https://doi.org/10.1007/s11103-016-0480-9
|
[20]
|
Fernández-Calvo, P., Chini, A., Fernández-Barbero, G., Chico, J., Gimenez-Ibanez, S., Geerinck, J., et al. (2011) The Arabidopsis bHLH Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses. The Plant Cell, 23, 701-715. https://doi.org/10.1105/tpc.110.080788
|
[21]
|
Zhang, F., Yao, J., Ke, J., Zhang, L., Lam, V.Q., Xin, X., et al. (2015) Structural Basis of JAZ Repression of MYC Transcription Factors in Jasmonate Signalling. Nature, 525, 269-273. https://doi.org/10.1038/nature14661
|
[22]
|
An, C., Li, L., Zhai, Q., You, Y., Deng, L., Wu, F., et al. (2017) Mediator Subunit MED25 Links the Jasmonate Receptor to Transcriptionally Active Chromatin. Proceedings of the National Academy of Sciences, 114, E8930-E8939. https://doi.org/10.1073/pnas.1710885114
|
[23]
|
An, C., Deng, L., Zhai, H., You, Y., Wu, F., Zhai, Q., et al. (2022) Regulation of Jasmonate Signaling by Reversible Acetylation of TOPLESS in Arabidopsis. Molecular Plant, 15, 1329-1346. https://doi.org/10.1016/j.molp.2022.06.014
|
[24]
|
Gimenez-Ibanez, S., Boter, M., Fernández-Barbero, G., Chini, A., Rathjen, J.P. and Solano, R. (2014) The Bacterial Effector Hopx1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLOS Biology, 12, e1001792. https://doi.org/10.1371/journal.pbio.1001792
|
[25]
|
Zhao, Q., Liu, F., Song, C., Zhai, T., He, Z., Ma, L., et al. (2023) Diffusible Signal Factor Primes Plant Immunity against Xanthomonas campestris pv. campestris (Xcc) via JA Signaling in Arabidopsis and Brassica Oleracea. Frontiers in Cellular and Infection Microbiology, 13, Article 1203582. https://doi.org/10.3389/fcimb.2023.1203582
|
[26]
|
Jing, Y., Liu, J., Liu, P., Ming, D. and Sun, J. (2019) Overexpression of TaJAZ1 Increases Powdery Mildew Resistance through Promoting Reactive Oxygen Species Accumulation in Bread Wheat. Scientific Reports, 9, Article No. 5691. https://doi.org/10.1038/s41598-019-42177-y
|
[27]
|
Yang, Z., Huang, Y., Yang, J., Yao, S., Zhao, K., Wang, D., et al. (2020) Jasmonate Signaling Enhances RNA Silencing and Antiviral Defense in Rice. Cell Host & Microbe, 28, 89-103.E8. https://doi.org/10.1016/j.chom.2020.05.001
|
[28]
|
Zhang, C., Ding, Z., Wu, K., Yang, L., Li, Y., Yang, Z., et al. (2016) Suppression of Jasmonic Acid-Mediated Defense by Viral-Inducible MicroRNA319 Facilitates Virus Infection in Rice. Molecular Plant, 9, 1302-1314. https://doi.org/10.1016/j.molp.2016.06.014
|
[29]
|
Brenya, E., Chen, Z., Tissue, D., Papanicolaou, A. and Cazzonelli, C.I. (2020) Prior Exposure of Arabidopsis Seedlings to Mechanical Stress Heightens Jasmonic Acid-Mediated Defense against Necrotrophic Pathogens. BMC Plant Biology, 20, Article No. 548. https://doi.org/10.1186/s12870-020-02759-9
|
[30]
|
Ramirez‐Prado, J.S., Latrasse, D., Rodriguez‐Granados, N.Y., Huang, Y., Manza‐Mianza, D., Brik‐Chaouche, R., et al. (2019) The Polycomb Protein LHP1 Regulates Arabidopsis thaliana Stress Responses through the Repression of the MYC2‐Dependent Branch of Immunity. The Plant Journal, 100, 1118-1131. https://doi.org/10.1111/tpj.14502
|
[31]
|
Scalschi, L., Llorens, E., García-Agustín, P. and Vicedo, B. (2020) Role of Jasmonic Acid Pathway in Tomato Plant-Pseudomonas syringae Interaction. Plants, 9, Article 136. https://doi.org/10.3390/plants9020136
|
[32]
|
Uji, Y., Kashihara, K., Kiyama, H., Mochizuki, S., Akimitsu, K. and Gomi, K. (2019) Jasmonic Acid-Induced VQ-Motif-Containing Protein OsVQ13 Influences the OsWRKY45 Signaling Pathway and Grain Size by Associating with OsMPK6 in Rice. International Journal of Molecular Sciences, 20, Article 2917. https://doi.org/10.3390/ijms20122917
|
[33]
|
Ke, Y., Kang, Y., Wu, M., Liu, H., Hui, S., Zhang, Q., et al. (2019) Jasmonic Acid-Involved OsEDS1 Signaling in Rice-Bacteria Interactions. Rice, 12, Article No. 25. https://doi.org/10.1186/s12284-019-0283-0
|
[34]
|
Kong, Y., Wang, G., Chen, X., Li, L., Zhang, X., Chen, S., et al. (2021) osPHR2 Modulates Phosphate Starvation‐induced OsMYC2 Signalling and Resistance to Xanthomonas oryzae pv. oryzae. Plant, Cell & Environment, 44, 3432-3444. https://doi.org/10.1111/pce.14078
|
[35]
|
Li, Q., Hu, A., Qi, J., Dou, W., Qin, X., Zou, X., et al. (2020) CsWAKl08, a Pathogen-Induced Wall-Associated Receptor-Like Kinase in Sweet Orange, Confers Resistance to Citrus Bacterial Canker via ROS Control and JA Signaling. Horticulture Research, 7, 42. https://doi.org/10.1038/s41438-020-0263-y
|
[36]
|
Campos, M.L., Kang, J. and Howe, G.A. (2014) Jasmonate-Triggered Plant Immunity. Journal of Chemical Ecology, 40, 657-675. https://doi.org/10.1007/s10886-014-0468-3
|
[37]
|
Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., et al. (1998) Separate Jasmonate-Dependent and Salicylate-Dependent Defense-Response Pathways in Arabidopsis Are Essential for Resistance to Distinct Microbial Pathogens. Proceedings of the National Academy of Sciences, 95, 15107-15111. https://doi.org/10.1073/pnas.95.25.15107
|
[38]
|
Stintzi, A., Weber, H., Reymond, P., Browse, J. and Farmer, E.E. (2001) Plant Defense in the Absence of Jasmonic Acid: The Role of Cyclopentenones. Proceedings of the National Academy of Sciences, 98, 12837-12842. https://doi.org/10.1073/pnas.211311098
|
[39]
|
McConn, M. and Browse, J. (1996) The Critical Requirement for Linolenic Acid Is Pollen Development, Not Photosynthesis, in an Arabidopsis Mutant. The Plant Cell, 8, 403-416. https://doi.org/10.2307/3870321
|
[40]
|
Hu, Y., Jiang, Y., Han, X., Wang, H., Pan, J. and Yu, D. (2017) Jasmonate Regulates Leaf Senescence and Tolerance to Cold Stress: Crosstalk with Other Phytohormones. Journal of Experimental Botany, 68, 1361-1369. https://doi.org/10.1093/jxb/erx004
|
[41]
|
Yan, Y., Christensen, S., Isakeit, T., Engelberth, J., Meeley, R., Hayward, A., et al. (2012) Disruption of OPR7 and OPR8 Reveals the Versatile Functions of Jasmonic Acid in Maize Development and Defense. The Plant Cell, 24, 1420-1436. https://doi.org/10.1105/tpc.111.094151
|
[42]
|
AbuQamar, S., Chai, M., Luo, H., Song, F. and Mengiste, T. (2008) Tomato Protein Kinase 1b Mediates Signaling of Plant Responses to Necrotrophic Fungi and Insect Herbivory. The Plant Cell, 20, 1964-1983. https://doi.org/10.1105/tpc.108.059477
|
[43]
|
Thaler, J.S., Owen, B. and Higgins, V.J. (2004) The Role of the Jasmonate Response in Plant Susceptibility to Diverse Pathogens with a Range of Lifestyles. Plant Physiology, 135, 530-538. https://doi.org/10.1104/pp.104.041566
|
[44]
|
Kachroo, A. and Kachroo, P. (2009) Fatty Acid-Derived Signals in Plant Defense. Annual Review of Phytopathology, 47, 153-176. https://doi.org/10.1146/annurev-phyto-080508-081820
|
[45]
|
Scalschi, L., Sanmartín, M., Camañes, G., Troncho, P., Sánchez‐Serrano, J.J., García‐Agustín, P., et al. (2014) Silencing of OPR3 in Tomato Reveals the Role of OPDA in Callose Deposition during the Activation of Defense Responses against Botrytis cinerea. The Plant Journal, 81, 304-315. https://doi.org/10.1111/tpj.12728
|
[46]
|
Ameye, M., Audenaert, K., De Zutter, N., Steppe, K., Van Meulebroek, L., Vanhaecke, L., et al. (2015) Priming of Wheat with the Green Leaf Volatile Z-3-Hexenyl Acetate Enhances Defense against Fusarium graminearum but Boosts Deoxynivalenol Production. Plant Physiology, 167, 1671-1684. https://doi.org/10.1104/pp.15.00107
|
[47]
|
赵显阳. 外源茉莉酸甲酯(MeJA)对梨果实抗青霉病及其保鲜作用的研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2020.
|
[48]
|
Jia, H., Zhang, C., Pervaiz, T., Zhao, P., Liu, Z., Wang, B., et al. (2015) Jasmonic Acid Involves in Grape Fruit Ripening and Resistant against Botrytis Cinerea. Functional & Integrative Genomics, 16, 79-94. https://doi.org/10.1007/s10142-015-0468-6
|
[49]
|
Liu, D., Zhao, Q., Cui, X., Chen, R., Li, X., Qiu, B., et al. (2019) A Transcriptome Analysis Uncovers Panax Notoginseng Resistance to Fusarium Solani Induced by Methyl Jasmonate. Genes & Genomics, 41, 1383-1396. https://doi.org/10.1007/s13258-019-00865-z
|
[50]
|
Wang, Z., Tan, X., Zhang, Z., Gu, S., Li, G. and Shi, H. (2012) Defense to Sclerotinia Sclerotiorum in Oilseed Rape Is Associated with the Sequential Activations of Salicylic Acid Signaling and Jasmonic Acid Signaling. Plant Science, 184, 75-82. https://doi.org/10.1016/j.plantsci.2011.12.013
|
[51]
|
Moosa, A., Sahi, S.T., Khan, S.A. and Malik, A.U. (2019) Salicylic Acid and Jasmonic Acid Can Suppress Green and Blue Moulds of Citrus Fruit and Induce the Activity of Polyphenol Oxidase and Peroxidase. Folia Horticulturae, 31, 195-204. https://doi.org/10.2478/fhort-2019-0014
|
[52]
|
Zhu, F., Xi, D., Yuan, S., Xu, F., Zhang, D. and Lin, H. (2014) Salicylic Acid and Jasmonic Acid Are Essential for Systemic Resistance against Tobacco mosaic virus in Nicotiana benthamiana. Molecular Plant-Microbe Interactions®, 27, 567-577. https://doi.org/10.1094/mpmi-11-13-0349-r
|
[53]
|
Ullrich, M., Peñaloza-Vázquez, A., Bailey, A.M. and Bender, C.L. (1995) A Modified Two-Component Regulatory System Is Involved in Temperature-Dependent Biosynthesis of the Pseudomonas syringae Phytotoxin Coronatine. Journal of Bacteriology, 177, 6160-6169. https://doi.org/10.1128/jb.177.21.6160-6169.1995
|
[54]
|
Blüher, D., Laha, D., Thieme, S., Hofer, A., Eschen-Lippold, L., Masch, A., et al. (2017) A1-Phytase Type III Effector Interferes with Plant Hormone Signaling. Nature Communications, 8, Article No. 2159. https://doi.org/10.1038/s41467-017-02195-8
|
[55]
|
Bender, C.L., Alarcón-Chaidez, F. and Gross, D.C. (1999) Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases. Microbiology and Molecular Biology Reviews, 63, 266-292. https://doi.org/10.1128/mmbr.63.2.266-292.1999
|
[56]
|
Geng, X., Jin, L., Shimada, M., Kim, M.G. and Mackey, D. (2014) The Phytotoxin Coronatine Is a Multifunctional Component of the Virulence Armament of Pseudomonas syringae. Planta, 240, 1149-1165. https://doi.org/10.1007/s00425-014-2151-x
|
[57]
|
Fyans, J.K., Altowairish, M.S., Li, Y. and Bignell, D.R.D. (2015) Characterization of the Coronatine-Like Phytotoxins Produced by the Common Scab Pathogen Streptomyces scabies. Molecular Plant-Microbe Interactions®, 28, 443-454. https://doi.org/10.1094/mpmi-09-14-0255-r
|
[58]
|
Bell, K.S., Sebaihia, M., Pritchard, L., Holden, M.T.G., Hyman, L.J., Holeva, M.C., et al. (2004) Genome Sequence of the Enterobacterial Phytopathogen Erwinia carotovora Subsp. Atroseptica and Characterization of Virulence Factors. Proceedings of the National Academy of Sciences, 101, 11105-11110. https://doi.org/10.1073/pnas.0402424101
|
[59]
|
Slawiak, M. and Lojkowska, E. (2009) Genes Responsible for Coronatine Synthesis in Pseudomonas syringae Present in the Genome of Soft Rot Bacteria. European Journal of Plant Pathology, 124, 353-361. https://doi.org/10.1007/s10658-008-9418-7
|
[60]
|
Cheng, Z., Sun, L., Qi, T., Zhang, B., Peng, W., Liu, Y., et al. (2011) The bHLH Transcription Factor MYC3 Interacts with the Jasmonate ZIM-Domain Proteins to Mediate Jasmonate Response in Arabidopsis. Molecular Plant, 4, 279-288. https://doi.org/10.1093/mp/ssq073
|
[61]
|
Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., et al. (2002) Genome Sequence of the Plant Pathogen Ralstonia Solanacearum. Nature, 415, 497-502. https://doi.org/10.1038/415497a
|
[62]
|
Gupta, A., Bhardwaj, M. and Tran, L.P. (2020) Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. International Journal of Molecular Sciences, 21, Article 7482. https://doi.org/10.3390/ijms21207482
|
[63]
|
Jiang, S., Yao, J., Ma, K., Zhou, H., Song, J., He, S.Y., et al. (2013) Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors. PLOS Pathogens, 9, e1003715. https://doi.org/10.1371/journal.ppat.1003715
|
[64]
|
Hu, Y., Jiang, L., Wang, F. and Yu, D. (2013) Jasmonate Regulates the INDUCER of CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in Arabidopsis. The Plant Cell, 25, 2907-2924. https://doi.org/10.1105/tpc.113.112631
|
[65]
|
He, P., Chintamanani, S., Chen, Z., Zhu, L., Kunkel, B.N., Alfano, J.R., et al. (2004) Activation of a COI1‐Dependent Pathway in Arabidopsis by Pseudomonas syringae Type III Effectors and Coronatine. The Plant Journal, 37, 589-602. https://doi.org/10.1111/j.1365-313x.2003.01986.x
|
[66]
|
Cui, H., Wang, Y., Xue, L., Chu, J., Yan, C., Fu, J., et al. (2010) Pseudomonas syringae Effector Protein AvrB Perturbs Arabidopsis Hormone Signaling by Activating MAP Kinase 4. Cell Host & Microbe, 7, 164-175. https://doi.org/10.1016/j.chom.2010.01.009
|
[67]
|
Zhou, Z., Wu, Y., Yang, Y., Du, M., Zhang, X., Guo, Y., et al. (2015) An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas syringae Effector Protein AvrB for Stomatal Invasion. The Plant Cell, 27, 2032-2041. https://doi.org/10.1105/tpc.15.00466
|
[68]
|
Brooks, D.M., Hernández-Guzmán, G., Kloek, A.P., Alarcón-Chaidez, F., Sreedharan, A., Rangaswamy, V., et al. (2004) Identification and Characterization of a Well-Defined Series of Coronatine Biosynthetic Mutants of Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions®, 17, 162-174. https://doi.org/10.1094/mpmi.2004.17.2.162
|
[69]
|
Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. and Howe, G.A. (2008) COI1 Is a Critical Component of a Receptor for Jasmonate and the Bacterial Virulence Factor Coronatine. Proceedings of the National Academy of Sciences, 105, 7100-7105. https://doi.org/10.1073/pnas.0802332105
|
[70]
|
Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., et al. (2008) A Critical Role of Two Positively Charged Amino Acids in the Jas Motif of Arabidopsis JAZ Proteins in Mediating Coronatine‐ and Jasmonoyl Isoleucine‐Dependent Interactions with the COI1 F‐Box Protein. The Plant Journal, 55, 979-988. https://doi.org/10.1111/j.1365-313x.2008.03566.x
|
[71]
|
Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., et al. (2009) The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor. The Plant Cell, 21, 2220-2236. https://doi.org/10.1105/tpc.109.065730
|
[72]
|
Sheard, L.B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T.R., et al. (2010) Jasmonate Perception by Inositol-Phosphate-Potentiated COI1-JAZ Co-Receptor. Nature, 468, 400-405. https://doi.org/10.1038/nature09430
|
[73]
|
Zhai, Q., Zhang, X., Wu, F., Feng, H., Deng, L., Xu, L., et al. (2015) Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. The Plant Cell, 27, 2814-2828. https://doi.org/10.1105/tpc.15.00619
|
[74]
|
Kloek, A.P., Verbsky, M.L., Sharma, S.B., Schoelz, J.E., Vogel, J., Klessig, D.F., et al. (2001) Resistance to Pseudomonas syringae Conferred by an Arabidopsis thaliana Coronatine‐Insensitive (coi1) Mutation Occurs through Two Distinct Mechanisms. The Plant Journal, 26, 509-522. https://doi.org/10.1046/j.1365-313x.2001.01050.x
|
[75]
|
Brooks, D.M., Bender, C.L. and Kunkel, B.N. (2005) The Pseudomonas syringae Phytotoxin Coronatine Promotes Virulence by Overcoming Salicylic Acid‐Dependent Defences in Arabidopsis thaliana. Molecular Plant Pathology, 6, 629-639. https://doi.org/10.1111/j.1364-3703.2005.00311.x
|
[76]
|
Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S.Y. (2006) Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126, 969-980. https://doi.org/10.1016/j.cell.2006.06.054
|
[77]
|
Zeng, W. and He, S.Y. (2010) A Prominent Role of the Flagellin Receptor FLAGELLIN-SENSING2 in Mediating Stomatal Response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology, 153, 1188-1198. https://doi.org/10.1104/pp.110.157016
|
[78]
|
Gimenez‐Ibanez, S., Boter, M., Ortigosa, A., García‐Casado, G., Chini, A., Lewsey, M.G., et al. (2016) JAZ2 Controls Stomata Dynamics during Bacterial Invasion. New Phytologist, 213, 1378-1392. https://doi.org/10.1111/nph.14354
|
[79]
|
Zheng, X., Spivey, N.W., Zeng, W., Liu, P., Fu, Z.Q., Klessig, D.F., et al. (2012) Coronatine Promotes Pseudomonas syringae Virulence in Plants by Activating a Signaling Cascade That Inhibits Salicylic Acid Accumulation. Cell Host & Microbe, 11, 587-596. https://doi.org/10.1016/j.chom.2012.04.014
|
[80]
|
Du, M., Li, Y., Tian, X., Duan, L., Zhang, M., Tan, W., et al. (2014) The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton. PLOS ONE, 9, e97652. https://doi.org/10.1371/journal.pone.0097652
|
[81]
|
Zhou, Y., Zhang, M., Li, J., Li, Z., Tian, X. and Duan, L. (2015) Phytotoxin Coronatine Enhances Heat Tolerance via Maintaining Photosynthetic Performance in Wheat Based on Electrophoresis and TOF-MS Analysis. Scientific Reports, 5, Article No. 13870. https://doi.org/10.1038/srep13870
|
[82]
|
Duke, S.O. and Dayan, F.E. (2011) Modes of Action of Microbially-Produced Phytotoxins. Toxins, 3, 1038-1064. https://doi.org/10.3390/toxins3081038
|
[83]
|
Anderson, J.P., Badruzsaufari, E., Schenk, P.M., Manners, J.M., Desmond, O.J., Ehlert, C., et al. (2004) Antagonistic Interaction between Abscisic Acid and Jasmonate-Ethylene Signaling Pathways Modulates Defense Gene Expression and Disease Resistance in Arabidopsis. The Plant Cell, 16, 3460-3479. https://doi.org/10.1105/tpc.104.025833
|
[84]
|
Kidd, B.N., Edgar, C.I., Kumar, K.K., Aitken, E.A., Schenk, P.M., Manners, J.M., et al. (2009) The Mediator Complex Subunit PFT1 Is a Key Regulator of Jasmonate-Dependent Defense in Arabidopsis. The Plant Cell, 21, 2237-2252. https://doi.org/10.1105/tpc.109.066910
|
[85]
|
Thatcher, L.F., Manners, J.M. and Kazan, K. (2009) Fusarium oxysporum Hijacks Coi1‐Mediated Jasmonate Signaling to Promote Disease Development in Arabidopsis. The Plant Journal, 58, 927-939. https://doi.org/10.1111/j.1365-313x.2009.03831.x
|
[86]
|
Plett, J.M., Daguerre, Y., Wittulsky, S., Vayssières, A., Deveau, A., Melton, S.J., et al. (2014) Effector MISSP7 of the Mutualistic Fungus Laccaria bicolor Stabilizes the Populus JAZ6 Protein and Represses Jasmonic Acid (JA) Responsive Genes. Proceedings of the National Academy of Sciences, 111, 8299-8304. https://doi.org/10.1073/pnas.1322671111
|
[87]
|
Caillaud, M., Asai, S., Rallapalli, G., Piquerez, S., Fabro, G. and Jones, J.D.G. (2013) A Downy Mildew Effector Attenuates Salicylic Acid-Triggered Immunity in Arabidopsis by Interacting with the Host Mediator Complex. PLOS Biology, 11, e1001732. https://doi.org/10.1371/journal.pbio.1001732
|
[88]
|
Zhao, Y., Yang, B., Xu, H., Wu, J., Xu, Z. and Wang, Y. (2022) The Phytophthora Effector Avh94 Manipulates Host Jasmonic Acid Signaling to Promote Infection. Journal of Integrative Plant Biology, 64, 2199-2210. https://doi.org/10.1111/jipb.13358
|
[89]
|
Patkar, R.N., Benke, P.I., Qu, Z., Constance Chen, Y.Y., Yang, F., Swarup, S., et al. (2015) A Fungal Monooxygenase-Derived Jasmonate Attenuates Host Innate Immunity. Nature Chemical Biology, 11, 733-740. https://doi.org/10.1038/nchembio.1885
|
[90]
|
Li, R., Weldegergis, B.T., Li, J., Jung, C., Qu, J., Sun, Y., et al. (2014) Virulence Factors of Geminivirus Interact with MYC2 to Subvert Plant Resistance and Promote Vector Performance. The Plant Cell, 26, 4991-5008. https://doi.org/10.1105/tpc.114.133181
|
[91]
|
Hind, S.R., Pulliam, S.E., Veronese, P., Shantharaj, D., Nazir, A., Jacobs, N.S., et al. (2011) The COP9 Signalosome Controls Jasmonic Acid Synthesis and Plant Responses to Herbivory and Pathogens. The Plant Journal, 65, 480-491. https://doi.org/10.1111/j.1365-313x.2010.04437.x
|
[92]
|
Lozano-Durán, R., Rosas-Díaz, T., Gusmaroli, G., Luna, A.P., Taconnat, L., Deng, X.W., et al. (2011) Geminiviruses Subvert Ubiquitination by Altering CSN-Mediated Derubylation of SCF E3 Ligase Complexes and Inhibit Jasmonate Signaling in Arabidopsis thaliana. The Plant Cell, 23, 1014-1032. https://doi.org/10.1105/tpc.110.080267
|
[93]
|
Salvaudon, L., De Morae, C.M., Yang, J., Chua, N. and Mescher, M.C. (2013) Effects of the Virus Satellite Gene βC1 on Host Plant Defense Signaling and Volatile Emission. Plant Signaling & Behavior, 8, e23317. https://doi.org/10.4161/psb.23317
|
[94]
|
Yang, J., Iwasaki, M., Machida, C., Machida, Y., Zhou, X. and Chua, N. (2008) βC1, the Pathogenicity Factor of TYLCCNV, Interacts with AS1 to Alter Leaf Development and Suppress Selective Jasmonic Acid Responses. Genes & Development, 22, 2564-2577. https://doi.org/10.1101/gad.1682208
|
[95]
|
Lewsey, M.G., Murphy, A.M., MacLean, D., Dalchau, N., Westwood, J.H., Macaulay, K., et al. (2010) Disruption of Two Defensive Signaling Pathways by a Viral RNA Silencing Suppressor. Molecular Plant-Microbe Interactions®, 23, 835-845. https://doi.org/10.1094/mpmi-23-7-0835
|
[96]
|
Westwood, J.H., Lewsey, M.G., Murphy, A.M., Tungadi, T., Bates, A., Gilligan, C.A., et al. (2014) Interference with Jasmonic Acid-Regulated Gene Expression Is a General Property of Viral Suppressors of RNA Silencing but Only Partly Explains Virus-Induced Changes in Plant-Aphid Interactions. Journal of General Virology, 95, 733-739. https://doi.org/10.1099/vir.0.060624-0
|
[97]
|
Ziebell, H., Murphy, A.M., Groen, S.C., Tungadi, T., Westwood, J.H., Lewsey, M.G., et al. (2011) Cucumber Mosaic Virus and Its 2b RNA Silencing Suppressor Modify Plant-Aphid Interactions in Tobacco. Scientific Reports, 1, Article No. 187. https://doi.org/10.1038/srep00187
|
[98]
|
Tan, X., Zhang, H., Yang, Z., Wei, Z., Li, Y., Chen, J., et al. (2022) NF-YA Transcription Factors Suppress Jasmonic Acid-Mediated Antiviral Defense and Facilitate Viral Infection in Rice. PLOS Pathogens, 18, e1010548. https://doi.org/10.1371/journal.ppat.1010548
|
[99]
|
He, L., Chen, X., Yang, J., Zhang, T., Li, J., Zhang, S., et al. (2019) Rice Black‐Streaked Dwarf Virus‐Encoded P5‐1 Regulates the Ubiquitination Activity of SCF E3 Ligases and Inhibits Jasmonate Signaling to Benefit Its Infection in Rice. New Phytologist, 225, 896-912. https://doi.org/10.1111/nph.16066
|
[100]
|
Han, K., Huang, H., Zheng, H., Ji, M., Yuan, Q., Cui, W., et al. (2020) Rice Stripe Virus Coat Protein Induces the Accumulation of Jasmonic Acid, Activating Plant Defence against the Virus While also Attracting Its Vector to Feed. Molecular Plant Pathology, 21, 1647-1653. https://doi.org/10.1111/mpp.12995
|
[101]
|
Huang, J., Yao, C., Sun, Y., Ji, Q. and Deng, X. (2022) Virulence-Related Regulatory Network of Pseudomonas syringae. Computational and Structural Biotechnology Journal, 20, 6259-6270. https://doi.org/10.1016/j.csbj.2022.11.011
|
[102]
|
Wang, T., Hua, C. and Deng, X. (2023) C-di-GMP Signaling in Pseudomonas syringae Complex. Microbiological Research, 275, Article 127445. https://doi.org/10.1016/j.micres.2023.127445
|