|
[1]
|
Monge, S., Canniccioni, B., Graillot, A. and Robin, J. (2011) Phosphorus-Containing Polymers: A Great Opportunity for the Biomedical Field. Biomacromolecules, 12, 1973-1982. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Quílez-Bermejo, J., Ghisolfi, A., Grau-Marín, D., San-Fabián, E., Morallón, E. and Cazorla-Amorós, D. (2019) Post-synthetic Efficient Functionalization of Polyaniline with Phosphorus-Containing Groups. Effect of Phosphorus on Electrochemical Properties. European Polymer Journal, 119, 272-280. [Google Scholar] [CrossRef]
|
|
[3]
|
Strasser, P. and Teasdale, I. (2020) Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules, 25, Article No. 1716. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhao, R.Y., Erickson, H.K., Leece, B.A., Reid, E.E., Goldmacher, V.S., Lambert, J.M., et al. (2012) Synthesis and Biological Evaluation of Antibody Conjugates of Phosphate Prodrugs of Cytotoxic DNA Alkylators for the Targeted Treatment of Cancer. Journal of Medicinal Chemistry, 55, 766-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sullivan, I. and Planchard, D. (2017) Targeting ALK-Rearranged Non-Small-Cell Lung Cancer: An Update. Future Oncology, 13, 1213-1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hodge, R.L., Kaduk, J.A., Gindhart, A.M. and Blanton, T.N. (2021) Crystal Structure of Brigatinib Form A (Alunbrig®), C29H39ClN7O2P. Powder Diffraction, 36, 262-269. [Google Scholar] [CrossRef]
|
|
[7]
|
Falagas, M.E., Vouloumanou, E.K., Samonis, G. and Vardakas, K.Z. (2016) Fosfomycin. Clinical Microbiology Reviews, 29, 321-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Edwards, J.E., Bequette, B.J., McKain, N., McEwan, N.R. and Wallace, R.J. (2005) Influence of Flavomycin on Microbial Numbers, Microbial Metabolism and Gut Tissue Protein Turnover in the Digestive Tract of Sheep. British Journal of Nutrition, 94, 64-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Huang, Y., Zhu, Y., Yue, H., Liu, Y., Deng, L., Lv, L., et al. (2024) Flavomycin Restores Colistin Susceptibility in Multidrug-Resistant Gram-Negative Bacteria. mSystems, 9, e00109-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Asselah, T. (2013) Sofosbuvir for the Treatment of Hepatitis C Virus. Expert Opinion on Pharmacotherapy, 15, 121-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Surial, B., Mugglin, C., Calmy, A., Cavassini, M., Günthard, H.F., Stöckle, M., et al. (2021) Weight and Metabolic Changes after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in People Living with HIV: A Cohort Study. Annals of Internal Medicine, 174, 758-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Byun, K.S., Choi, J., Kim, J., Lee, Y.S., Lee, H.C., Kim, Y.J., et al. (2022) Tenofovir Alafenamide for Drug-Resistant Hepatitis B: A Randomized Trial for Switching from Tenofovir Disoproxil Fumarate. Clinical Gastroenterology and Hepatology, 20, 427-437.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hong, G., Gan, X., Leonhardt, C., Zhang, Z., Seibert, J., Busch, J.M., et al. (2021) A Brief History of OLEDs—Emitter Development and Industry Milestones. Advanced Materials, 33, Article ID: 2005630. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
You, X., Gao, J., Duan, Y., Geng, Y., Zhang, M., Zhao, L., et al. (2022) A Theoretical Analysis on the Electron and Energy Transfer between Host and Guest Materials in Phosphor-Doped OLED. Journal of Photochemistry and Photobiology A: Chemistry, 432, Article ID: 114058. [Google Scholar] [CrossRef]
|
|
[15]
|
Hou, C., Ren, Y., Lang, R., Hu, X., Xia, C. and Li, F. (2012) Palladium-Catalyzed Direct Phosphonation of Azoles with Dialkyl Phosphites. Chemical Communications, 48, 5181-5183. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Berger, O., Petit, C., Deal, E.L. and Montchamp, J. (2013) Phosphorus-Carbon Bond Formation: Palladium-Catalyzed Cross-Coupling of H-Phosphinates and Other P(O)H-Containing Compounds. Advanced Synthesis & Catalysis, 355, 1361-1373. [Google Scholar] [CrossRef]
|
|
[17]
|
Dong, J., Liu, L., Ji, X., Shang, Q., Liu, L., Su, L., et al. (2019) General Oxidative Aryl C-P Bond Formation through Palladium-Catalyzed Decarbonylative Coupling of Aroylhydrazides with P(O)H Compounds. Organic Letters, 21, 3198-3203. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chen, X., Liu, X., Zhu, H. and Wang, Z. (2021) Palladium-Catalyzed C-P Bond Activation of Aroyl Phosphine Oxides without the Adjacent “Anchoring Atom”. Tetrahedron, 81, Article ID: 131912. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, X., Wu, H., Yu, R., Zhu, H. and Wang, Z. (2021) Palladium-Catalyzed C-P(III) Bond Formation by Coupling ArBr/ArOTf with Acylphosphines. The Journal of Organic Chemistry, 86, 8987-8996. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chen, C., Ding, J., Liu, L., Huang, Y. and Zhu, B. (2021) Palladium-Catalyzed Domino Cyclization/Phosphorylation of gem-Dibromoolefins with P(O)H Compounds: Synthesis of Phosphorylated Heteroaromatics. Advanced Synthesis & Catalysis, 364, 200-205. [Google Scholar] [CrossRef]
|
|
[21]
|
Chen, Z., Pang, W.H., Yuen, O.Y., Ng, S.S. and So, C.M. (2024) Palladium-Catalyzed Chemoselective Phosphorylation of Poly(pseudo)halides: A Route for Organophosphorus Synthesis. The Journal of Organic Chemistry. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Matsude, A., Hirano, K. and Miura, M. (2018) Palladium-Catalyzed Benzylic Phosphorylation of Diarylmethyl Carbonates. Organic Letters, 20, 3553-3556. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chen, L., Zhou, Z., Zhang, S., Li, X., Ma, X. and Dong, J. (2019) Palladium(II)-Catalyzed Oxidative C(sp3)-P Bond Formation via C(sp3)-H Bond Activation. Chemical Communications, 55, 13693-13696. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Weng, J., Xing, L., Hou, W., Liang, R. and Jia, Y. (2019) Palladium-Catalyzed Dearomative Arylphosphorylation of Indoles. Organic Chemistry Frontiers, 6, 1577-1580. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhang, P., Ying, J., Tang, G. and Zhao, Y. (2017) Phosphinodifluoroalkylation of Alkynes Using P(O)H Compounds and Ethyl Difluoroiodoacetate. Organic Chemistry Frontiers, 4, 2054-2057. [Google Scholar] [CrossRef]
|
|
[26]
|
Hu, S., Sun, W., Chen, J., Li, S., Zhao, R., Xu, P., et al. (2021) Palladium-Catalyzed C-P Cross-Coupling of Allenic Alcohols with H-Phosphonates Leading to 2-Phosphinoyl-1,3-butadienes. Chemical Communications, 57, 339-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sun, J., Ye, H., Sun, F., Pan, Y., Zhu, X. and Wu, X. (2023) Palladium-Catalyzed Allylation of P(O)H Compounds: Access to 2-Fluoroallylic Phosphorus Compounds. Organic Letters, 25, 5220-5225. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Huang, H., Wu, Y., Han, L., Jiang, L., Zhang, Z., Zhang, X., et al. (2024) Palladium-Catalyzed (z)-Selective Allylation of Phosphine Oxides with Vinylethylene Carbonates to Construct Phosphorus Allyl Alcohols. Organic & Biomolecular Chemistry, 22, 3068-3072. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ramesh, K. and Satyanarayana, G. (2019) Microwave-Assisted Domino Heck Cyclization and Phosphorylation: Synthesis of Phosphorus Containing Heterocycles. European Journal of Organic Chemistry, 2019, 3856-3866. [Google Scholar] [CrossRef]
|
|
[30]
|
Hong, Y., Liu, W., Dong, M., Chen, X., Xu, T., Tian, P., et al. (2019) Pd(0)-Catalyzed Cyclizative Phosphorylation of (z)-1-Iodo-1,6-Diene: Synthesis of Alkylphosphonate and Alkylthionophosphonate. Organic Letters, 21, 5742-5746. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, M., Ma, Z., Du, H. and Wang, Z. (2020) Palladium-Catalyzed C(sp3)-P(III) Bond Formation Reaction with Acylphosphines as Phosphorus Source. Tetrahedron Letters, 61, 152125. [Google Scholar] [CrossRef]
|
|
[32]
|
Pan, Y., Zhu, X., Shi, L., Jiang, G. and Wu, X. (2023) Palladium-Catalyzed Heck Cyclization with P(O)H Compounds to Construct Phosphinonyl-Azaindoline and-Azaoxindole Derivatives. The Journal of Organic Chemistry, 88, 9843-9852. [Google Scholar] [CrossRef] [PubMed]
|