[1]
|
Haleem, A., Vaishya, R., Javaid, M. and Khan, I.H. (2020) Artificial Intelligence (AI) Applications in Orthopaedics: An Innovative Technology to Embrace. Journal of Clinical Orthopaedics and Trauma, 11, S80-S81. https://doi.org/10.1016/j.jcot.2019.06.012
|
[2]
|
Klemt, C., Laurencin, S., Alpaugh, K., Tirumala, V., Barghi, A., Yeo, I., et al. (2022) The Utility of Machine Learning Algorithms for the Prediction of Early Revision Surgery after Primary Total Hip Arthroplasty. Journal of the American Academy of Orthopaedic Surgeons, 30, 513-522. https://doi.org/10.5435/jaaos-d-21-01039
|
[3]
|
Jo, C., Ko, S., Shin, W.C., Han, H., Lee, M.C., Ko, T., et al. (2019) Transfusion after Total Knee Arthroplasty Can Be Predicted Using the Machine Learning Algorithm. Knee Surgery, Sports Traumatology, Arthroscopy, 28, 1757-1764. https://doi.org/10.1007/s00167-019-05602-3
|
[4]
|
Merali, Z., Wang, J.Z., Badhiwala, J.H., Witiw, C.D., Wilson, J.R. and Fehlings, M.G. (2021) A Deep Learning Model for Detection of Cervical Spinal Cord Compression in MRI Scans. Scientific Reports, 11, Article No. 10473. https://doi.org/10.1038/s41598-021-89848-3
|
[5]
|
Kunze, K., Polce, E., Clapp, I., et al. (2021) Machine Learning Algorithms Predict Functional Improvement after Hip Arthroscopy for Femoroacetabular Impingement Syndrome in Athletes. The Journal of Bone and Joint Surgery. American Volume, 103, 1055-1062. https://doi.org/10.2106/JBJS.20.01640
|
[6]
|
Xu, W., Shu, L., Gong, P., Huang, C., Xu, J., Zhao, J., et al. (2022) A Deep-Learning Aided Diagnostic System in Assessing Developmental Dysplasia of the Hip on Pediatric Pelvic Radiographs. Frontiers in Pediatrics, 9, Article 785480. https://doi.org/10.3389/fped.2021.785480
|
[7]
|
Pranata, Y.D., Wang, K., Wang, J., Idram, I., Lai, J., Liu, J., et al. (2019) Deep Learning and SURF for Automated Classification and Detection of Calcaneus Fractures in CT Images. Computer Methods and Programs in Biomedicine, 171, 27-37. https://doi.org/10.1016/j.cmpb.2019.02.006
|
[8]
|
Kfuri, M., Crist, B.D. and Stannard, J.P. (2022) Preoperative Planning and Preservation of the Knee with Complex Osteotomies. Missouri Medicine, 119, 144-151.
|
[9]
|
Tiefenboeck, S., Sesselmann, S., Taylor, D., Forst, R. and Seehaus, F. (2021) Preoperative Planning of Total Knee Arthroplasty: Reliability of Axial Alignment Using a Three-Dimensional Planning Approach. Acta Radiologica, 63, 1051-1061. https://doi.org/10.1177/02841851211029076
|
[10]
|
Lambrechts, A., Wirix-Speetjens, R., Maes, F. and Van Huffel, S. (2022) Corrigendum: Artificial Intelligence Based Patient-Specific Preoperative Planning Algorithm for Total Knee Arthroplasty. Frontiers in Robotics and AI, 9, Article 899349. https://doi.org/10.3389/frobt.2022.899349
|
[11]
|
Ashkani-Esfahani, S., Mojahed Yazdi, R., Bhimani, R., Kerkhoffs, G.M., Maas, M., DiGiovanni, C.W., et al. (2022) Detection of Ankle Fractures Using Deep Learning Algorithms. Foot and Ankle Surgery, 28, 1259-1265. https://doi.org/10.1016/j.fas.2022.05.005
|
[12]
|
Kitamura, G., Chung, C.Y. and Moore, B.E. (2019) Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble Implemented with a Small Sample, De Novo Training, and Multiview Incorporation. Journal of Digital Imaging, 32, 672-677. https://doi.org/10.1007/s10278-018-0167-7
|
[13]
|
Prijs, J., Liao, Z., To, M.S., et al. (2022) Development and External Validation of Automated Detection, Classification, and Localization of Ankle Fractures: Inside the Black Box of a Convolutional Neural Network (CNN). European Journal of Trauma and Emergency Surgery, 49, 1057-1069. https://doi.org/10.1007/s00068-022-02136-1
|
[14]
|
Guermazi, A., Tannoury, C., Kompel, A.J., Murakami, A.M., Ducarouge, A., Gillibert, A., et al. (2022) Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence. Radiology, 302, 627-636. https://doi.org/10.1148/radiol.210937
|
[15]
|
Olczak, J., Emilson, F., Razavian, A., Antonsson, T., Stark, A. and Gordon, M. (2020) Ankle Fracture Classification Using Deep Learning: Automating Detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 Malleolar Fracture Identification Reaches a High Degree of Correct Classification. Acta Orthopaedica, 92, 102-108. https://doi.org/10.1080/17453674.2020.1837420
|
[16]
|
Pinto dos Santos, D., Brodehl, S., Baeßler, B., Arnhold, G., Dratsch, T., Chon, S., et al. (2019) Structured Report Data Can Be Used to Develop Deep Learning Algorithms: A Proof of Concept in Ankle Radiographs. Insights into Imaging, 10, Article No. 93. https://doi.org/10.1186/s13244-019-0777-8
|
[17]
|
Aghnia Farda, N., Lai, J., Wang, J., Lee, P., Liu, J. and Hsieh, I. (2021) Sanders Classification of Calcaneal Fractures in CT Images with Deep Learning and Differential Data Augmentation Techniques. Injury, 52, 616-624. https://doi.org/10.1016/j.injury.2020.09.010
|
[18]
|
Hendrickx, L.A.M., Sobol, G.L., Langerhuizen, D.W.G., Bulstra, A.E.J., Hreha, J., Sprague, S., et al. (2020) A Machine Learning Algorithm to Predict the Probability of (Occult) Posterior Malleolar Fractures Associated with Tibial Shaft Fractures to Guide “Malleolus First” Fixation. Journal of Orthopaedic Trauma, 34, 131-138. https://doi.org/10.1097/bot.0000000000001663
|
[19]
|
Oosterhoff, J.H.F., Gravesteijn, B.Y., Karhade, A.V., Jaarsma, R.L., Kerkhoffs, G.M.M.J., Ring, D., et al. (2021) Feasibility of Machine Learning and Logistic Regression Algorithms to Predict Outcome in Orthopaedic Trauma Surgery. Journal of Bone and Joint Surgery, 104, 544-551. https://doi.org/10.2106/jbjs.21.00341
|
[20]
|
Wang, L., Wen, D., Yin, Y., et al (2022) Musculoskeletal Ultrasound Image-Based Radiomics for the Diagnosis of Achilles Tendinopathy in Skiers. Journal of Ultrasound in Medicine, 42, 363-371. https://doi.org/10.1002/jum.16059
|
[21]
|
Kapiński, N., Zieliński, J., Borucki, B.A., et al (2019) Monitoring of the Achilles Tend on Healing Process: Can Artificial Intelligence Be Helpful? Acta of Bioengineering and Biomechanics, 21, 103-111.
|
[22]
|
Merrill, R.K., Ferrandino, R.M., Hoffman, R., Shaffer, G.W. and Ndu, A. (2019) Machine Learning Accurately Predicts Short-Term Outcomes Following Open Reduction and Internal Fixation of Ankle Fractures. The Journal of Foot and Ankle Surgery, 58, 410-416. https://doi.org/10.1053/j.jfas.2018.09.004
|
[23]
|
Li, T., Wang, Y., Qu, Y., Dong, R., Kang, M. and Zhao, J. (2021) Feasibility Study of Hallux Valgus Measurement with a Deep Convolutional Neural Network Based on Landmark Detection. Skeletal Radiology, 51, 1235-1247. https://doi.org/10.1007/s00256-021-03939-w
|
[24]
|
Day, J., de Cesar Netto, C., Richter, M., Mansur, N.S., Fernando, C., Deland, J.T., et al. (2021) Evaluation of a Weightbearing CT Artificial Intelligence-Based Automatic Measurement for the M1-M2 Intermetatarsal Angle in Hallux Valgus. Foot & Ankle International, 42, 1502-1509. https://doi.org/10.1177/10711007211015177
|
[25]
|
Diniz, P., Abreu, M., Lacerda, D., Martins, A., Pereira, H., Ferreira, F.C., et al. (2022) Pre-Injury Performance Is Most Important for Predicting the Level of Match Participation after Achilles Tendon Ruptures in Elite Soccer Players: A Study Using a Machine Learning Classifier. Knee Surgery, Sports Traumatology, Arthroscopy, 30, 4225-4237. https://doi.org/10.1007/s00167-022-07082-4
|
[26]
|
Lu, Y., Pareek, A., Lavoie-Gagne, O.Z., Forlenza, E.M., Patel, B.H., Reinholz, A.K., et al. (2022) Machine Learning for Predicting Lower Extremity Muscle Strain in National Basketball Association Athletes. Orthopaedic Journal of Sports Medicine, 10. https://doi.org/10.1177/23259671221111742
|
[27]
|
Jauhiainen, S., Kauppi, J., Leppänen, M., Pasanen, K., Parkkari, J., Vasankari, T., et al. (2020) New Machine Learning Approach for Detection of Injury Risk Factors in Young Team Sport Athletes. International Journal of Sports Medicine, 42, 175-182. https://doi.org/10.1055/a-1231-5304
|
[28]
|
Ruiz-Pérez, I., López-Valenciano, A., Hernández-Sánchez, S., Puerta-Callejón, J.M., De Ste Croix, M., Sainz de Baranda, P., et al. (2021) A Field-Based Approach to Determine Soft Tissue Injury Risk in Elite Futsal Using Novel Machine Learning Techniques. Frontiers in Psychology, 12, Article 610210. https://doi.org/10.3389/fpsyg.2021.610210
|
[29]
|
Suda, E.Y., Watari, R., Matias, A.B. and Sacco, I.C.N. (2020) Recognition of Foot-Ankle Movement Patterns in Long-Distance Runners with Different Experience Levels Using Support Vector Machines. Frontiers in Bioengineering and Biotechnology, 8, Article 576. https://doi.org/10.3389/fbioe.2020.00576
|
[30]
|
Yin, M., Ma, J., Xu, J., Li, L., Chen, G., Sun, Z., et al. (2019) Use of Artificial Neural Networks to Identify the Predictive Factors of Extracorporeal Shock Wave Therapy Treating Patients with Chronic Plantar Fasciitis. Scientific Reports, 9, Article No. 4207. https://doi.org/10.1038/s41598-019-39026-3
|
[31]
|
Keijsers, N.L.W., Stolwijk, N.M., Louwerens, J.W.K. and Duysens, J. (2013) Classification of Forefoot Pain Based on Plantar Pressure Measurements. Clinical Biomechanics, 28, 350-356. https://doi.org/10.1016/j.clinbiomech.2013.01.012
|
[32]
|
Zhu, S., Niu, Y., Wang, J., Xu, D. and Li, Y. (2022) Artificial Intelligence Technology Combined with Ultrasound-Guided Needle Knife Interventional Treatment of PF: Improvement of Pain, Fascia Thickness, and Ankle-Foot Function in Patients. Computational and Mathematical Methods in Medicine, 2022, Article 3021320. https://doi.org/10.1155/2022/3021320
|
[33]
|
Hernigou, P., Olejnik, R., Safar, A., Martinov, S., Hernigou, J. and Ferre, B. (2021) Digital Twins, Artificial Intelligence, and Machine Learning Technology to Identify a Real Personalized Motion Axis of the Tibiotalar Joint for Robotics in Total Ankle Arthroplasty. International Orthopaedics, 45, 2209-2217. https://doi.org/10.1007/s00264-021-05175-2
|
[34]
|
Ardhianto, P., Subiakto, R.B.R., Lin, C., Jan, Y., Liau, B., Tsai, J., et al. (2022) A Deep Learning Method for Foot Progression Angle Detection in Plantar Pressure Images. Sensors, 22, Article 2786. https://doi.org/10.3390/s22072786
|
[35]
|
Pakhomov, S.V.S., Hanson, P.L., Bjornsen, S.S. and Smith, S.A. (2008) Automatic Classification of Foot Examination Findings Using Clinical Notes and Machine Learning. Journal of the American Medical Informatics Association, 15, 198-202. https://doi.org/10.1197/jamia.m2585
|
[36]
|
Hussain, S., Jamwal, P.K. and Ghayesh, M.H. (2017) State-of-the-Art Robotic Devices for Ankle Rehabilitation: Mechanism and Control Review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231, 1224-1234. https://doi.org/10.1177/0954411917737584
|
[37]
|
Alvarez-Perez, M.G., Garcia-Murillo, M.A. and Cervantes-Sánchez, J.J. (2019) Robot-Assisted Ankle Rehabilitation: A Review. Disability and Rehabilitation: Assistive Technology, 15, 394-408. https://doi.org/10.1080/17483107.2019.1578424
|