重塑肿瘤免疫微环境提高免疫治疗效果的研究进展
Research Progress on Reshaping the Tumor Immune Microenvironment to Enhance the Effectiveness of Immunotherapy
DOI: 10.12677/acm.2024.1492539, PDF, HTML, XML,   
作者: 井水恬*:任丘市人民医院急诊科,河北 任丘;任晓国*:涉县医院肿瘤科二病区,河北 邯郸;宫 博:保定鼎信知识产权代理有限公司,河北 保定;张 翼, 高翔鹏#:河北医科大学研究生学院,河北 石家庄
关键词: 肿瘤免疫微环境T淋巴细胞免疫治疗免疫检查点抑制剂冷肿瘤Tumor Immune Microenvironment T Lymphocytes Immunotherapy Immune Checkpoint Inhibitors Cold Tumor
摘要: 近年来,以免疫检查点抑制剂(Immune Checkpoint Inhibitors, ICIs)为代表的免疫治疗,极大地提高了多种肿瘤的治疗效果,但总体反应率较低。因ICIs的有效性绝对依赖于能够识别和杀伤肿瘤细胞的T淋巴细胞浸润,故ICIs只对“热肿瘤”有效,而对“冷肿瘤”无效。本文通过梳理相关文献,系统、全面地探讨了阻碍T淋巴细胞激活与浸润的常见机制,并总结了重塑肿瘤免疫微环境(Tumor Immune Microenvironment, TIME)提高ICIs治疗效果的方法与研究进展。在免疫治疗时代,如何最大程度地挖掘ICIs的治疗潜力已成为研究热点,值得多角度探讨。
Abstract: In recent years, immune therapy represented by immune checkpoint inhibitors (ICIs) has greatly improved the treatment outcomes for various tumors, but the overall response rate remains low. The effectiveness of ICIs is entirely dependent on the infiltration of T lymphocytes that can recognize and kill tumor cells, which is why ICIs are only effective against “hot tumors” and ineffective against “cold tumors”. This article systematically and comprehensively discusses the common mechanisms that hinder T lymphocyte activation and infiltration by reviewing relevant literature, and summarizes methods and research progress in reshaping the tumor immune microenvironment (TIME) to enhance the efficacy of ICIs. In the era of immunotherapy, how to maximize the therapeutic potential of ICIs has become a research hotspot worthy of exploration from multiple perspectives.
文章引用:井水恬, 任晓国, 宫博, 张翼, 高翔鹏. 重塑肿瘤免疫微环境提高免疫治疗效果的研究进展[J]. 临床医学进展, 2024, 14(9): 858-868. https://doi.org/10.12677/acm.2024.1492539

1. 前言

因患者个体间及同一个体不同病灶间的TIME均具有较大的异质性[1]-[3],故ICIs在实体瘤治疗中的总体有效率仅为20%~30% [4]。有学者根据免疫细胞在肿瘤组织的浸润情况将肿瘤的免疫表型分为三种:免疫炎症型、免疫排除型和免疫沙漠型[4],第一种又被称为“热肿瘤”,其特点是高T淋巴细胞浸润、干扰素-γ信号通路激活、PD-L1高表达和高肿瘤突变负荷(Tumor Mutation Burden, TMB),后两种又被称为“冷肿瘤”,特点大致与“热肿瘤”相反[5]。“热肿瘤”对ICIs治疗敏感,“冷肿瘤”则对ICIs治疗无效[6]。嵌合抗原受体T细胞(Chimeric Antigen Receptor T cells, CAR-T)疗法在血液系统肿瘤治疗中取得的巨大成功[7] [8],进一步证明T淋巴细胞在抗肿瘤免疫反应中的主导地位[9],故如何促进T淋巴细胞的激活与浸润,即重塑TIME,以提高ICIs的治疗效果已成为肿瘤研究领域的一个共识性思路。本文对阻碍T淋巴细胞激活与浸润的常见机制进行了总结,并重点归纳了重塑TIME以提高ICIs治疗效果的方法与研究进展。本文能够为我国肿瘤免疫学的基础研究提供一定思路,对于临床实践也具有一定的借鉴意义。

2. “冷肿瘤”的形成机制

2.1. 抗原缺乏

肿瘤抗原可分为不伴有基因突变的肿瘤相关抗原(Tumor Associated Antigen, TAA)和由非同义体细胞突变所产生的肿瘤特异性抗原(Tumor Specific Antigen, TSA) [10]。研究表明[11],具有高TMB的肿瘤可产生更多的TSA,激活更多T淋巴细胞。在许多肿瘤类型中[12]-[14],高TMB与T淋巴细胞激活、ICIs的治疗效果存在显著正相关性,故TMB已成为预测ICIs治疗效果的指标。

2.2. 抗原加工和呈递障碍

研究表明[15],肿瘤细胞分泌的STC1分子可通过限制病原体相关分子模式和损伤相关分子模式的功能而抑制树突状细胞(Dendritic Cells, DCs)的吞噬作用及T淋巴细胞的激活。在人黑色素瘤细胞系中敲除β2微球蛋白(β2 Microglobulin, β2M)基因,可导致MHCI分子的表达缺失,致使T淋巴细胞无法激活[16]。DCs也是趋化因子配体9 (CXCL9)和趋化因子配体10 (CXCL10)的主要分泌细胞[17],在T淋巴细胞的浸润过程中起到重要作用。Fms样酪氨酸激酶3配体(FLT3L)是一种生长因子,与粒细胞–巨噬细胞集落刺激因子(GM-CSF)功能类似,对DCs的激活具有重要作用[18]。在一项小鼠肿瘤模型的研究中[19],FLT3L可显著增加引流淋巴结(Draining Lymph Nodes, DLNs)中DCs的数量和T淋巴细胞的浸润。在胰腺导管腺癌中[20],自噬相关受体NBR1可诱导肿瘤细胞表面的MHC分子降解,阻碍T淋巴细胞激活。

2.3. 肿瘤血管异常与缺氧

研究表明[21] [22],血管内皮粘附分子、细胞间粘附分子(ICAMs)和血管细胞粘附分子(VCAMs)在TIME的形成过程中至关重要。当粘附分子表达下调,会导致血管内皮细胞能量不足,阻碍T淋巴细胞浸润[21]。血管内皮生长因子(VEGF)不仅可促进血管内皮细胞增殖,还可以下调VCAM的表达,阻碍T淋巴细胞浸润[23]。研究证实[22],当肿瘤血管紧密连接功能下降或周细胞功能出现异常,可导致缺氧与酸中毒,阻碍T淋巴细胞激活与浸润。缺氧不仅可促进免疫抑制细胞在TIME中聚集[24],还可以通过上调腺苷(ADO)的表达[25],抑制IL-2分泌和T淋巴细胞浸润[26]。由缺氧而激活的ADO信号通路在TIME中作用广泛,还可以抑制NK细胞和DCs的功能,并促进骨髓源性抑制细胞(MDSCs)和调节性T细胞(Tregs)的聚集[27]

2.4. 致癌信号通路激活

研究表明[28],黑色素瘤免疫表型形成与WNT通路密切相关。KRAS突变可通过调节细胞因子和趋化因子的表达而参与免疫逃逸[29]。在一项小鼠肺癌模型研究中[30],KRAS和MYC的同时激活可上调CCL9和IL-23的表达,促进基质重编程和血管生成,阻碍T淋巴细胞浸润。CDK4/6和STAT3通路的激活与“冷肿瘤”免疫表型形成也密切相关[31] [32]

2.5. 免疫抑制成分与特殊代谢方式

肿瘤相关成纤维细胞(CAFs)促进肿瘤生长[33] [34]。研究证实[35] [36],CAFs分泌TGFβ,抑制T淋巴细胞功能,从而介导免疫逃逸和ICIs治疗的耐药性。肿瘤细胞中的吲哚胺2,3-双加氧酶(IDO)可将色氨酸转化为犬尿氨酸,进而阻碍T淋巴细胞激活并促进Tregs产生[37]。IDO还可以通过招募和激活MDSCs抑制T淋巴细胞浸润[38]。肿瘤相关巨噬细胞(TAMs)可以调节ECM和介导CCL2和CCL5的硝化而阻碍T淋巴细胞浸润[39]。集落刺激因子-1 (CSF-1)能够促进髓系细胞向M2型巨噬细胞表型分化[40],表明CSF-1在TIME中具有抑制作用。在许多肿瘤类型中[37] [41],糖酵解活性和T淋巴细胞浸润显著负相关。CAFs和TAMs也可以导致乳酸堆积,称之为“反瓦氏效应”[41]。研究证实[37],肿瘤细胞中色氨酸的代谢方式和高胆固醇酯化率均可抑制T淋巴细胞受体的聚集及免疫突触形成,阻碍T淋巴细胞激活。

3. 重塑TIME提高ICIs疗效的研究进展

3.1. 促进T淋巴细胞激活

3.1.1. 免疫刺激

研究证实[42],TLR7/8激动剂可显著激活次级淋巴器官中的DCs,并上调MHC-I、CD40和CD86的表达,促进T淋巴细胞激活。在一项晚期恶性黑色素瘤的临床试验中[43],TLR9激动剂和帕博利珠单抗的联合应用可诱导I型IFN大量分泌和T淋巴细胞浸润增加,显著提高了帕博利珠单抗的治疗效果。STING信号通路可介导促炎细胞因子和趋化因子的表达增加,从而促进T淋巴细胞激活与浸润[44]。CHIN E等[45]的研究表明,STING信号通路激动剂SR-717不但可以促进T淋巴细胞、NK细胞和DCs的激活,还可以诱导PD-L1的表达,表明SR-717和ICIs联合应用可能具有协同作用。在一项ICIs耐药的小鼠肿瘤模型研究中,STING信号通路激动剂MSA-2与ICIs的联合应用显著增加T淋巴细胞浸润[46],提高了ICIs治疗效果,进一步证实两者联合应用具有协同作用。

3.1.2. 溶瘤病毒

溶瘤病毒(Oncolytic Virus, OV)不但可以选择性溶解肿瘤细胞,还可以释放相关抗原激活T淋巴细胞,提高ICIs治疗效果[47]。OV可以刺激CXCL9和CXCL10的大量分泌,并上调选择素和整合素的表达,促进T淋巴细胞浸润[48],此外,OV能够降解ECM,消除T淋巴细胞浸润的物理屏障,甚至通过不同的方式诱导肿瘤细胞的自噬,从而实现溶瘤效果[49] [50]。据报道[51],塔利班病毒是首个对黑色素瘤治疗有效的OV,与帕博利珠单抗联合应用,可以显著增加IFN-γ表达和T淋巴细胞浸润,从而提高治疗效果[52]。研究证实[53],柯萨奇病毒和帕博利珠单抗联合应用同样具有协同作用。

3.1.3. 放疗和化疗

以前普遍认为,放疗和化疗是通过直接杀伤肿瘤细胞而发挥作用的。当对局部病灶进行放疗,远处病灶也会随之缩小,这种现象被称为“远隔效应”,表明放疗通过某种方式激活了免疫系统[54]。研究表明[55],放射线致肿瘤细胞损伤后,活性氧(ROS)和内质网(ER)可参与细胞应激反应,增加免疫原性细胞死亡(Immunogenic Cell Death, ICD),促进DCs激活及TNF分泌,从而重塑TIME。Demaria S等[56]的研究证实,放疗还能通过诱导肿瘤细胞表达趋化因子促进T淋巴细胞浸润。当剂量小于8~10 Gy的分段放疗就可以诱导足够的ICD [56],故无需为增强抗肿瘤免疫反应而增加放射剂量。许多化疗药物可以增强肿瘤抗原的免疫原性和T淋巴细胞浸润[57]。研究证实[58]-[60],ICD诱导化疗已经在多种小鼠肿瘤模型中被证实可以重塑TIME,提高ICIs疗效。ICIs联合化疗具有协同作用已成为共识[61]

3.1.4. 局部热消融治疗

常用热消融方法包括射频消融(Radiofrequency Ablation, RFA)和高强度聚焦超声消融(High-intensity Focused Ultrasound Ablation, HIFU)。目前,RFA被广泛应用于多种实体肿瘤的治疗,特别是肝细胞癌。研究显示[62],RFA在利用射频交流电转换为热量杀伤消融针周围肿瘤细胞的同时,还能够引起TSA释放激活T淋巴细胞。HIFU是一种新型微创消融疗法,精准地将声能传递到肿瘤病灶产生高温,导致细胞凝固性坏死。有趣的是,HIFU还能通过降解ECM促进抗原转移到淋巴结及T淋巴细胞激活[63]。RFA与HIFU可重塑TIME,极有可能与ICIs产生协同作用,亟待深入研究。

3.1.5. 肿瘤疫苗

治疗性肿瘤疫苗可以促进特异性T淋巴细胞的激活与浸润[64]。普罗文奇是FDA批准的第一个治疗性肿瘤疫苗,已被应用于治疗去势抵抗前列腺癌,疗效显著[65]。在一项Ib期的临床试验中,个体化新抗原疫苗NEO-PV-01与尼鲁单抗的联合使用,显著延长了晚期恶性黑色素瘤、NSCLC和膀胱癌患者的无进展生存期[66],明显提高了尼鲁单抗的治疗效果,说明两者可以产生协同作用。鉴于目前肿瘤疫苗制备成本较高,故在临床中的推广应用受到限制。

3.2. 促进T淋巴细胞浸润

3.2.1. 表观遗传修饰类药物

研究证实[67] [68],表观遗传修饰类药物可以增加包括CXCL9、CXCXL10和CCL5在内的趋化因子表达,促进T淋巴细胞浸润。基于表观遗传修饰的治疗还可以通过增加肿瘤抗原的表达及增强MHC-I抗原的加工和呈递过程而促进T淋巴细胞浸润[69] [70]。据报道[71],甲基转移酶抑制剂可上调乳腺癌细胞MHC-I的表达,增加IFN-γ的分泌,促进T淋巴细胞浸润,并与ICIs产生协同作用。目前,已有多种表观遗传修饰类药物被FDA批准用于肿瘤的临床治疗[72]。此类药物疗效显著,并可与ICIs产生协同作用,故发展迅速。

3.2.2. 抑制致癌信号通路

研究表明[73],在小鼠肿瘤模型中敲除PAK4或应用PAK4抑制剂可通过WNT通路显著增加T淋巴细胞浸润,提高ICIs治疗效果。内皮细胞WNT通路的激活同样可以促进T淋巴细胞浸润,与ICIs产生协同作用[74]。RAS突变一直难以成药[75],但近期的一项研究却有所突破[76],ARS-1620作为一种专门靶向KRAS-G12C突变体的小分子抑制剂,疗效显著,这很可能是因为同时增强了抗肿瘤免疫反应。在一项小鼠肺癌模型的研究中[77],MEK抑制剂与ICIs的联合应用显著增加了T淋巴细胞浸润,疗效显著。Schaer D等[78]的研究表明,CDK4/6抑制剂不仅可以通过抑制RB-E2F通路阻碍细胞增殖,还可以促进T淋巴细胞浸润,与ICIs同时应用产生协同作用。PI3K抑制剂和ICIs的联合应用也可显著促进小鼠肿瘤模型中的T淋巴细胞浸润,产生协同作用[79]

3.2.3. 抗血管生成治疗

促血管生成和抗血管生成信号之间的平衡失调所引起的持续性血管生成是肿瘤特征的标志之一[80]。研究表明[81] [82],抗血管生成治疗介导的免疫重编程可使肿瘤血管正常化,促进T淋巴细胞浸润。贝伐珠单抗是FDA批准的第一个抗血管生成药物。在一项转移性肾癌患者的研究中[83],在贝伐珠单抗和阿替利珠单抗联合应用后T淋巴细胞浸润显著增加,可能是由于抗血管治疗介导血管正常化后增强了T淋巴细胞的迁移所致。在一项肝细胞癌患者的临床试验中[84],与索拉非尼治疗的结果相比,阿替利珠单抗联合贝伐珠单抗显著提高了患者的总生存期和无进展生存期。鉴于血管正常化与免疫重编程之间的相关性,抗血管生成治疗联合ICIs应用前景广阔。

3.2.4. 抑制TGFβ和CXCR4功能

在一项小鼠肿瘤模型的研究中[85],TGFβ抑制剂和ICIs联合应用可显著增加T淋巴细胞浸润,降低肿瘤负荷。另有相关报道[86],Galunisertib是一种抑制TGFβ活性的小分子,在小鼠结直肠癌模型中,可以增加T淋巴细胞浸润并提高对ICIs治疗的敏感性。研究证实[87],CXCL12/CXCR4通路激活可以减少T淋巴细胞浸润,并增加免疫抑制性细胞浸润。在一项胰腺导管腺癌模型的研究中[88],抑制CXCL12/CXCR4通路活性可显著促进T淋巴细胞浸润,改善预后。ICIs对胰腺癌通常是无效的,在COMBAT试验中,帕博利珠单抗与CXCR4抑制剂的联合应用却在转移性胰腺癌中显著增加了T淋巴细胞浸润,并减少了MDSCs和Tregs的数量,明显降低肿瘤负荷[89]

3.2.5. 纳米药物

纳米药物治疗肿瘤可有三种靶标:肿瘤细胞、TIME和免疫系统[90],还可以分为被动靶向和主动靶向,前者是利用实体瘤的高通透性和滞留效应促进纳米药物在肿瘤组织积累的[91],后者是用靶向配体特异性识别肿瘤细胞表达的特定受体[92]。研究证实,靶向肿瘤细胞的纳米药物可增加ICD,从而增强抗肿瘤免疫反应[93] [94]。盐酸多柔比星的聚乙二醇化脂质体doxil,可增加ICD,促进DCs激活和T淋巴细胞浸润并抑制Tregs浸润,与ICIs产生协同作用[95]。研究报道[96] [97],当以TIME为靶标时,纳米药物不但可以抑制免疫抑制细胞和免疫抑制分子的功能,而且还可以增强效应免疫细胞的活性,与ICIs产生协同作用。当靶向免疫系统时,纳米药物旨在增强DLNs中的抗原呈递过程和T淋巴细胞浸润[98] [99],理论上与ICIs同样可以产生协同作用。

3.2.6. 过继细胞疗法

过继细胞疗法(Adoptive Cell Therapy, ACT)包括肿瘤浸润淋巴细胞(Tumor infiltrating Lymphocyte, TIL)疗法和CAR-T疗法两种方式,可以直接增加T淋巴细胞数量,增强抗肿瘤免疫反应[100]。由于浸润性T淋巴细胞数量较少或MHC分子表达下调,TIL疗法仅适用于包括恶性黑色素瘤在内的少数肿瘤类型[101]。CAR-T疗法治疗白血病和淋巴瘤在2017年获得了FDA批准,与TIL疗法相比,CAR-T疗法没有MHC分子的限制性,还可以通过添加共刺激分子而进一步增强免疫反应[100]。研究显示[102],当CAR-T细胞表达IL-7和CCL19,可以增加小鼠实体肿瘤组织中DCs和T淋巴细胞浸润,提高ICIs的有效率,而分泌FLT3L的CAR-T细胞疗法与免疫佐剂的联合应用也可以产生与上述研究类似的结果[19],说明CAR-T疗法可以与免疫佐剂产生协同作用。CAR-T疗法是利用基因工程使T细胞的细胞膜表面表达某种特定肿瘤抗原受体,进而实现对肿瘤细胞的特异性杀伤,而ICI则是通过对抑制性共刺激分子的封闭作用保持T细胞激活,由于两者作用机制完全不同,故联合应用会产生效果良好的协同作用[103],值得深入研究。

4. 结论与展望

T淋巴细胞的激活与浸润对于肿瘤免疫表型的形成至关重要,并与ICIs的治疗疗效密切相关。本文总结了抑制T淋巴细胞激活和浸润的常见机制,而三级淋巴结构(Tertiary Lymphatic Structure, TLS)和肠道微生物在其中的作用,仍有待于进一步研究[104] [105]。此外,重点论述了促进T淋巴细胞激活和浸润的各种治疗方法及研究进展,与ICIs联合应用,均可产生协同作用,提高疗效。显然,它们联合应用的最佳剂量和用药顺序仍需深入探索,尽量保证在提高协同作用的同时避免免疫系统过度活化[106]。纳米药物和ACT疗法为治愈肿瘤带来了新的希望,相信会在短期内取得突破性进展。在精准医学的时代背景下,随着各个相关学科的迅猛发展及通力合作,我坚信阐明TIME的形成机制、研发出更加高效低毒的免疫治疗方法一定会在不久的将来实现。

利益冲突

本文无利益冲突。

NOTES

*共同第一作者。

#通讯作者。

参考文献

[1] Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., et al. (2021) Crosstalk between Cancer-Associated Fibroblasts and Immune Cells in the Tumor Microenvironment: New Findings and Future Perspectives. Molecular Cancer, 20, Article No. 131.
https://doi.org/10.1186/s12943-021-01428-1
[2] Li, F., Li, C., Cai, X., Xie, Z., Zhou, L., Cheng, B., et al. (2021) The Association between CD8+ Tumor-Infiltrating Lymphocytes and the Clinical Outcome of Cancer Immunotherapy: A Systematic Review and Meta-Analysis. eClinicalMedicine, 41, Article 101134.
https://doi.org/10.1016/j.eclinm.2021.101134
[3] Helmink, B.A., Reddy, S.M., Gao, J., Zhang, S., Basar, R., Thakur, R., et al. (2020) B Cells and Tertiary Lymphoid Structures Promote Immunotherapy Response. Nature, 577, 549-555.
https://doi.org/10.1038/s41586-019-1922-8
[4] Chen, D.S. and Mellman, I. (2017) Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature, 541, 321-330.
https://doi.org/10.1038/nature21349
[5] Hegde, P.S., Karanikas, V. and Evers, S. (2016) The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition. Clinical Cancer Research, 22, 1865-1874.
https://doi.org/10.1158/1078-0432.ccr-15-1507
[6] Galon, J. and Bruni, D. (2019) Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nature Reviews Drug Discovery, 18, 197-218.
https://doi.org/10.1038/s41573-018-0007-y
[7] Schuster, S.J., Tam, C.S., Borchmann, P., Worel, N., McGuirk, J.P., Holte, H., et al. (2021) Long-Term Clinical Outcomes of Tisagenlecleucel in Patients with Relapsed or Refractory Aggressive B-Cell Lymphomas (JULIET): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 22, 1403-1415.
https://doi.org/10.1016/s1470-2045(21)00375-2
[8] Myers, R.M., Li, Y., Barz Leahy, A., Barrett, D.M., Teachey, D.T., Callahan, C., et al. (2021) Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults with Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 39, 3044-3055.
https://doi.org/10.1200/jco.20.03458
[9] Shi, H., Chen, S. and Chi, H. (2024) Immunometabolism of CD8+ T Cell Differentiation in Cancer. Trends in Cancer, 10, 610-626.
https://doi.org/10.1016/j.trecan.2024.03.010
[10] Havel, J.J., Chowell, D. and Chan, T.A. (2019) The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nature Reviews Cancer, 19, 133-150.
https://doi.org/10.1038/s41568-019-0116-x
[11] Chan, T.A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S.A., Stenzinger, A., et al. (2019) Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Annals of Oncology, 30, 44-56.
https://doi.org/10.1093/annonc/mdy495
[12] Ready, N., Hellmann, M.D., Awad, M.M., Otterson, G.A., Gutierrez, M., Gainor, J.F., et al. (2019) First-Line Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers. Journal of Clinical Oncology, 37, 992-1000.
https://doi.org/10.1200/jco.18.01042
[13] Samstein, R.M., Lee, C., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., et al. (2019) Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 51, 202-206.
https://doi.org/10.1038/s41588-018-0312-8
[14] Addeo, A., Friedlaender, A., Banna, G.L. and Weiss, G.J. (2021) TMB or Not TMB as a Biomarker: That Is the Question. Critical Reviews in Oncology/Hematology, 163, Article 103374.
https://doi.org/10.1016/j.critrevonc.2021.103374
[15] Lin, H., Kryczek, I., Li, S., Green, M.D., Ali, A., Hamasha, R., et al. (2021) Stanniocalcin 1 Is a Phagocytosis Checkpoint Driving Tumor Immune Resistance. Cancer Cell, 39, 480-493.E6.
https://doi.org/10.1016/j.ccell.2020.12.023
[16] Torrejon, D.Y., Abril-Rodriguez, G., Champhekar, A.S., Tsoi, J., Campbell, K.M., Kalbasi, A., et al. (2020) Overcoming Genetically Based Resistance Mechanisms to PD-1 Blockade. Cancer Discovery, 10, 1140-1157.
https://doi.org/10.1158/2159-8290.cd-19-1409
[17] Spranger, S. and Gajewski, T.F. (2018) Impact of Oncogenic Pathways on Evasion of Antitumour Immune Responses. Nature Reviews Cancer, 18, 139-147.
https://doi.org/10.1038/nrc.2017.117
[18] Demaria, O., Cornen, S., Daëron, M., Morel, Y., Medzhitov, R. and Vivier, E. (2019) Harnessing Innate Immunity in Cancer Therapy. Nature, 574, 45-56.
https://doi.org/10.1038/s41586-019-1593-5
[19] Lai, J., Mardiana, S., House, I.G., Sek, K., Henderson, M.A., Giuffrida, L., et al. (2020) Adoptive Cellular Therapy with T Cells Expressing the Dendritic Cell Growth Factor Flt3L Drives Epitope Spreading and Antitumor Immunity. Nature Immunology, 21, 914-926.
https://doi.org/10.1038/s41590-020-0676-7
[20] Yamamoto, K., Venida, A., Yano, J., Biancur, D.E., Kakiuchi, M., Gupta, S., et al. (2020) Autophagy Promotes Immune Evasion of Pancreatic Cancer by Degrading MHC-I. Nature, 581, 100-105.
https://doi.org/10.1038/s41586-020-2229-5
[21] Georganaki, M., van Hooren, L. and Dimberg, A. (2018) Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer. Frontiers in Immunology, 9, Article 3081.
https://doi.org/10.3389/fimmu.2018.03081
[22] Huang, Y., Kim, B.Y.S., Chan, C.K., Hahn, S.M., Weissman, I.L. and Jiang, W. (2018) Improving Immune-Vascular Crosstalk for Cancer Immunotherapy. Nature Reviews Immunology, 18, 195-203.
https://doi.org/10.1038/nri.2017.145
[23] Apte, R.S., Chen, D.S. and Ferrara, N. (2019) VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 176, 1248-1264.
https://doi.org/10.1016/j.cell.2019.01.021
[24] Damgaci, S., Ibrahim‐Hashim, A., Enriquez‐Navas, P.M., Pilon‐Thomas, S., Guvenis, A. and Gillies, R.J. (2018) Hypoxia and Acidosis: Immune Suppressors and Therapeutic Targets. Immunology, 154, 354-362.
https://doi.org/10.1111/imm.12917
[25] Allard, B., Allard, D., Buisseret, L. and Stagg, J. (2020) The Adenosine Pathway in Immuno-Oncology. Nature Reviews Clinical Oncology, 17, 611-629.
https://doi.org/10.1038/s41571-020-0382-2
[26] Sek, K., Mølck, C., Stewart, G., et al. (2018) Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. International Journal of Molecular Sciences, 19, Article 3837.
https://doi.org/10.3390/ijms19123837
[27] Vigano, S., Alatzoglou, D., Irving, M., Ménétrier-Caux, C., Caux, C., Romero, P., et al. (2019) Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Frontiers in Immunology, 10, Article 925.
https://doi.org/10.3389/fimmu.2019.00925
[28] Grasso, C.S., Giannakis, M., Wells, D.K., Hamada, T., Mu, X.J., Quist, M., et al. (2018) Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discovery, 8, 730-749.
https://doi.org/10.1158/2159-8290.cd-17-1327
[29] Hamarsheh, S., Groß, O., Brummer, T. and Zeiser, R. (2020) Immune Modulatory Effects of Oncogenic KRAS in Cancer. Nature Communications, 11, Article No. 5439.
https://doi.org/10.1038/s41467-020-19288-6
[30] Kortlever, R.M., Sodir, N.M., Wilson, C.H., Burkhart, D.L., Pellegrinet, L., Brown Swigart, L., et al. (2017) Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell, 171, 1301-1315.E14.
https://doi.org/10.1016/j.cell.2017.11.013
[31] Jerby-Arnon, L., Shah, P., Cuoco, M., et al. (2018) A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell, 175, 984-997.E24.
https://doi.org/10.1016/j.cell.2018.09.006
[32] Dong, L., Liu, C., Sun, H., Wang, M., Sun, M., Zheng, J., et al. (2024) Targeting STAT3 Potentiates CDK4/6 Inhibitors Therapy in Head and Neck Squamous Cell Carcinoma. Cancer Letters, 593, Article 216956.
https://doi.org/10.1016/j.canlet.2024.216956
[33] Szot, C., Saha, S., Zhang, X.M., Zhu, Z., Hilton, M.B., Morris, K., et al. (2018) Tumor Stroma-Targeted Antibody-Drug Conjugate Triggers Localized Anticancer Drug Release. Journal of Clinical Investigation, 128, 2927-2943.
https://doi.org/10.1172/jci120481
[34] Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D.G., Egeblad, M., Evans, R.M., et al. (2020) A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts. Nature Reviews Cancer, 20, 174-186.
https://doi.org/10.1038/s41568-019-0238-1
[35] Peng, D., Fu, M., Wang, M., Wei, Y. and Wei, X. (2022) Targeting TGF-β Signal Transduction for Fibrosis and Cancer Therapy. Molecular Cancer, 21, Article No. 104.
https://doi.org/10.1186/s12943-022-01569-x
[36] Chen, W. (2023) TGF-β Regulation of T Cells. Annual Review of Immunology, 41, 483-512.
https://doi.org/10.1146/annurev-immunol-101921-045939
[37] Li, X., Wenes, M., Romero, P., Huang, S.C., Fendt, S. and Ho, P. (2019) Navigating Metabolic Pathways to Enhance Antitumour Immunity and Immunotherapy. Nature Reviews Clinical Oncology, 16, 425-441.
https://doi.org/10.1038/s41571-019-0203-7
[38] Prendergast, G.C., Mondal, A., Dey, S., Laury-Kleintop, L.D. and Muller, A.J. (2018) Inflammatory Reprogramming with IDO1 Inhibitors: Turning Immunologically Unresponsive ‘Cold’ Tumors ‘Hot’. Trends in Cancer, 4, 38-58.
https://doi.org/10.1016/j.trecan.2017.11.005
[39] DeNardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nature Reviews Immunology, 19, 369-382.
https://doi.org/10.1038/s41577-019-0127-6
[40] Xia, Y., Rao, L., Yao, H., Wang, Z., Ning, P. and Chen, X. (2020) Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Advanced Materials, 32, Article 2002054.
https://doi.org/10.1002/adma.202002054
[41] Siska, P.J., Singer, K., Evert, K., Renner, K. and Kreutz, M. (2020) The Immunological Warburg Effect: Can a Metabolic‐Tumor‐Stroma Score (MeTS) Guide Cancer Immunotherapy? Immunological Reviews, 295, 187-202.
https://doi.org/10.1111/imr.12846
[42] Nuhn, L., De Koker, S., Van Lint, S., Zhong, Z., Catani, J.P., Combes, F., et al. (2018) Nanoparticle‐Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. Advanced Materials, 30, Article 1803397.
https://doi.org/10.1002/adma.201803397
[43] Ribas, A., Medina, T., Kummar, S., Amin, A., Kalbasi, A., Drabick, J.J., et al. (2018) SD-101 in Combination with Pembrolizumab in Advanced Melanoma: Results of a Phase Ib, Multicenter Study. Cancer Discovery, 8, 1250-1257.
https://doi.org/10.1158/2159-8290.cd-18-0280
[44] Reisländer, T., Groelly, F.J. and Tarsounas, M. (2020) DNA Damage and Cancer Immunotherapy: A STING in the Tale. Molecular Cell, 80, 21-28.
https://doi.org/10.1016/j.molcel.2020.07.026
[45] Chin, E.N., Yu, C., Vartabedian, V.F., Jia, Y., Kumar, M., Gamo, A.M., et al. (2020) Antitumor Activity of a Systemic STING-Activating Non-Nucleotide cGAMP Mimetic. Science, 369, 993-999.
https://doi.org/10.1126/science.abb4255
[46] Pan, B., Perera, S.A., Piesvaux, J.A., Presland, J.P., Schroeder, G.K., Cumming, J.N., et al. (2020) An Orally Available Non-Nucleotide STING Agonist with Antitumor Activity. Science, 369, eaba6098.
https://doi.org/10.1126/science.aba6098
[47] Russell, L., Peng, K.W., Russell, S.J. and Diaz, R.M. (2019) Oncolytic Viruses: Priming Time for Cancer Immunotherapy. BioDrugs, 33, 485-501.
https://doi.org/10.1007/s40259-019-00367-0
[48] Twumasi-Boateng, K., Pettigrew, J.L., Kwok, Y.Y.E., Bell, J.C. and Nelson, B.H. (2018) Oncolytic Viruses as Engineering Platforms for Combination Immunotherapy. Nature Reviews Cancer, 18, 419-432.
https://doi.org/10.1038/s41568-018-0009-4
[49] Wang, S., Li, Y., Xu, C., Dong, J. and Wei, J. (2024) An Oncolytic Vaccinia Virus Encoding Hyaluronidase Reshapes the Extracellular Matrix to Enhance Cancer Chemotherapy and Immunotherapy. Journal for ImmunoTherapy of Cancer, 12, e008431.
https://doi.org/10.1136/jitc-2023-008431
[50] Lin, D., Shen, Y. and Liang, T. (2023) Oncolytic Virotherapy: Basic Principles, Recent Advances and Future Directions. Signal Transduction and Targeted Therapy, 8, Article No. 156.
https://doi.org/10.1038/s41392-023-01407-6
[51] Andtbacka, R.H.I., Kaufman, H.L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., et al. (2015) Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. Journal of Clinical Oncology, 33, 2780-2788.
https://doi.org/10.1200/jco.2014.58.3377
[52] Ribas, A., Dummer, R., Puzanov, I., VanderWalde, A., Andtbacka, R.H.I., Michielin, O., et al. (2017) Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell, 170, 1109-1119.E10.
https://doi.org/10.1016/j.cell.2017.08.027
[53] Kaufman, H.L., Spencer, K., Mehnert, J., Silk, A., Wang, J., Zloza, A., et al. (2016) Phase Ib Study of Intratumoral Oncolytic Coxsackievirus A21 (CVA21) and Pembrolizumab in Subjects with Advanced Melanoma. Annals of Oncology, 27, vi400.
https://doi.org/10.1093/annonc/mdw379.51
[54] Ngwa, W., Irabor, O.C., Schoenfeld, J.D., Hesser, J., Demaria, S. and Formenti, S.C. (2018) Using Immunotherapy to Boost the Abscopal Effect. Nature Reviews Cancer, 18, 313-322.
https://doi.org/10.1038/nrc.2018.6
[55] Barker, H.E., Paget, J.T.E., Khan, A.A. and Harrington, K.J. (2015) The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence. Nature Reviews Cancer, 15, 409-425.
https://doi.org/10.1038/nrc3958
[56] Demaria, S., Golden, E.B. and Formenti, S.C. (2015) Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncology, 1, 1325-1332.
https://doi.org/10.1001/jamaoncol.2015.2756
[57] Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. and Kroemer, G. (2020) Immunostimulation with Chemotherapy in the Era of Immune Checkpoint Inhibitors. Nature Reviews Clinical Oncology, 17, 725-741.
https://doi.org/10.1038/s41571-020-0413-z
[58] Liu, P., Zhao, L., Pol, J., Levesque, S., Petrazzuolo, A., Pfirschke, C., et al. (2019) Crizotinib-Induced Immunogenic Cell Death in Non-Small Cell Lung Cancer. Nature Communications, 10, Article No. 1486.
https://doi.org/10.1038/s41467-019-09415-3
[59] Yamazaki, T., Buqué, A., Ames, T.D. and Galluzzi, L. (2020) PT-112 Induces Immunogenic Cell Death and Synergizes with Immune Checkpoint Blockers in Mouse Tumor Models. OncoImmunology, 9, Article 1721810.
https://doi.org/10.1080/2162402x.2020.1721810
[60] Wang, C., Wang, J., Zhang, X., Yu, S., Wen, D., Hu, Q., et al. (2018) In Situ Formed Reactive Oxygen Species-Responsive Scaffold with Gemcitabine and Checkpoint Inhibitor for Combination Therapy. Science Translational Medicine, 10, eaan3682.
https://doi.org/10.1126/scitranslmed.aan3682
[61] Chao, Y., Liang, C., Tao, H., Du, Y., Wu, D., Dong, Z., et al. (2020) Localized Cocktail Chemoimmunotherapy after in Situ Gelation to Trigger Robust Systemic Antitumor Immune Responses. Science Advances, 6, eaaz4204.
https://doi.org/10.1126/sciadv.aaz4204
[62] Mizukoshi, E., Yamashita, T., Arai, K., Sunagozaka, H., Ueda, T., Arihara, F., et al. (2013) Enhancement of Tumor-Associated Antigen-Specific T Cell Responses by Radiofrequency Ablation of Hepatocellular Carcinoma. Hepatology, 57, 1448-1457.
https://doi.org/10.1002/hep.26153
[63] Sheybani, N.D. and Price, R.J. (2019) Perspectives on Recent Progress in Focused Ultrasound Immunotherapy. Theranostics, 9, 7749-7758.
https://doi.org/10.7150/thno.37131
[64] van der Burg, S.H., Arens, R., Ossendorp, F., van Hall, T. and Melief, C.J.M. (2016) Vaccines for Established Cancer: Overcoming the Challenges Posed by Immune Evasion. Nature Reviews Cancer, 16, 219-233.
https://doi.org/10.1038/nrc.2016.16
[65] Kantoff, P.W., Higano, C.S., Shore, N.D., Berger, E.R., Small, E.J., Penson, D.F., et al. (2010) Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. New England Journal of Medicine, 363, 411-422.
https://doi.org/10.1056/nejmoa1001294
[66] Ott, P.A., Hu-Lieskovan, S., Chmielowski, B., Govindan, R., Naing, A., Bhardwaj, N., et al. (2020) A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-Small Cell Lung Cancer, or Bladder Cancer. Cell, 183, 347-362.E24.
https://doi.org/10.1016/j.cell.2020.08.053
[67] Nagarsheth, N., Peng, D., Kryczek, I., Wu, K., Li, W., Zhao, E., et al. (2016) PRC2 Epigenetically Silences Th1-Type Chemokines to Suppress Effector T-Cell Trafficking in Colon Cancer. Cancer Research, 76, 275-282.
https://doi.org/10.1158/0008-5472.can-15-1938
[68] Topper, M.J., Vaz, M., Chiappinelli, K.B., DeStefano Shields, C.E., Niknafs, N., Yen, R.C., et al. (2017) Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer. Cell, 171, 1284-1300.E21.
https://doi.org/10.1016/j.cell.2017.10.022
[69] Maatouk, D.M., Kellam, L.D., Mann, M.R.W., Lei, H., Li, E., Bartolomei, M.S., et al. (2006) DNA Methylation Is a Primary Mechanism for Silencing Postmigratory Primordial Germ Cell Genes in Both Germ Cell and Somatic Cell Lineages. Development, 133, 3411-3418.
https://doi.org/10.1242/dev.02500
[70] Ritter, C., Fan, K., Paschen, A., Reker Hardrup, S., Ferrone, S., Nghiem, P., et al. (2017) Epigenetic Priming Restores the HLA Class-I Antigen Processing Machinery Expression in Merkel Cell Carcinoma. Scientific Reports, 7, Article No. 2290.
https://doi.org/10.1038/s41598-017-02608-0
[71] Luo, N., Nixon, M.J., Gonzalez-Ericsson, P.I., Sanchez, V., Opalenik, S.R., Li, H., et al. (2018) DNA Methyltransferase Inhibition Upregulates MHC-I to Potentiate Cytotoxic T Lymphocyte Responses in Breast Cancer. Nature Communications, 9, Article No. 248.
https://doi.org/10.1038/s41467-017-02630-w
[72] Topper, M.J., Vaz, M., Marrone, K.A., Brahmer, J.R. and Baylin, S.B. (2019) The Emerging Role of Epigenetic Therapeutics in Immuno-Oncology. Nature Reviews Clinical Oncology, 17, 75-90.
https://doi.org/10.1038/s41571-019-0266-5
[73] Abril-Rodriguez, G., Torrejon, D.Y., Liu, W., Zaretsky, J.M., Nowicki, T.S., Tsoi, J., et al. (2019) PAK4 Inhibition Improves PD-1 Blockade Immunotherapy. Nature Cancer, 1, 46-58.
https://doi.org/10.1038/s43018-019-0003-0
[74] Carmona-Rodríguez, L., Martínez-Rey, D., Fernández-Aceñero, M.J., González-Martín, A., Paz-Cabezas, M., Rodríguez-Rodríguez, N., et al. (2020) SOD3 Induces a HIF-2α-Dependent Program in Endothelial Cells That Provides a Selective Signal for Tumor Infiltration by T Cells. Journal for ImmunoTherapy of Cancer, 8, e000432.
https://doi.org/10.1136/jitc-2019-000432
[75] Kim, H.J., Lee, H.N., Jeong, M.S. and Jang, S.B. (2021) Oncogenic KRAS: Signaling and Drug Resistance. Cancers, 13, Article 5599.
https://doi.org/10.3390/cancers13225599
[76] Janes, M.R., Zhang, J., Li, L., Hansen, R., Peters, U., Guo, X., et al. (2018) Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell, 172, 578-589.E17.
https://doi.org/10.1016/j.cell.2018.01.006
[77] Lee, J.W., Zhang, Y., Eoh, K.J., Sharma, R., Sanmamed, M.F., Wu, J., et al. (2019) The Combination of MEK Inhibitor with Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer. Journal of Thoracic Oncology, 14, 1046-1060.
https://doi.org/10.1016/j.jtho.2019.02.004
[78] Schaer, D.A., Beckmann, R.P., Dempsey, J.A., Huber, L., Forest, A., Amaladas, N., et al. (2018) The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade. Cell Reports, 22, 2978-2994.
https://doi.org/10.1016/j.celrep.2018.02.053
[79] Peng, W., Chen, J.Q., Liu, C., Malu, S., Creasy, C., Tetzlaff, M.T., et al. (2016) Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discovery, 6, 202-216.
https://doi.org/10.1158/2159-8290.cd-15-0283
[80] Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[81] Yang, J., Yan, J. and Liu, B. (2018) Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Frontiers in Immunology, 9, Article 978.
https://doi.org/10.3389/fimmu.2018.00978
[82] Liu, Z., Wang, Y., Huang, Y., Kim, B.Y.S., Shan, H., Wu, D., et al. (2019) Tumor Vasculatures: A New Target for Cancer Immunotherapy. Trends in Pharmacological Sciences, 40, 613-623.
https://doi.org/10.1016/j.tips.2019.07.001
[83] Wallin, J.J., Bendell, J.C., Funke, R., Sznol, M., Korski, K., Jones, S., et al. (2016) Atezolizumab in Combination with Bevacizumab Enhances Antigen-Specific T-Cell Migration in Metastatic Renal Cell Carcinoma. Nature Communications, 7, Article No. 12624.
https://doi.org/10.1038/ncomms12624
[84] Finn, R.S., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2020) Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New England Journal of Medicine, 382, 1894-1905.
https://doi.org/10.1056/nejmoa1915745
[85] Mariathasan, S., Turley, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al. (2018) TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature, 554, 544-548.
https://doi.org/10.1038/nature25501
[86] Tauriello, D.V.F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., et al. (2018) TGFβ Drives Immune Evasion in Genetically Reconstituted Colon Cancer Metastasis. Nature, 554, 538-543.
https://doi.org/10.1038/nature25492
[87] Mortezaee, K. (2020) CXCL12/CXCR4 Axis in the Microenvironment of Solid Tumors: A Critical Mediator of Metastasis. Life Sciences, 249, Article 117534.
https://doi.org/10.1016/j.lfs.2020.117534
[88] Feig, C., Jones, J.O., Kraman, M., Wells, R.J.B., Deonarine, A., Chan, D.S., et al. (2013) Targeting CXCL12 from Fap-Expressing Carcinoma-Associated Fibroblasts Synergizes with Anti-PD-L1 Immunotherapy in Pancreatic Cancer. Proceedings of the National Academy of Sciences, 110, 20212-20217.
https://doi.org/10.1073/pnas.1320318110
[89] Bockorny, B., Semenisty, V., Macarulla, T., Borazanci, E., Wolpin, B.M., Stemmer, S.M., et al. (2020) BL-8040, a CXCR4 Antagonist, in Combination with Pembrolizumab and Chemotherapy for Pancreatic Cancer: The COMBAT Trial. Nature Medicine, 26, 878-885.
https://doi.org/10.1038/s41591-020-0880-x
[90] Shi, Y. and Lammers, T. (2019) Combining Nanomedicine and Immunotherapy. Accounts of Chemical Research, 52, 1543-1554.
https://doi.org/10.1021/acs.accounts.9b00148
[91] Irvine, D.J. and Dane, E.L. (2020) Enhancing Cancer Immunotherapy with Nanomedicine. Nature Reviews Immunology, 20, 321-334.
https://doi.org/10.1038/s41577-019-0269-6
[92] Li, X., Lovell, J.F., Yoon, J. and Chen, X. (2020) Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nature Reviews Clinical Oncology, 17, 657-674.
https://doi.org/10.1038/s41571-020-0410-2
[93] Duan, X., Chan, C. and Lin, W. (2018) Nanoparticle‐Mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy. Angewandte Chemie International Edition, 58, 670-680.
https://doi.org/10.1002/anie.201804882
[94] Bai, S., Yang, L., Wang, Y., Zhang, T., Fu, L., Yang, S., et al. (2020) Prodrug‐Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death. Small, 16, Article 2000214.
https://doi.org/10.1002/smll.202000214
[95] Rios-Doria, J., Durham, N., Wetzel, L., Rothstein, R., Chesebrough, J., Holoweckyj, N., et al. (2015) Doxil Synergizes with Cancer Immunotherapies to Enhance Antitumor Responses in Syngeneic Mouse Models. Neoplasia, 17, 661-670.
https://doi.org/10.1016/j.neo.2015.08.004
[96] Han, W., Ke, J., Guo, F., Meng, F., Li, H. and Wang, L. (2021) Construction and Antitumor Properties of a Targeted Nano-Drug Carrier System Responsive to the Tumor Microenvironment. International Journal of Pharmaceutics, 608, Article 121066.
https://doi.org/10.1016/j.ijpharm.2021.121066
[97] Rao, L., Wu, L., Liu, Z., Tian, R., Yu, G., Zhou, Z., et al. (2020) Hybrid Cellular Membrane Nanovesicles Amplify Macrophage Immune Responses against Cancer Recurrence and Metastasis. Nature Communications, 11, Article No. 4909.
https://doi.org/10.1038/s41467-020-18626-y
[98] Ni, Q., Zhang, F., Liu, Y., Wang, Z., Yu, G., Liang, B., et al. (2020) A Bi-Adjuvant Nanovaccine That Potentiates Immunogenicity of Neoantigen for Combination Immunotherapy of Colorectal Cancer. Science Advances, 6, eaaw6071.
https://doi.org/10.1126/sciadv.aaw6071
[99] Han, X., Shen, S., Fan, Q., Chen, G., Archibong, E., Dotti, G., et al. (2019) Red Blood Cell-Derived Nanoerythrosome for Antigen Delivery with Enhanced Cancer Immunotherapy. Science Advances, 5, eaaw6870.
https://doi.org/10.1126/sciadv.aaw6870
[100] June, C.H., O’Connor, R.S., Kawalekar, O.U., Ghassemi, S. and Milone, M.C. (2018) CAR T Cell Immunotherapy for Human Cancer. Science, 359, 1361-1365.
https://doi.org/10.1126/science.aar6711
[101] Rosenberg, S.A., Yang, J.C., Sherry, R.M., Kammula, U.S., Hughes, M.S., Phan, G.Q., et al. (2011) Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy. Clinical Cancer Research, 17, 4550-4557.
https://doi.org/10.1158/1078-0432.ccr-11-0116
[102] Adachi, K., Kano, Y., Nagai, T., Okuyama, N., Sakoda, Y. and Tamada, K. (2018) IL-7 and CCL19 Expression in CAR-T Cells Improves Immune Cell Infiltration and CAR-T Cell Survival in the Tumor. Nature Biotechnology, 36, 346-351.
https://doi.org/10.1038/nbt.4086
[103] Lv, Y., Luo, X., Xie, Z., Qiu, J., Yang, J., Deng, Y., et al. (2024) Prospects and Challenges of CAR-T Cell Therapy Combined with ICIs. Frontiers in Oncology, 14, Article 1368732.
https://doi.org/10.3389/fonc.2024.1368732
[104] Peske, J.D., Thompson, E.D., Gemta, L., Baylis, R.A., Fu, Y. and Engelhard, V.H. (2015) Effector Lymphocyte-Induced Lymph Node-Like Vasculature Enables Naive T-Cell Entry into Tumours and Enhanced Anti-Tumour Immunity. Nature Communications, 6, Article No. 7114.
https://doi.org/10.1038/ncomms8114
[105] Cabrita, R., Lauss, M., Sanna, A., Donia, M., Skaarup Larsen, M., Mitra, S., et al. (2020) Tertiary Lymphoid Structures Improve Immunotherapy and Survival in Melanoma. Nature, 577, 561-565.
https://doi.org/10.1038/s41586-019-1914-8
[106] Anandappa, A.J., Wu, C.J. and Ott, P.A. (2020) Directing Traffic: How to Effectively Drive T Cells into Tumors. Cancer Discovery, 10, 185-197.
https://doi.org/10.1158/2159-8290.cd-19-0790