[1]
|
Mao, X., Xu, J., Wang, W., Liang, C., Hua, J., Liu, J., et al. (2021) Crosstalk between Cancer-Associated Fibroblasts and Immune Cells in the Tumor Microenvironment: New Findings and Future Perspectives. Molecular Cancer, 20, Article No. 131. https://doi.org/10.1186/s12943-021-01428-1
|
[2]
|
Li, F., Li, C., Cai, X., Xie, Z., Zhou, L., Cheng, B., et al. (2021) The Association between CD8+ Tumor-Infiltrating Lymphocytes and the Clinical Outcome of Cancer Immunotherapy: A Systematic Review and Meta-Analysis. eClinicalMedicine, 41, Article 101134. https://doi.org/10.1016/j.eclinm.2021.101134
|
[3]
|
Helmink, B.A., Reddy, S.M., Gao, J., Zhang, S., Basar, R., Thakur, R., et al. (2020) B Cells and Tertiary Lymphoid Structures Promote Immunotherapy Response. Nature, 577, 549-555. https://doi.org/10.1038/s41586-019-1922-8
|
[4]
|
Chen, D.S. and Mellman, I. (2017) Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature, 541, 321-330. https://doi.org/10.1038/nature21349
|
[5]
|
Hegde, P.S., Karanikas, V. and Evers, S. (2016) The Where, the When, and the How of Immune Monitoring for Cancer Immunotherapies in the Era of Checkpoint Inhibition. Clinical Cancer Research, 22, 1865-1874. https://doi.org/10.1158/1078-0432.ccr-15-1507
|
[6]
|
Galon, J. and Bruni, D. (2019) Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nature Reviews Drug Discovery, 18, 197-218. https://doi.org/10.1038/s41573-018-0007-y
|
[7]
|
Schuster, S.J., Tam, C.S., Borchmann, P., Worel, N., McGuirk, J.P., Holte, H., et al. (2021) Long-Term Clinical Outcomes of Tisagenlecleucel in Patients with Relapsed or Refractory Aggressive B-Cell Lymphomas (JULIET): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 22, 1403-1415. https://doi.org/10.1016/s1470-2045(21)00375-2
|
[8]
|
Myers, R.M., Li, Y., Barz Leahy, A., Barrett, D.M., Teachey, D.T., Callahan, C., et al. (2021) Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults with Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 39, 3044-3055. https://doi.org/10.1200/jco.20.03458
|
[9]
|
Shi, H., Chen, S. and Chi, H. (2024) Immunometabolism of CD8+ T Cell Differentiation in Cancer. Trends in Cancer, 10, 610-626. https://doi.org/10.1016/j.trecan.2024.03.010
|
[10]
|
Havel, J.J., Chowell, D. and Chan, T.A. (2019) The Evolving Landscape of Biomarkers for Checkpoint Inhibitor Immunotherapy. Nature Reviews Cancer, 19, 133-150. https://doi.org/10.1038/s41568-019-0116-x
|
[11]
|
Chan, T.A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S.A., Stenzinger, A., et al. (2019) Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Annals of Oncology, 30, 44-56. https://doi.org/10.1093/annonc/mdy495
|
[12]
|
Ready, N., Hellmann, M.D., Awad, M.M., Otterson, G.A., Gutierrez, M., Gainor, J.F., et al. (2019) First-Line Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer (CheckMate 568): Outcomes by Programmed Death Ligand 1 and Tumor Mutational Burden as Biomarkers. Journal of Clinical Oncology, 37, 992-1000. https://doi.org/10.1200/jco.18.01042
|
[13]
|
Samstein, R.M., Lee, C., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., et al. (2019) Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 51, 202-206. https://doi.org/10.1038/s41588-018-0312-8
|
[14]
|
Addeo, A., Friedlaender, A., Banna, G.L. and Weiss, G.J. (2021) TMB or Not TMB as a Biomarker: That Is the Question. Critical Reviews in Oncology/Hematology, 163, Article 103374. https://doi.org/10.1016/j.critrevonc.2021.103374
|
[15]
|
Lin, H., Kryczek, I., Li, S., Green, M.D., Ali, A., Hamasha, R., et al. (2021) Stanniocalcin 1 Is a Phagocytosis Checkpoint Driving Tumor Immune Resistance. Cancer Cell, 39, 480-493.E6. https://doi.org/10.1016/j.ccell.2020.12.023
|
[16]
|
Torrejon, D.Y., Abril-Rodriguez, G., Champhekar, A.S., Tsoi, J., Campbell, K.M., Kalbasi, A., et al. (2020) Overcoming Genetically Based Resistance Mechanisms to PD-1 Blockade. Cancer Discovery, 10, 1140-1157. https://doi.org/10.1158/2159-8290.cd-19-1409
|
[17]
|
Spranger, S. and Gajewski, T.F. (2018) Impact of Oncogenic Pathways on Evasion of Antitumour Immune Responses. Nature Reviews Cancer, 18, 139-147. https://doi.org/10.1038/nrc.2017.117
|
[18]
|
Demaria, O., Cornen, S., Daëron, M., Morel, Y., Medzhitov, R. and Vivier, E. (2019) Harnessing Innate Immunity in Cancer Therapy. Nature, 574, 45-56. https://doi.org/10.1038/s41586-019-1593-5
|
[19]
|
Lai, J., Mardiana, S., House, I.G., Sek, K., Henderson, M.A., Giuffrida, L., et al. (2020) Adoptive Cellular Therapy with T Cells Expressing the Dendritic Cell Growth Factor Flt3L Drives Epitope Spreading and Antitumor Immunity. Nature Immunology, 21, 914-926. https://doi.org/10.1038/s41590-020-0676-7
|
[20]
|
Yamamoto, K., Venida, A., Yano, J., Biancur, D.E., Kakiuchi, M., Gupta, S., et al. (2020) Autophagy Promotes Immune Evasion of Pancreatic Cancer by Degrading MHC-I. Nature, 581, 100-105. https://doi.org/10.1038/s41586-020-2229-5
|
[21]
|
Georganaki, M., van Hooren, L. and Dimberg, A. (2018) Vascular Targeting to Increase the Efficiency of Immune Checkpoint Blockade in Cancer. Frontiers in Immunology, 9, Article 3081. https://doi.org/10.3389/fimmu.2018.03081
|
[22]
|
Huang, Y., Kim, B.Y.S., Chan, C.K., Hahn, S.M., Weissman, I.L. and Jiang, W. (2018) Improving Immune-Vascular Crosstalk for Cancer Immunotherapy. Nature Reviews Immunology, 18, 195-203. https://doi.org/10.1038/nri.2017.145
|
[23]
|
Apte, R.S., Chen, D.S. and Ferrara, N. (2019) VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 176, 1248-1264. https://doi.org/10.1016/j.cell.2019.01.021
|
[24]
|
Damgaci, S., Ibrahim‐Hashim, A., Enriquez‐Navas, P.M., Pilon‐Thomas, S., Guvenis, A. and Gillies, R.J. (2018) Hypoxia and Acidosis: Immune Suppressors and Therapeutic Targets. Immunology, 154, 354-362. https://doi.org/10.1111/imm.12917
|
[25]
|
Allard, B., Allard, D., Buisseret, L. and Stagg, J. (2020) The Adenosine Pathway in Immuno-Oncology. Nature Reviews Clinical Oncology, 17, 611-629. https://doi.org/10.1038/s41571-020-0382-2
|
[26]
|
Sek, K., Mølck, C., Stewart, G., et al. (2018) Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. International Journal of Molecular Sciences, 19, Article 3837. https://doi.org/10.3390/ijms19123837
|
[27]
|
Vigano, S., Alatzoglou, D., Irving, M., Ménétrier-Caux, C., Caux, C., Romero, P., et al. (2019) Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Frontiers in Immunology, 10, Article 925. https://doi.org/10.3389/fimmu.2019.00925
|
[28]
|
Grasso, C.S., Giannakis, M., Wells, D.K., Hamada, T., Mu, X.J., Quist, M., et al. (2018) Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discovery, 8, 730-749. https://doi.org/10.1158/2159-8290.cd-17-1327
|
[29]
|
Hamarsheh, S., Groß, O., Brummer, T. and Zeiser, R. (2020) Immune Modulatory Effects of Oncogenic KRAS in Cancer. Nature Communications, 11, Article No. 5439. https://doi.org/10.1038/s41467-020-19288-6
|
[30]
|
Kortlever, R.M., Sodir, N.M., Wilson, C.H., Burkhart, D.L., Pellegrinet, L., Brown Swigart, L., et al. (2017) Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell, 171, 1301-1315.E14. https://doi.org/10.1016/j.cell.2017.11.013
|
[31]
|
Jerby-Arnon, L., Shah, P., Cuoco, M., et al. (2018) A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell, 175, 984-997.E24. https://doi.org/10.1016/j.cell.2018.09.006
|
[32]
|
Dong, L., Liu, C., Sun, H., Wang, M., Sun, M., Zheng, J., et al. (2024) Targeting STAT3 Potentiates CDK4/6 Inhibitors Therapy in Head and Neck Squamous Cell Carcinoma. Cancer Letters, 593, Article 216956. https://doi.org/10.1016/j.canlet.2024.216956
|
[33]
|
Szot, C., Saha, S., Zhang, X.M., Zhu, Z., Hilton, M.B., Morris, K., et al. (2018) Tumor Stroma-Targeted Antibody-Drug Conjugate Triggers Localized Anticancer Drug Release. Journal of Clinical Investigation, 128, 2927-2943. https://doi.org/10.1172/jci120481
|
[34]
|
Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D.G., Egeblad, M., Evans, R.M., et al. (2020) A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts. Nature Reviews Cancer, 20, 174-186. https://doi.org/10.1038/s41568-019-0238-1
|
[35]
|
Peng, D., Fu, M., Wang, M., Wei, Y. and Wei, X. (2022) Targeting TGF-β Signal Transduction for Fibrosis and Cancer Therapy. Molecular Cancer, 21, Article No. 104. https://doi.org/10.1186/s12943-022-01569-x
|
[36]
|
Chen, W. (2023) TGF-β Regulation of T Cells. Annual Review of Immunology, 41, 483-512. https://doi.org/10.1146/annurev-immunol-101921-045939
|
[37]
|
Li, X., Wenes, M., Romero, P., Huang, S.C., Fendt, S. and Ho, P. (2019) Navigating Metabolic Pathways to Enhance Antitumour Immunity and Immunotherapy. Nature Reviews Clinical Oncology, 16, 425-441. https://doi.org/10.1038/s41571-019-0203-7
|
[38]
|
Prendergast, G.C., Mondal, A., Dey, S., Laury-Kleintop, L.D. and Muller, A.J. (2018) Inflammatory Reprogramming with IDO1 Inhibitors: Turning Immunologically Unresponsive ‘Cold’ Tumors ‘Hot’. Trends in Cancer, 4, 38-58. https://doi.org/10.1016/j.trecan.2017.11.005
|
[39]
|
DeNardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nature Reviews Immunology, 19, 369-382. https://doi.org/10.1038/s41577-019-0127-6
|
[40]
|
Xia, Y., Rao, L., Yao, H., Wang, Z., Ning, P. and Chen, X. (2020) Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Advanced Materials, 32, Article 2002054. https://doi.org/10.1002/adma.202002054
|
[41]
|
Siska, P.J., Singer, K., Evert, K., Renner, K. and Kreutz, M. (2020) The Immunological Warburg Effect: Can a Metabolic‐Tumor‐Stroma Score (MeTS) Guide Cancer Immunotherapy? Immunological Reviews, 295, 187-202. https://doi.org/10.1111/imr.12846
|
[42]
|
Nuhn, L., De Koker, S., Van Lint, S., Zhong, Z., Catani, J.P., Combes, F., et al. (2018) Nanoparticle‐Conjugate TLR7/8 Agonist Localized Immunotherapy Provokes Safe Antitumoral Responses. Advanced Materials, 30, Article 1803397. https://doi.org/10.1002/adma.201803397
|
[43]
|
Ribas, A., Medina, T., Kummar, S., Amin, A., Kalbasi, A., Drabick, J.J., et al. (2018) SD-101 in Combination with Pembrolizumab in Advanced Melanoma: Results of a Phase Ib, Multicenter Study. Cancer Discovery, 8, 1250-1257. https://doi.org/10.1158/2159-8290.cd-18-0280
|
[44]
|
Reisländer, T., Groelly, F.J. and Tarsounas, M. (2020) DNA Damage and Cancer Immunotherapy: A STING in the Tale. Molecular Cell, 80, 21-28. https://doi.org/10.1016/j.molcel.2020.07.026
|
[45]
|
Chin, E.N., Yu, C., Vartabedian, V.F., Jia, Y., Kumar, M., Gamo, A.M., et al. (2020) Antitumor Activity of a Systemic STING-Activating Non-Nucleotide cGAMP Mimetic. Science, 369, 993-999. https://doi.org/10.1126/science.abb4255
|
[46]
|
Pan, B., Perera, S.A., Piesvaux, J.A., Presland, J.P., Schroeder, G.K., Cumming, J.N., et al. (2020) An Orally Available Non-Nucleotide STING Agonist with Antitumor Activity. Science, 369, eaba6098. https://doi.org/10.1126/science.aba6098
|
[47]
|
Russell, L., Peng, K.W., Russell, S.J. and Diaz, R.M. (2019) Oncolytic Viruses: Priming Time for Cancer Immunotherapy. BioDrugs, 33, 485-501. https://doi.org/10.1007/s40259-019-00367-0
|
[48]
|
Twumasi-Boateng, K., Pettigrew, J.L., Kwok, Y.Y.E., Bell, J.C. and Nelson, B.H. (2018) Oncolytic Viruses as Engineering Platforms for Combination Immunotherapy. Nature Reviews Cancer, 18, 419-432. https://doi.org/10.1038/s41568-018-0009-4
|
[49]
|
Wang, S., Li, Y., Xu, C., Dong, J. and Wei, J. (2024) An Oncolytic Vaccinia Virus Encoding Hyaluronidase Reshapes the Extracellular Matrix to Enhance Cancer Chemotherapy and Immunotherapy. Journal for ImmunoTherapy of Cancer, 12, e008431. https://doi.org/10.1136/jitc-2023-008431
|
[50]
|
Lin, D., Shen, Y. and Liang, T. (2023) Oncolytic Virotherapy: Basic Principles, Recent Advances and Future Directions. Signal Transduction and Targeted Therapy, 8, Article No. 156. https://doi.org/10.1038/s41392-023-01407-6
|
[51]
|
Andtbacka, R.H.I., Kaufman, H.L., Collichio, F., Amatruda, T., Senzer, N., Chesney, J., et al. (2015) Talimogene Laherparepvec Improves Durable Response Rate in Patients with Advanced Melanoma. Journal of Clinical Oncology, 33, 2780-2788. https://doi.org/10.1200/jco.2014.58.3377
|
[52]
|
Ribas, A., Dummer, R., Puzanov, I., VanderWalde, A., Andtbacka, R.H.I., Michielin, O., et al. (2017) Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell, 170, 1109-1119.E10. https://doi.org/10.1016/j.cell.2017.08.027
|
[53]
|
Kaufman, H.L., Spencer, K., Mehnert, J., Silk, A., Wang, J., Zloza, A., et al. (2016) Phase Ib Study of Intratumoral Oncolytic Coxsackievirus A21 (CVA21) and Pembrolizumab in Subjects with Advanced Melanoma. Annals of Oncology, 27, vi400. https://doi.org/10.1093/annonc/mdw379.51
|
[54]
|
Ngwa, W., Irabor, O.C., Schoenfeld, J.D., Hesser, J., Demaria, S. and Formenti, S.C. (2018) Using Immunotherapy to Boost the Abscopal Effect. Nature Reviews Cancer, 18, 313-322. https://doi.org/10.1038/nrc.2018.6
|
[55]
|
Barker, H.E., Paget, J.T.E., Khan, A.A. and Harrington, K.J. (2015) The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence. Nature Reviews Cancer, 15, 409-425. https://doi.org/10.1038/nrc3958
|
[56]
|
Demaria, S., Golden, E.B. and Formenti, S.C. (2015) Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncology, 1, 1325-1332. https://doi.org/10.1001/jamaoncol.2015.2756
|
[57]
|
Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. and Kroemer, G. (2020) Immunostimulation with Chemotherapy in the Era of Immune Checkpoint Inhibitors. Nature Reviews Clinical Oncology, 17, 725-741. https://doi.org/10.1038/s41571-020-0413-z
|
[58]
|
Liu, P., Zhao, L., Pol, J., Levesque, S., Petrazzuolo, A., Pfirschke, C., et al. (2019) Crizotinib-Induced Immunogenic Cell Death in Non-Small Cell Lung Cancer. Nature Communications, 10, Article No. 1486. https://doi.org/10.1038/s41467-019-09415-3
|
[59]
|
Yamazaki, T., Buqué, A., Ames, T.D. and Galluzzi, L. (2020) PT-112 Induces Immunogenic Cell Death and Synergizes with Immune Checkpoint Blockers in Mouse Tumor Models. OncoImmunology, 9, Article 1721810. https://doi.org/10.1080/2162402x.2020.1721810
|
[60]
|
Wang, C., Wang, J., Zhang, X., Yu, S., Wen, D., Hu, Q., et al. (2018) In Situ Formed Reactive Oxygen Species-Responsive Scaffold with Gemcitabine and Checkpoint Inhibitor for Combination Therapy. Science Translational Medicine, 10, eaan3682. https://doi.org/10.1126/scitranslmed.aan3682
|
[61]
|
Chao, Y., Liang, C., Tao, H., Du, Y., Wu, D., Dong, Z., et al. (2020) Localized Cocktail Chemoimmunotherapy after in Situ Gelation to Trigger Robust Systemic Antitumor Immune Responses. Science Advances, 6, eaaz4204. https://doi.org/10.1126/sciadv.aaz4204
|
[62]
|
Mizukoshi, E., Yamashita, T., Arai, K., Sunagozaka, H., Ueda, T., Arihara, F., et al. (2013) Enhancement of Tumor-Associated Antigen-Specific T Cell Responses by Radiofrequency Ablation of Hepatocellular Carcinoma. Hepatology, 57, 1448-1457. https://doi.org/10.1002/hep.26153
|
[63]
|
Sheybani, N.D. and Price, R.J. (2019) Perspectives on Recent Progress in Focused Ultrasound Immunotherapy. Theranostics, 9, 7749-7758. https://doi.org/10.7150/thno.37131
|
[64]
|
van der Burg, S.H., Arens, R., Ossendorp, F., van Hall, T. and Melief, C.J.M. (2016) Vaccines for Established Cancer: Overcoming the Challenges Posed by Immune Evasion. Nature Reviews Cancer, 16, 219-233. https://doi.org/10.1038/nrc.2016.16
|
[65]
|
Kantoff, P.W., Higano, C.S., Shore, N.D., Berger, E.R., Small, E.J., Penson, D.F., et al. (2010) Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. New England Journal of Medicine, 363, 411-422. https://doi.org/10.1056/nejmoa1001294
|
[66]
|
Ott, P.A., Hu-Lieskovan, S., Chmielowski, B., Govindan, R., Naing, A., Bhardwaj, N., et al. (2020) A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-Small Cell Lung Cancer, or Bladder Cancer. Cell, 183, 347-362.E24. https://doi.org/10.1016/j.cell.2020.08.053
|
[67]
|
Nagarsheth, N., Peng, D., Kryczek, I., Wu, K., Li, W., Zhao, E., et al. (2016) PRC2 Epigenetically Silences Th1-Type Chemokines to Suppress Effector T-Cell Trafficking in Colon Cancer. Cancer Research, 76, 275-282. https://doi.org/10.1158/0008-5472.can-15-1938
|
[68]
|
Topper, M.J., Vaz, M., Chiappinelli, K.B., DeStefano Shields, C.E., Niknafs, N., Yen, R.C., et al. (2017) Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer. Cell, 171, 1284-1300.E21. https://doi.org/10.1016/j.cell.2017.10.022
|
[69]
|
Maatouk, D.M., Kellam, L.D., Mann, M.R.W., Lei, H., Li, E., Bartolomei, M.S., et al. (2006) DNA Methylation Is a Primary Mechanism for Silencing Postmigratory Primordial Germ Cell Genes in Both Germ Cell and Somatic Cell Lineages. Development, 133, 3411-3418. https://doi.org/10.1242/dev.02500
|
[70]
|
Ritter, C., Fan, K., Paschen, A., Reker Hardrup, S., Ferrone, S., Nghiem, P., et al. (2017) Epigenetic Priming Restores the HLA Class-I Antigen Processing Machinery Expression in Merkel Cell Carcinoma. Scientific Reports, 7, Article No. 2290. https://doi.org/10.1038/s41598-017-02608-0
|
[71]
|
Luo, N., Nixon, M.J., Gonzalez-Ericsson, P.I., Sanchez, V., Opalenik, S.R., Li, H., et al. (2018) DNA Methyltransferase Inhibition Upregulates MHC-I to Potentiate Cytotoxic T Lymphocyte Responses in Breast Cancer. Nature Communications, 9, Article No. 248. https://doi.org/10.1038/s41467-017-02630-w
|
[72]
|
Topper, M.J., Vaz, M., Marrone, K.A., Brahmer, J.R. and Baylin, S.B. (2019) The Emerging Role of Epigenetic Therapeutics in Immuno-Oncology. Nature Reviews Clinical Oncology, 17, 75-90. https://doi.org/10.1038/s41571-019-0266-5
|
[73]
|
Abril-Rodriguez, G., Torrejon, D.Y., Liu, W., Zaretsky, J.M., Nowicki, T.S., Tsoi, J., et al. (2019) PAK4 Inhibition Improves PD-1 Blockade Immunotherapy. Nature Cancer, 1, 46-58. https://doi.org/10.1038/s43018-019-0003-0
|
[74]
|
Carmona-Rodríguez, L., Martínez-Rey, D., Fernández-Aceñero, M.J., González-Martín, A., Paz-Cabezas, M., Rodríguez-Rodríguez, N., et al. (2020) SOD3 Induces a HIF-2α-Dependent Program in Endothelial Cells That Provides a Selective Signal for Tumor Infiltration by T Cells. Journal for ImmunoTherapy of Cancer, 8, e000432. https://doi.org/10.1136/jitc-2019-000432
|
[75]
|
Kim, H.J., Lee, H.N., Jeong, M.S. and Jang, S.B. (2021) Oncogenic KRAS: Signaling and Drug Resistance. Cancers, 13, Article 5599. https://doi.org/10.3390/cancers13225599
|
[76]
|
Janes, M.R., Zhang, J., Li, L., Hansen, R., Peters, U., Guo, X., et al. (2018) Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell, 172, 578-589.E17. https://doi.org/10.1016/j.cell.2018.01.006
|
[77]
|
Lee, J.W., Zhang, Y., Eoh, K.J., Sharma, R., Sanmamed, M.F., Wu, J., et al. (2019) The Combination of MEK Inhibitor with Immunomodulatory Antibodies Targeting Programmed Death 1 and Programmed Death Ligand 1 Results in Prolonged Survival in Kras/p53-Driven Lung Cancer. Journal of Thoracic Oncology, 14, 1046-1060. https://doi.org/10.1016/j.jtho.2019.02.004
|
[78]
|
Schaer, D.A., Beckmann, R.P., Dempsey, J.A., Huber, L., Forest, A., Amaladas, N., et al. (2018) The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade. Cell Reports, 22, 2978-2994. https://doi.org/10.1016/j.celrep.2018.02.053
|
[79]
|
Peng, W., Chen, J.Q., Liu, C., Malu, S., Creasy, C., Tetzlaff, M.T., et al. (2016) Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discovery, 6, 202-216. https://doi.org/10.1158/2159-8290.cd-15-0283
|
[80]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
|
[81]
|
Yang, J., Yan, J. and Liu, B. (2018) Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Frontiers in Immunology, 9, Article 978. https://doi.org/10.3389/fimmu.2018.00978
|
[82]
|
Liu, Z., Wang, Y., Huang, Y., Kim, B.Y.S., Shan, H., Wu, D., et al. (2019) Tumor Vasculatures: A New Target for Cancer Immunotherapy. Trends in Pharmacological Sciences, 40, 613-623. https://doi.org/10.1016/j.tips.2019.07.001
|
[83]
|
Wallin, J.J., Bendell, J.C., Funke, R., Sznol, M., Korski, K., Jones, S., et al. (2016) Atezolizumab in Combination with Bevacizumab Enhances Antigen-Specific T-Cell Migration in Metastatic Renal Cell Carcinoma. Nature Communications, 7, Article No. 12624. https://doi.org/10.1038/ncomms12624
|
[84]
|
Finn, R.S., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2020) Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New England Journal of Medicine, 382, 1894-1905. https://doi.org/10.1056/nejmoa1915745
|
[85]
|
Mariathasan, S., Turley, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al. (2018) TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature, 554, 544-548. https://doi.org/10.1038/nature25501
|
[86]
|
Tauriello, D.V.F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., et al. (2018) TGFβ Drives Immune Evasion in Genetically Reconstituted Colon Cancer Metastasis. Nature, 554, 538-543. https://doi.org/10.1038/nature25492
|
[87]
|
Mortezaee, K. (2020) CXCL12/CXCR4 Axis in the Microenvironment of Solid Tumors: A Critical Mediator of Metastasis. Life Sciences, 249, Article 117534. https://doi.org/10.1016/j.lfs.2020.117534
|
[88]
|
Feig, C., Jones, J.O., Kraman, M., Wells, R.J.B., Deonarine, A., Chan, D.S., et al. (2013) Targeting CXCL12 from Fap-Expressing Carcinoma-Associated Fibroblasts Synergizes with Anti-PD-L1 Immunotherapy in Pancreatic Cancer. Proceedings of the National Academy of Sciences, 110, 20212-20217. https://doi.org/10.1073/pnas.1320318110
|
[89]
|
Bockorny, B., Semenisty, V., Macarulla, T., Borazanci, E., Wolpin, B.M., Stemmer, S.M., et al. (2020) BL-8040, a CXCR4 Antagonist, in Combination with Pembrolizumab and Chemotherapy for Pancreatic Cancer: The COMBAT Trial. Nature Medicine, 26, 878-885. https://doi.org/10.1038/s41591-020-0880-x
|
[90]
|
Shi, Y. and Lammers, T. (2019) Combining Nanomedicine and Immunotherapy. Accounts of Chemical Research, 52, 1543-1554. https://doi.org/10.1021/acs.accounts.9b00148
|
[91]
|
Irvine, D.J. and Dane, E.L. (2020) Enhancing Cancer Immunotherapy with Nanomedicine. Nature Reviews Immunology, 20, 321-334. https://doi.org/10.1038/s41577-019-0269-6
|
[92]
|
Li, X., Lovell, J.F., Yoon, J. and Chen, X. (2020) Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nature Reviews Clinical Oncology, 17, 657-674. https://doi.org/10.1038/s41571-020-0410-2
|
[93]
|
Duan, X., Chan, C. and Lin, W. (2018) Nanoparticle‐Mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy. Angewandte Chemie International Edition, 58, 670-680. https://doi.org/10.1002/anie.201804882
|
[94]
|
Bai, S., Yang, L., Wang, Y., Zhang, T., Fu, L., Yang, S., et al. (2020) Prodrug‐Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death. Small, 16, Article 2000214. https://doi.org/10.1002/smll.202000214
|
[95]
|
Rios-Doria, J., Durham, N., Wetzel, L., Rothstein, R., Chesebrough, J., Holoweckyj, N., et al. (2015) Doxil Synergizes with Cancer Immunotherapies to Enhance Antitumor Responses in Syngeneic Mouse Models. Neoplasia, 17, 661-670. https://doi.org/10.1016/j.neo.2015.08.004
|
[96]
|
Han, W., Ke, J., Guo, F., Meng, F., Li, H. and Wang, L. (2021) Construction and Antitumor Properties of a Targeted Nano-Drug Carrier System Responsive to the Tumor Microenvironment. International Journal of Pharmaceutics, 608, Article 121066. https://doi.org/10.1016/j.ijpharm.2021.121066
|
[97]
|
Rao, L., Wu, L., Liu, Z., Tian, R., Yu, G., Zhou, Z., et al. (2020) Hybrid Cellular Membrane Nanovesicles Amplify Macrophage Immune Responses against Cancer Recurrence and Metastasis. Nature Communications, 11, Article No. 4909. https://doi.org/10.1038/s41467-020-18626-y
|
[98]
|
Ni, Q., Zhang, F., Liu, Y., Wang, Z., Yu, G., Liang, B., et al. (2020) A Bi-Adjuvant Nanovaccine That Potentiates Immunogenicity of Neoantigen for Combination Immunotherapy of Colorectal Cancer. Science Advances, 6, eaaw6071. https://doi.org/10.1126/sciadv.aaw6071
|
[99]
|
Han, X., Shen, S., Fan, Q., Chen, G., Archibong, E., Dotti, G., et al. (2019) Red Blood Cell-Derived Nanoerythrosome for Antigen Delivery with Enhanced Cancer Immunotherapy. Science Advances, 5, eaaw6870. https://doi.org/10.1126/sciadv.aaw6870
|
[100]
|
June, C.H., O’Connor, R.S., Kawalekar, O.U., Ghassemi, S. and Milone, M.C. (2018) CAR T Cell Immunotherapy for Human Cancer. Science, 359, 1361-1365. https://doi.org/10.1126/science.aar6711
|
[101]
|
Rosenberg, S.A., Yang, J.C., Sherry, R.M., Kammula, U.S., Hughes, M.S., Phan, G.Q., et al. (2011) Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy. Clinical Cancer Research, 17, 4550-4557. https://doi.org/10.1158/1078-0432.ccr-11-0116
|
[102]
|
Adachi, K., Kano, Y., Nagai, T., Okuyama, N., Sakoda, Y. and Tamada, K. (2018) IL-7 and CCL19 Expression in CAR-T Cells Improves Immune Cell Infiltration and CAR-T Cell Survival in the Tumor. Nature Biotechnology, 36, 346-351. https://doi.org/10.1038/nbt.4086
|
[103]
|
Lv, Y., Luo, X., Xie, Z., Qiu, J., Yang, J., Deng, Y., et al. (2024) Prospects and Challenges of CAR-T Cell Therapy Combined with ICIs. Frontiers in Oncology, 14, Article 1368732. https://doi.org/10.3389/fonc.2024.1368732
|
[104]
|
Peske, J.D., Thompson, E.D., Gemta, L., Baylis, R.A., Fu, Y. and Engelhard, V.H. (2015) Effector Lymphocyte-Induced Lymph Node-Like Vasculature Enables Naive T-Cell Entry into Tumours and Enhanced Anti-Tumour Immunity. Nature Communications, 6, Article No. 7114. https://doi.org/10.1038/ncomms8114
|
[105]
|
Cabrita, R., Lauss, M., Sanna, A., Donia, M., Skaarup Larsen, M., Mitra, S., et al. (2020) Tertiary Lymphoid Structures Improve Immunotherapy and Survival in Melanoma. Nature, 577, 561-565. https://doi.org/10.1038/s41586-019-1914-8
|
[106]
|
Anandappa, A.J., Wu, C.J. and Ott, P.A. (2020) Directing Traffic: How to Effectively Drive T Cells into Tumors. Cancer Discovery, 10, 185-197. https://doi.org/10.1158/2159-8290.cd-19-0790
|