|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Duma, N., Santana-Davila, R. and Molina, J.R. (2019) Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clinic Proceedings, 94, 1623-1640. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kotecki, N., Vuagnat, P., O’Neil, B.H., Jalal, S., Rottey, S., Prenen, H., et al. (2021) A Phase I Study of an IDO-1 Inhibitor (LY3381916) as Monotherapy and in Combination with an Anti-PD-L1 Antibody (LY3300054) in Patients with Advanced Cancer. Journal of Immunotherapy, 44, 264-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Aggarwal, H., Ndirangu, K., Winfree, K.B., Muehlenbein, C.E., Zhu, E., Tongbram, V., et al. (2023) A Network Meta-Analysis of Immunotherapy-Based Treatments for Advanced Nonsquamous Non-Small Cell Lung Cancer. Journal of Comparative Effectiveness Research, 12, e220016. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Borst, J., Ahrends, T., Bąbała, N., Melief, C.J.M. and Kastenmüller, W. (2018) CD4+ T Cell Help in Cancer Immunology and Immunotherapy. Nature Reviews Immunology, 18, 635-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gonzalez, H., Hagerling, C. and Werb, Z. (2018) Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes & Development, 32, 1267-1284. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Myers, J.A. and Miller, J.S. (2020) Exploring the NK Cell Platform for Cancer Immunotherapy. Nature Reviews Clinical Oncology, 18, 85-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, X., Lv, Q., Feng, Y., Gu, Y., Xia, R., Ma, J., et al. (2018) Interleukin-33, a Potential Cytokine Expressed in the Tumor Microenvironment Is Involved in Antitumor Immunotherapy through Facilitating CD8+ T Cells. Journal of Interferon & Cytokine Research, 38, 491-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
van Montfoort, N., Borst, L., Korrer, M.J., Sluijter, M., Marijt, K.A., Santegoets, S.J., et al. (2018) NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines. Cell, 175, 1744-1755.E15. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Heng, J.S., Kim, J.M., Jones, D.K., Stoessel, K.M., Weiss, S.A., Sznol, M., et al. (2022) Autoimmune Retinopathy with Associated Anti-Retinal Antibodies as a Potential Immune-Related Adverse Event Associated with Immunotherapy in Patients with Advanced Cutaneous Melanoma: Case Series and Systematic Review. BMJ Open Ophthalmology, 7, e000889. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
郭莹, 高天慧, 赵孟阳, 等. 晚期非小细胞肺癌淋巴细胞亚群及细胞因子与免疫疗效的关系研究[J]. 中华全科医学, 2022, 20(9): 1462-1465.
|
|
[12]
|
Kagamu, H., Kitano, S., Yamaguchi, O., Yoshimura, K., Horimoto, K., Kitazawa, M., et al. (2020) CD4+ T-Cell Immunity in the Peripheral Blood Correlates with Response to Anti-PD-1 Therapy. Cancer Immunology Research, 8, 334-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kim, C.G., Hong, M.H., Kim, K.H., Seo, I., Ahn, B., Pyo, K., et al. (2021) Dynamic Changes in Circulating PD-1+CD8+ T Lymphocytes for Predicting Treatment Response to PD-1 Blockade in Patients with Non-Small-Cell Lung Cancer. European Journal of Cancer, 143, 113-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Youn, J., Park, S., Park, S., Kim, G., Lee, H., Son, J., et al. (2020) Peripheral Natural Killer Cells and Myeloid-Derived Suppressor Cells Correlate with Anti-PD-1 Responses in Non-Small Cell Lung Cancer. Scientific Reports, 10, Article No. 9050. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Isacco, C.G., Ballini, A., De Vito, D., Nguyen, K.C.D., Cantore, S., Bottalico, L., et al. (2021) Rebalancing the Oral Microbiota as an Efficient Tool in Endocrine, Metabolic and Immune Disorders. Endocrine, Metabolic & Immune Disorders-Drug Targets, 21, 777-784. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Soyano, A.E., Dholaria, B., Marin-Acevedo, J.A., Diehl, N., Hodge, D., Luo, Y., et al. (2018) Peripheral Blood Biomarkers Correlate with Outcomes in Advanced Non-Small Cell Lung Cancer Patients Treated with Anti-PD-1 Antibodies. Journal for ImmunoTherapy of Cancer, 6, Article 129. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Moschetta, M., Uccello, M., Kasenda, B., Mak, G., McClelland, A., Boussios, S., et al. (2017) Dynamics of Neutrophils-To-Lymphocyte Ratio Predict Outcomes of PD-1/PD-L1 Blockade. BioMed Research International, 2017, Article 1506824. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Russo, A., Russano, M., Franchina, T., Migliorino, M.R., Aprile, G., Mansueto, G., et al. (2020) Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR), and Outcomes with Nivolumab in Pretreated Non-Small Cell Lung Cancer (NSCLC): A Large Retrospective Multicenter Study. Advances in Therapy, 37, 1145-1155. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Nakaya, A., Kurata, T., Yoshioka, H., Takeyasu, Y., Niki, M., Kibata, K., et al. (2018) Neutrophil-to-Lymphocyte Ratio as an Early Marker of Outcomes in Patients with Advanced Non-Small-Cell Lung Cancer Treated with Nivolumab. International Journal of Clinical Oncology, 23, 634-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kiriu, T., Yamamoto, M., Nagano, T., Hazama, D., Sekiya, R., Katsurada, M., et al. (2018) The Time-Series Behavior of Neutrophil-to-Lymphocyte Ratio Is Useful as a Predictive Marker in Non-Small Cell Lung Cancer. PLOS ONE, 13, e0193018. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sánchez-Gastaldo, A., Muñoz-Fuentes, M.A., Molina-Pinelo, S., Alonso-García, M., Boyero, L. and Bernabé-Caro, R. (2021) Correlation of Peripheral Blood Biomarkers with Clinical Outcomes in NSCLC Patients with High PD-L1 Expression Treated with Pembrolizumab. Translational Lung Cancer Research, 10, 2509-2522. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lu, X., Wan, J. and Shi, H. (2022) Platelet-to-Lymphocyte and Neutrophil-to-Lymphocyte Ratios Are Associated with the Efficacy of Immunotherapy in Stage III/IV Non-Small Cell Lung Cancer. Oncology Letters, 24, Article No. 266. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tay, S.H., Toh, M.M.X., Thian, Y.L., Vellayappan, B.A., Fairhurst, A., Chan, Y.H., et al. (2022) Cytokine Release Syndrome in Cancer Patients Receiving Immune Checkpoint Inhibitors: A Case Series of 25 Patients and Review of the Literature. Frontiers in Immunology, 13, Article 807050. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sillito, F., Holler, A. and Stauss, H.J. (2020) Engineering CD4+ T Cells to Enhance Cancer Immunity. Cells, 9, Article 1721. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Honrubia-Peris, B., Garde-Noguera, J., García-Sánchez, J., Piera-Molons, N., Llombart-Cussac, A. and Fernández-Murga, M.L. (2021) Soluble Biomarkers with Prognostic and Predictive Value in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. Cancers, 13, Article 4280. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, C., Yang, L., Xu, H., Zheng, S., Wang, Z., Wang, S., et al. (2022) Systematic Analysis of IL-6 as a Predictive Biomarker and Desensitizer of Immunotherapy Responses in Patients with Non-Small Cell Lung Cancer. BMC Medicine, 20, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hu, Y., Li, S., Xiao, H., Xiong, Y., Lu, X., Yang, X., et al. (2023) Distinct Circulating Cytokine/Chemokine Profiles Correlate with Clinical Benefit of Immune Checkpoint Inhibitor Monotherapy and Combination Therapy in Advanced Non‐Small Cell Lung Cancer. Cancer Medicine, 12, 12234-12252. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ke, W., Zhang, L. and Dai, Y. (2020) The Role of IL‐6 in Immunotherapy of Non‐Small Cell Lung Cancer (NSCLC) with Immune‐Related Adverse Events (irAEs). Thoracic Cancer, 11, 835-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sanmamed, M.F., Perez-Gracia, J.L., Schalper, K.A., Fusco, J.P., Gonzalez, A., Rodriguez-Ruiz, M.E., et al. (2017) Changes in Serum Interleukin-8 (IL-8) Levels Reflect and Predict Response to Anti-PD-1 Treatment in Melanoma and Non-Small-Cell Lung Cancer Patients. Annals of Oncology, 28, 1988-1995. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cabel, L., Proudhon, C., Romano, E., Girard, N., Lantz, O., Stern, M., et al. (2018) Clinical Potential of Circulating Tumour DNA in Patients Receiving Anticancer Immunotherapy. Nature Reviews Clinical Oncology, 15, 639-650. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Nabet, B.Y., Esfahani, M.S., Moding, E.J., Hamilton, E.G., Chabon, J.J., Rizvi, H., et al. (2020) Noninvasive Early Identification of Therapeutic Benefit from Immune Checkpoint Inhibition. Cell, 183, 363-376.E13. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Anagnostou, V., Ho, C., Nicholas, G., Juergens, R.A., Sacher, A., Fung, A.S., et al. (2023) ctDNA Response after Pembrolizumab in Non-Small Cell Lung Cancer: Phase 2 Adaptive Trial Results. Nature Medicine, 29, 2559-2569. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Han, X., Tang, X., Zhu, H., Zhu, D., Zhang, X., Meng, X., et al. (2022) Short-Term Dynamics of Circulating Tumor DNA Predicting Efficacy of Sintilimab Plus Docetaxel in Second-Line Treatment of Advanced NSCLC: Biomarker Analysis from a Single-Arm, Phase 2 Trial. Journal for ImmunoTherapy of Cancer, 10, e004952. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yue, D., Liu, W., Chen, C., Zhang, T., Ma, Y., Cui, L., et al. (2022) Circulating Tumor DNA Predicts Neoadjuvant Immunotherapy Efficacy and Recurrence-Free Survival in Surgical Non-Small Cell Lung Cancer Patients. Translational Lung Cancer Research, 11, 263-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sharma, S., Zhuang, R., Long, M., Pavlovic, M., Kang, Y., Ilyas, A., et al. (2018) Circulating Tumor Cell Isolation, Culture, and Downstream Molecular Analysis. Biotechnology Advances, 36, 1063-1078. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhang, Y., Zheng, H., Zhan, Y., et al. (2018) Detection and Application of Circulating Tumor Cell and Circulating Tumor DNA in the Non-Small Cell Lung Cancer. American Journal of Cancer Research, 8, 2377-2386.
|
|
[37]
|
Rzhevskiy, A., Kapitannikova, A., Malinina, P., Volovetsky, A., Aboulkheyr Es, H., Kulasinghe, A., et al. (2021) Emerging Role of Circulating Tumor Cells in Immunotherapy. Theranostics, 11, 8057-8075. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhou, Q., Liu, X., Li, J., Tong, B., Xu, Y., Chen, M., et al. (2023) Circulating Tumor Cells PD‐L1 Expression Detection and Correlation of Therapeutic Efficacy of Immune Checkpoint Inhibition in Advanced Non‐Small‐Cell Lung Cancer. Thoracic Cancer, 14, 470-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Strati, A., Economopoulou, P., Lianidou, E. and Psyrri, A. (2023) Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy. Biomedicines, 11, Article 1768. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chalmers, Z.R., Connelly, C.F., Fabrizio, D., Gay, L., Ali, S.M., Ennis, R., et al. (2017) Analysis of 100,000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Medicine, 9, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kim, E.S., Velcheti, V., Mekhail, T., Yun, C., Shagan, S.M., Hu, S., et al. (2022) Blood-Based Tumor Mutational Burden as a Biomarker for Atezolizumab in Non-Small Cell Lung Cancer: The Phase 2 B-F1RST Trial. Nature Medicine, 28, 939-945. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wang, Z., Duan, J., Cai, S., Han, M., Dong, H., Zhao, J., et al. (2019) Assessment of Blood Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Patients with Non-Small Cell Lung Cancer with Use of a Next-Generation Sequencing Cancer Gene Panel. JAMA Oncology, 5, 696-702. [Google Scholar] [CrossRef] [PubMed]
|