胃癌的免疫治疗及疗效预测进展
Advances in Immunotherapy and Efficacy Prediction for Gastric Cancer
摘要: 目的:了解胃癌免疫治疗及疗效预测最新研究进展。方法:检索近年来国内外有关胃癌免疫治疗及疗效预测研究的相关文献并进行综述。结果:胃癌免疫治疗研究最多的是免疫检查点抑制剂,尤其是针对抗程序性细胞死亡蛋白-1 (PD-1)/程序性死亡配体-1 (PD-L1)抗体和细胞毒性T淋巴细胞相关抗原4 (CTLA-4抗体)三种类型的研究较多。目前研究火热的免疫PET、CT、MRI和氟脱氧葡萄糖PET的新应用在疗效预测方面都有极大的应用价值。结论:随着免疫治疗研究的深入,胃癌免疫治疗的策略也在不断改进,免疫治疗过程中疗效预测愈发显得重要,针对相应的治疗方法筛选适宜的患者及采用精准治疗手段可进一步让胃癌患者生存获益。
Abstract: Objective: To recognize the latest research progress of gastric cancer immunotherapy and efficacy evaluation. Methods: The domestic and international literature on immunotherapy and efficacy evaluation for GC in recent years were retrieved and reviewed. Results: The most immunotherapy researched was ICIs, especially for programmed death protein-1 (PD-1)/programmed death protein ligand 1 (PD-L1), cytotoxic T lymphocyte associated antigen 4 (CTLA-4 antibody). At present, the new applications of immune PET, CT, MRI and fluorodeoxyglucose PET are of great application value in the efficacy evaluation. Conclusion: With the further study of immunotherapy research, the strategy of immunotherapy for gastric cancer is also constantly improving, and the efficacy evaluation in the process of immunotherapy is becoming more and more important. Screening suitable patients for the corresponding treatment methods and adopting precise treatment methods can further benefit gastric cancer patients.
文章引用:陈进瑜, 付大秀, 杨银蕊, 李振辉, 王关顺. 胃癌的免疫治疗及疗效预测进展[J]. 临床医学进展, 2024, 14(9): 983-992. https://doi.org/10.12677/acm.2024.1492556

1. 引言

胃癌为全球第五大常见恶性肿瘤和第四大癌症相关死亡原因[1],近年来,在年轻人群中发病率逐年攀升,尤其在东亚和东欧国家[2] [3]。胃癌在中国也是三大最常见的恶性肿瘤之一,导致约37万人死亡,约占全球胃癌死亡人数的近一半[4]。由于缺乏明确的临床症状,大多数胃癌患者在晚期才被确诊,导致预后不佳[5] [6]。针对晚期胃癌,目前主要常规治疗手段是全身化疗和靶向治疗,然而其临床效果却相当有限。据统计数据显示,晚期胃癌常规治疗的中位生存期只有8个月。另外,因为化疗药物的毒性、靶向治疗药物的受益群体筛选困难和耐药性等原因,治疗胃癌的预后并没有明显改善[7]。免疫治疗作为一种新兴的治疗方法,显著改变了胃癌的治疗前景。免疫治疗的发展也进一步强调了影像评估治疗反应的重要性[8];一些生物标记物在预测免疫治疗疗效方面也有非常重要的作用[9]-[11]。影像学和其他生物标志物的多水平整合可以改善免疫治疗的临床指导,并提供治疗机会。笔者现从胃癌免疫治疗及疗效预测进展两个方面的研究现状作一综述。

2. 胃癌的免疫治疗进展

Figure 1. Progress of gastric cancer immunotherapy

1. 胃癌免疫治疗进展

免疫治疗作为癌症治疗的突破疗法之一,已成为继手术、化疗、放疗、靶向治疗之后的有效治疗方式[12] [13]。免疫检查点抑制剂(ICIs)的重大进展已经开始改变胃癌治疗和预后的临床实践。关于免疫治疗发展如图1所示。

2.1. 免疫检查点抑制剂(ICIs)

从2011年伊匹单抗成为世界上第一个被批准用于治疗黑色素瘤的ICIs起[14],免疫疗法正式进入大众视野,彻底改变了晚期胃癌患者的治疗策略。ICIs主要有抗程序性细胞死亡蛋白-1 (PD-1)/程序性死亡配体-1 (PD-L1)抗体和细胞毒性T淋巴细胞相关抗原4 (CTLA-4抗体)三种类型[15]。免疫检查点抑制剂(ICIs)被开发用于阻断配体与检查点受体的结合并重新激活人体细胞免疫反应。这些免疫检查点的抑制剂已经在临床前和临床试验中产生和研究。

2.1.1. PD-1/PD-L1抑制剂

在肿瘤的发展过程中,肿瘤细胞高表达的PD-L1分子,PD-L1通过与活化T细胞表面的受体PD-1结合,导致T效应细胞及T记忆细胞分化受损,T细胞失去细胞毒活性,干扰机体的抗肿瘤免疫反应,使肿瘤细胞逃避机体免疫的免疫监控和杀伤[16]。因此,通过阻断PD-1/PD-L1相互作用,PD-1/PD-L1抑制剂可以增强对肿瘤的免疫应答。2016年有研究表明PD-1抗体帕博利珠单抗在治疗晚期胃癌方面具有潜在活性。在这项研究中,36例患者中有8例(22%)在单药帕博利珠单抗治疗后出现部分缓解[17]。但是作为二线治疗,帕博利珠单抗在研究中未能显示出在pd-l1阳性患者中优于化疗的显著优势[18]。2017年进行了纳武单抗的研究[19],结果显示,使用单药纳武单抗患者的生存率明显提高。因此,纳武单抗在日本用于胃癌的三线治疗。在阿韦单抗的研究中,与继续化疗相比,在所有入组患者或PD-L1 TPS ≥ 1%的患者中,单药阿韦单抗作为晚期GC/GEJC患者奥沙利铂/氟嘧啶化疗后的维持治疗未能改善OS。然而,一项探索性分析显示,在PD-L1 CPS ≥ 1 bb0的患者中,阿韦单抗治疗有延长生存期的趋势[20]。总的来说,尽管PD-1/PD-L1抑制剂在晚期GC/GEJC的治疗中显示出临床活性,特别是在晚期治疗中,但单药治疗的益处相对有限。

2.1.2. CTLA-4抑制剂

细胞毒T淋巴细胞相关抗原4 (CTLA-4),又名CD152,是一种白细胞分化抗原,是T细胞上的一种跨膜受体,与CD28共同享有B7分子配体,而CTLA-4与B7分子结合后诱导T细胞无反应性,参与免疫反应的负调节[21]。人们越来越关注阻断CTLA-4的可能治疗益处。使用针对CTLA的拮抗性抗体,例如伊匹单抗(2011年FDA批准用于黑色素瘤)作为抑制免疫系统对肿瘤的耐受性的手段,从而提供潜在有用的免疫治疗策略;在一项I/II期临床研究(CheckMate-032)中,伊匹单抗单药治疗(3 mg/kg)导致化疗进展的晚期胃癌患者的ORR为14% [22]。不幸的是,在II期临床试验(NCT01585987)中,伊匹单抗作为一线化疗后晚期GC/GEJC bb0的维持治疗并没有表现出显著的生存获益[23]。替西木单抗,一种选择性的人IgG2单抗CTLA-4抑制剂,通过抑制CTLA-4促进t细胞活性。在一项Ib/II期试验中,12名GC/GEJC患者在化疗后接受替西木单抗作为二线治疗,平均PFS为1.7个月,平均OS为7.7个月[24]。尽管替西木单抗未能在所有患者中显示出令人兴奋的活性,但在一些OS超过32.7个月的患者中观察到持久的抗肿瘤活性,这表明未来需要诸如生物标志物等指标来识别可以从替西木单抗中获益最多的患者。

2.1.3. ICIs联合其他治疗药物

现有的ICIs临床结果表明,单药治疗的临床疗效相当有限。临床试验正在探索胃癌的联合治疗,主要是化疗。ICIs已被测试作为手术前的新辅助治疗和化疗后的维持治疗[25]。在KEYNOTE-059试验中,已经证明联合治疗的ORR比派姆单抗单药高得多。然而,单药治疗组的OS似乎比联合治疗组更长(20.7个月对13.8个月) [26]。KEYNOTE-062 III期试验作为KEYNOTE-059试验的后续研究,证明了MSI-H或PD-L1 CPS为1或大于1的患者在接受派姆单抗治疗时的OS时间明显长于化疗(HR, 0.29; 95% ci, 0.11~0.81) [27]。在全球最大的胃癌随机III期临床研究CheckMate-649中已经证明,纳武单抗联合治疗明显优于化疗。基于CheckMate-649研究,FDA于2021年4月批准纳武单抗联合化疗用于晚期或转移性胃癌、GEJC和食管腺癌患者[28]。此外,一项研究表明,免疫治疗可能会提高后续化疗的疗效。在ICIs治疗进展后,顺序的纳武单抗或紫杉醇治疗可能是对免疫治疗最初耐药的患者的新选择。在NCT02915432研究中,托利哌单抗(JS001)联合XELOX (奥沙利铂 + 卡培他滨)作为一线治疗晚期胃癌bbb的ORR为66.7%,PFS为5.8个月[29]。在NCT03469557研究中,为15例GC/GEJC患者提供了替雷利珠单联合化疗作为一线治疗,ORR为46.7% [30]。综上所述,上述研究结果证实了免疫联合化疗在晚期胃癌一线治疗中的作用。免疫治疗联合化疗正在成为HER-2阴性晚期胃癌一线治疗的标准。

3. 疗效预测

免疫治疗已经彻底改变了范式的肿瘤治疗。然而,抗肿瘤治疗的成功通常受到免疫治疗反应差和耐药性发展的限制,后续发展的转移引起的肿瘤复发和耐药性仍然是胃癌患者的威胁[31]。即使在具有相似临床病理特征的患者中,胃癌患者治疗时药物反应也存在很大差异[32] [33],这表明传统分类方法,尤其是病理TNM分期系统,无法准确预测治疗反应。因此,迫切需要开发新的方法来精确鉴定GC患者亚组,并确定哪些亚组更有可能从治疗方案中获益。

肿瘤大小与患者生存率之间存在显著相关性,CT是一种常用的测量病变直径变化的方法,可用于指导治疗策略。目前研究火热的免疫PET,CT,MRI和氟脱氧葡萄糖PET的新应用,如影像组学和造血组织成像或人体测量学特征。通过将影像学和其他生物标志物在多个层面进行整合,可以提高免疫治疗的临床指导水平,甚至可以预测免疫治疗的效果,并为治疗提供机会[34]-[36]。评估这些新方法将是困难的,因为免疫疗法挑战了通常用来决定临床试验成功的反应和进展的概念(表1)。

Table 1. Role of imaging in assessing and guiding therapy [8]

1. 影像学在评估和指导治疗中的作用[8]

Role and Era of Treatment

Response

Progression

Concept in cancer imaging

Historical

Decrease in size measurement of tumor

Increase in the size of one or more measurable lesions or the appearance of new lesions

Immunotherapy

New dynamics complicate the association of tumor size with clinical benefit

Size increases form a spectrum from beneficial pseudoprogression to deadly hyperprogression

Timing of assessment

Historical

Assessed early in treatment course

Assessed at intervals until change of therapy

Immunotherapy

Imaging of immune activation could predict response earlier than size

“Wait and see” avoid pseudoprogression but requires more intervals

Role in clinical practice

Historical

Not normally used to determine whether to change therapy

Commonly used to determine when to change therapy

Immunotherapy

IirAE may be associated with response; severity must be established to determine whether to treat symptoms or stop immunotherapy

Must distinguish hyperprogression from true progression or pseudoprogression to determine change in immunotherapy

Role in clinical research

Historical

Primarily used to calculate overall response rate

Primarily used to calculate time to progression endpoints

Immunotherapy

Response criteria must adapt to new dynamics using new modalities and/or new measurements

Spectrum challenges progression-free survival, the most common surrogate imaging end point

Note.—Adapted, with permission, from reference 78. irAE = immune-related adverse event.

3.1. 影像组学和人工智能

在CT上测量肿瘤直径,使用图像工作站对癌症治疗中常规获得的图像提供更复杂的病变测量,可以更好地评估免疫治疗的反应和进展。影像组学和人工智能(AI)将数字医学图像转换为高维定量数据。越来越多的研究支持人工智能工具评估肿瘤生物学特性方面的潜力,并为接受免疫治疗的患者提供了新的预后、预测和治疗方法[37]

人工智能既可以使用成像生物标志物,也可以使用CT图像预测预后[38]、治疗反应、肿瘤反应、肿瘤表型(包括肿瘤突变负担) [39]、免疫相关不良事件(irAEs)和免疫环境指标(如CD8浸润) [40]。影像组学在新兴免疫疗法设想的每个问题领域都显示出了希望。在多中心临床试验中,AI利用CT图像上肿瘤表型的早期变化来预测接受全身治疗的转移患者的生存[40] [41]。这证明了现有图像中的信息可以改善临床医生的诊断,以区分假性进展和真性进展。经过设计和验证的AI工具可以将基线CT图像与CD8浸润相关联,预测晚期癌症患者接受放射治疗和免疫治疗的预后和反应[39] [40],成功评估远处反应与局部反应,并提示指导局部治疗少进展病变的潜力。人工智能模型在预测irAEs [42]和患者生存[37]方面也显示出了希望,有助于减轻更有效的免疫疗法可能带来的风险。

虽然关于影像组学和人工智能的研究呈现出很大的优势,但关于临床实施需要大量的转化工作,并且迄今为止大多数研究都是回顾性的,而且从单个中心招募患者。在减少图像采集参数的差异、协调放射组学特征的定义、外部验证人工智能衍生的生物标志物以及标准化放射学中压力测试的使用,这些都需要进一步的研究[43]。患者的人体测量特征为临床指导提供了另一种信息来源。无论肿瘤或治疗类型如何,肌肉减少症可能与免疫治疗结果特别相关。骨骼肌减少症(使用CT扫描的骨骼肌质量指数进行评估)和恶病质与较差的生存率和较高的并发症发生率相关。

由于肌肉减少症是二线派姆单抗治疗癌症后过度进展的潜在危险因素,因此人体测量成像特征可能会有所帮助确定免疫治疗开始后有过早死亡风险的患者[44]。免疫治疗引起人体测量特征的改变与接受免疫检查点调节剂治疗的患者的良好结果有关,并且可以设想为治疗效果的替代品。人体测量特征在免疫治疗中可能具有治疗价值。

3.2. MRI

创新的MRI技术,包括表观扩散系数,灌注加权成像和磁共振光谱,已经在评估免疫治疗反应[45]中显示出优势。化学交换饱和转移(CEST),MRI通过射频脉冲显示饱和的氢质子能够成像代谢物,如谷氨酸、乳酸、丙氨酸和肌酸,这些代谢物可以用来区分肿瘤复发和假性进展。

3.3. 18F-FDG PET

有证据表明,代谢成像可能比CT上肿瘤大小的变化更能预测结果[46] [47],欧洲和美国核医学协会最近发布了使用18F-FDG PET评估免疫治疗的指南[48]。代谢PET成像在评估irae方面可能比CT有优势[39] [49]。甲状腺炎和垂体炎引起的炎症过程[50];肺炎、结肠炎和胰腺炎(62例);甚至肌肉骨骼炎症过程[51]都与18F-FDG摄取显著增加有关。该成像生物标志物可用于预测甲状腺炎伴甲状腺功能减退[52]和接受两种免疫检查点抑制剂联合治疗的黑色素瘤患者[53]的irAEs。与CT的人体测量标准一样,在常规的18F-FDG PET成像中,存在一些对免疫治疗反应的代谢生物标志物。在一些人群中,脾和/或骨髓葡萄糖代谢的治疗前测量与临床结果相关:基线时非肿瘤造血组织的高糖代谢通常与癌症相关的全身免疫抑制性炎症和不利结果相关;因此,代谢可以成为一种治疗性的生物标志物,提供临床指导,建议额外的治疗方法。一方面,造血代谢的增加可以作为免疫激活和治疗反应的替代标志物。另一方面,造血代谢增加可能与免疫治疗抵抗有关。

3.4. 免疫PET

研究表明,免疫环境可以用来预测免疫治疗的疗效和整体预后。在未来,最佳策略可能会从非免疫特异性成像生物标志物转向免疫pet评估的免疫特异性生物标志物。人体研究主要集中在靶向程序性死亡配体1、PD-L1 (淋巴细胞衰竭)、CD8 (细胞毒性淋巴细胞)或淋巴细胞活化的放射性示踪剂上,这些示踪剂可以在体内评估全身受体和配体密度。有研究表明,使用抗体、糖尿病和小分子的免疫pet可能比来自单个活检样本的离体免疫组织化学数据提供更全面的信息[44]。PD-1及其配体PD-L1是免疫治疗的主要靶点。PD-L1成像正在被研究作为一种预后、预测和治疗工具来指导全身和局部免疫治疗方法[45] [54]。CD8是t细胞受体的辅助受体,肿瘤对识别CD8的放射性标记PET试剂的摄取与免疫治疗反应相关[55] [56]。巨噬细胞是癌症治疗中越来越重要的靶点,靶向特异性肿瘤相关巨噬细胞的成像生物标志物可以指导精确的治疗方法。在小鼠模型中,针对白细胞介素2、干扰素-γ和颗粒酶B的放射性示踪剂都显示出预测免疫检查点调节剂功效的有希望的结果[44]。PET放射性示踪剂表征炎症过程的特定成分,如环氧合酶或基质金属蛋白酶,也可以破译免疫背景并识别假进展。一种候选药物是氢溴酸槟榔碱(18F-arabinofuranosylguanine) [57],这是一种针对活化T细胞的PET显像剂,其对免疫治疗反应的评估一直是正在进行的临床试验的主题。

4. 结论

综上所述,免疫检查点调节剂已经彻底改变了癌症治疗,同时挑战了癌症成像的概念,并且正在开发的新的免疫疗法可能会扩展这一过程。区分真性进展和假性进展已经激发了许多更新现有反应评估标准的建议,但有必要进行更深层次的探究,将进展视为一个包括超进展的频谱。irAEs可以在各种影像学表现中检测到,需要从进展和不同的临床处理中进行区分。

来自新的成像方式的免疫特异性生物标志物,以及对现有信息的创新利用,为解决免疫治疗中的挑战提供了潜力。影像生物标志物与临床、实验室和组织参数的多层次整合已被证明具有优势,7分预后评分[34]和肺免疫预后指数[36]及其与代谢成像的整合形成免疫–代谢–预后指数评分。鉴于图像分析技术的历史局限性,依赖单一的易于测量的成像生物标志物是必要的。时代的进步给了我们免疫治疗的复杂模式和训练人工智能(AI)发现成像特征的复杂关系的能力。在免疫治疗时代,成像的未来很可能涉及人工智能发现的现有预后评分的组合[34]-[36]。免疫pet和其他先进的成像技术,整合到临床决策支持算法中,可以改善临床指导并提供治疗机会。

基金信息

国家自然科学基金(英文:National Natural Science Foundation of China) [82360345, 82001986];

云南省应用基础研究杰出青年培育项目(the Outstanding Youth Science Foundation of Yunnan Basic Research Project) [202401AY070001-316]。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33.
https://doi.org/10.3322/caac.21654
[2] Lu, L., Mullins, C.S., Schafmayer, C., Zeißig, S. and Linnebacher, M. (2021) A Global Assessment of Recent Trends in Gastrointestinal Cancer and Lifestyle-Associated Risk Factors. Cancer Communications, 41, 1137-1151.
https://doi.org/10.1002/cac2.12220
[3] Guan, W., He, Y. and Xu, R. (2023) Gastric Cancer Treatment: Recent Progress and Future Perspectives. Journal of Hematology & Oncology, 16, Article No. 57.
https://doi.org/10.1186/s13045-023-01451-3
[4] Li, K., Zhang, A., Li, X., Zhang, H. and Zhao, L. (2021) Advances in Clinical Immunotherapy for Gastric Cancer. Biochimica et Biophysica ActaReviews on Cancer, 1876, Article 188615.
https://doi.org/10.1016/j.bbcan.2021.188615
[5] Pennathur, A., Gibson, M.K., Jobe, B.A. and Luketich, J.D. (2013) Oesophageal Carcinoma. The Lancet, 381, 400-412.
https://doi.org/10.1016/s0140-6736(12)60643-6
[6] Qiu, H., Cao, S. and Xu, R. (2021) Cancer Incidence, Mortality, and Burden in China: A Time-Trend Analysis and Comparison with the United States and United Kingdom Based on the Global Epidemiological Data Released in 2020. Cancer Communications, 41, 1037-1048.
https://doi.org/10.1002/cac2.12197
[7] Wagner, A.D., Syn, N.L., Moehler, M., Grothe, W., Yong, W.P., Tai, B., et al. (2017) Chemotherapy for Advanced Gastric Cancer. Cochrane Database of Systematic Reviews, 2017, CD004064.
https://doi.org/10.1002/14651858.cd004064.pub4
[8] Dercle, L., Sun, S., Seban, R., Mekki, A., Sun, R., Tselikas, L., et al. (2023) Emerging and Evolving Concepts in Cancer Immunotherapy Imaging. Radiology, 306, 32-46.
https://doi.org/10.1148/radiol.210518
[9] Bai, Y., Xie, T., Wang, Z., Tong, S., Zhao, X., Zhao, F., et al. (2022) Efficacy and Predictive Biomarkers of Immunotherapy in Epstein-Barr Virus-Associated Gastric Cancer. Journal for ImmunoTherapy of Cancer, 10, e004080.
https://doi.org/10.1136/jitc-2021-004080
[10] Song, J., Wei, R., Huo, S., Gao, J. and Liu, X. (2022) Metastasis Related Epithelial-Mesenchymal Transition Signature Predicts Prognosis and Response to Immunotherapy in Gastric Cancer. Frontiers in Immunology, 13, Article 920512.
https://doi.org/10.3389/fimmu.2022.920512
[11] Li, Q., Zhou, Z., Lu, J., Luo, H., Wang, S., Peng, Y., et al. (2022) PD-L1P146R Is Prognostic and a Negative Predictor of Response to Immunotherapy in Gastric Cancer. Molecular Therapy, 30, 621-631.
https://doi.org/10.1016/j.ymthe.2021.09.013
[12] Mellman, I., Coukos, G. and Dranoff, G. (2011) Cancer Immunotherapy Comes of Age. Nature, 480, 480-489.
https://doi.org/10.1038/nature10673
[13] Kono, K. (2018) Advances in Cancer Immunotherapy for Gastroenterological Malignancy. Annals of Gastroenterological Surgery, 2, 244-245.
https://doi.org/10.1002/ags3.12184
[14] Robert, C., Thomas, L., Bondarenko, I., O'Day, S., Weber, J., Garbe, C., et al. (2011) Ipilimumab Plus Dacarbazine for Previously Untreated Metastatic Melanoma. New England Journal of Medicine, 364, 2517-2526.
https://doi.org/10.1056/nejmoa1104621
[15] Bagchi, S., Yuan, R. and Engleman, E.G. (2021) Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual Review of Pathology: Mechanisms of Disease, 16, 223-249.
https://doi.org/10.1146/annurev-pathol-042020-042741
[16] Ahmed, H., Mahmud, A.R., Shahriar, A., Biswas, P., Shimul, M.E.K., et al. (2023) Role of T Cells in Cancer Immunotherapy: Opportunities and Challenges. Cancer Pathogenesis and Therapy, 1, 116-126.
https://doi.org/10.1016/j.cpt.2022.12.002
[17] Muro, K., Chung, H.C., Shankaran, V., Geva, R., Catenacci, D., Gupta, S., et al. (2016) Pembrolizumab for Patients with Pd-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. The Lancet Oncology, 17, 717-726.
https://doi.org/10.1016/s1470-2045(16)00175-3
[18] Shitara, K., Özgüroğlu, M., Bang, Y., Di Bartolomeo, M., Mandalà, M., Ryu, M., et al. (2018) Pembrolizumab versus Paclitaxel for Previously Treated, Advanced Gastric or Gastro-Oesophageal Junction Cancer (KEYNOTE-061): A Randomized, Open-Label, Controlled, Phase 3 Trial. The Lancet, 392, 123-133.
https://doi.org/10.1016/s0140-6736(18)31257-1
[19] Boku, N., Satoh, T., Ryu, M., Chao, Y., Kato, K., Chung, H.C., et al. (2021) Nivolumab in Previously Treated Advanced Gastric Cancer (ATTRACTION-2): 3-Year Update and Outcome of Treatment Beyond Progression with Nivolumab. Gastric Cancer, 24, 946-958.
https://doi.org/10.1007/s10120-021-01173-w
[20] Moehler, M., Dvorkin, M., Boku, N., Özgüroğlu, M., Ryu, M., Muntean, A.S., et al. (2021) Phase III Trial of Avelumab Maintenance after First-Line Induction Chemotherapy versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results from JAVELIN Gastric 100. Journal of Clinical Oncology, 39, 966-977.
https://doi.org/10.1200/jco.20.00892
[21] Sznol, M. and Melero, I. (2021) Revisiting Anti-Ctla-4 Antibodies in Combination with PD-1 Blockade for Cancer Immunotherapy. Annals of Oncology, 32, 295-297.
https://doi.org/10.1016/j.annonc.2020.11.018
[22] Janjigian, Y.Y., Bendell, J.C., Calvo, E., Kim, J.W., Ascierto, P.A., Sharma, P., et al. (2016) Checkmate-032: Phase I/II, Open-Label Study of Safety and Activity of Nivolumab (nivo) Alone or with Ipilimumab (ipi) in Advanced and Metastatic (A/M) Gastric Cancer (GC). Journal of Clinical Oncology, 34, 4010-4010.
https://doi.org/10.1200/jco.2016.34.15_suppl.4010
[23] Moehler, M.H., Cho, J.Y., Kim, Y.H., Kim, J.W., Di Bartolomeo, M., Ajani, J.A., et al. (2016) A Randomized, Open-Label, Two-Arm Phase II Trial Comparing the Efficacy of Sequential Ipilimumab (ipi) versus Best Supportive Care (BSC) Following First-Line (1L) Chemotherapy in Patients with Unresectable, Locally Advanced/metastatic (A/M) Gastric or Gastro-Esophageal Junction (G/GEJ) Cancer. Journal of Clinical Oncology, 34, 4011-4011.
https://doi.org/10.1200/jco.2016.34.15_suppl.4011
[24] Kelly, R.J., Lee, J., Bang, Y., Almhanna, K., Blum-Murphy, M., Catenacci, D.V.T., et al. (2020) Safety and Efficacy of Durvalumab and Tremelimumab Alone or in Combination in Patients with Advanced Gastric and Gastroesophageal Junction Adenocarcinoma. Clinical Cancer Research, 26, 846-854.
https://doi.org/10.1158/1078-0432.ccr-19-2443
[25] Homann, N., Lorenzen, S., Schenk, M., Thuss-Patience, P.C., Goekkurt, E., Hofheinz, R.D., et al. (2020) Interim Safety Analysis of the DANTE Trial: Perioperative Atezolizumab in Combination with FLOT versus FLOT Alone in Patients with Resectable Esophagogastric Adenocarcinoma—A Randomized, Open-Label Phase II Trial of the German Gastric Group at the AIO and Sakk. Journal of Clinical Oncology, 38, 4549-4549.
https://doi.org/10.1200/jco.2020.38.15_suppl.4549
[26] Bang, Y., Muro, K., Fuchs, C.S., Golan, T., Geva, R., Hara, H., et al. (2017) KEYNOTE-059 Cohort 2: Safety and Efficacy of Pembrolizumab (pembro) Plus 5-Fluorouracil (5-FU) and Cisplatin for First-Line (1L) Treatment of Advanced Gastric Cancer. Journal of Clinical Oncology, 35, 4012-4012.
https://doi.org/10.1200/jco.2017.35.15_suppl.4012
[27] Shitara, K., Van Cutsem, E., Bang, Y., Fuchs, C., Wyrwicz, L., Lee, K., et al. (2020) Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients with First-Line, Advanced Gastric Cancer. JAMA Oncology, 6, 1571-1580.
https://doi.org/10.1001/jamaoncol.2020.3370
[28] Janjigian, Y.Y., Shitara, K., Moehler, M., Garrido, M., Salman, P., Shen, L., et al. (2021) First-line Nivolumab Plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (Checkmate 649): A Randomized, Open-Label, Phase 3 Trial. The Lancet, 398, 27-40.
https://doi.org/10.1016/s0140-6736(21)00797-2
[29] Wang, F., Wei, X.L., Wang, F.H., Xu, N., Shen, L., Dai, G.H., et al. (2019) Safety, Efficacy and Tumor Mutational Burden as a Biomarker of Overall Survival Benefit in Chemo-Refractory Gastric Cancer Treated with Toripalimab, a PD-1 Antibody in Phase Ib/II Clinical Trial Nct02915432. Annals of Oncology, 30, 1479-1486.
https://doi.org/10.1093/annonc/mdz197
[30] Xu, J., Bai, Y., Xu, N., Li, E., Wang, B., Wang, J., et al. (2020) Tislelizumab Plus Chemotherapy as First-Line Treatment for Advanced Esophageal Squamous Cell Carcinoma and Gastric/Gastroesophageal Junction Adenocarcinoma. Clinical Cancer Research, 26, 4542-4550.
https://doi.org/10.1158/1078-0432.ccr-19-3561
[31] Biagioni, A., Skalamera, I., Peri, S., Schiavone, N., Cianchi, F., Giommoni, E., et al. (2019) Update on Gastric Cancer Treatments and Gene Therapies. Cancer and Metastasis Reviews, 38, 537-548.
https://doi.org/10.1007/s10555-019-09803-7
[32] Wang, R., Dang, M., Harada, K., Han, G., Wang, F., Pool Pizzi, M., et al. (2021) Single-Cell Dissection of Intratumoral Heterogeneity and Lineage Diversity in Metastatic Gastric Adenocarcinoma. Nature Medicine, 27, 141-151.
https://doi.org/10.1038/s41591-020-1125-8
[33] Noh, S.H., Park, S.R., Yang, H., Chung, H.C., Chung, I., Kim, S., et al. (2014) Adjuvant Capecitabine Plus Oxaliplatin for Gastric Cancer after D2 Gastrectomy (CLASSIC): 5-Year Follow-Up of an Open-Label, Randomized Phase 3 Trial. The Lancet Oncology, 15, 1389-1396.
https://doi.org/10.1016/s1470-2045(14)70473-5
[34] Dercle, L., Ammari, S., Champiat, S., Massard, C., Ferté, C., Taihi, L., et al. (2016) Rapid and Objective CT Scan Prognostic Scoring Identifies Metastatic Patients with Long-Term Clinical Benefit on Anti-Pd-1/-L1 Therapy. European Journal of Cancer, 65, 33-42.
https://doi.org/10.1016/j.ejca.2016.05.031
[35] Mezquita, L., Auclin, E., Ferrara, R., Charrier, M., Remon, J., Planchard, D., et al. (2018) Association of the Lung Immune Prognostic Index with Immune Checkpoint Inhibitor Outcomes in Patients with Advanced Non-Small Cell Lung Cancer. JAMA Oncology, 4, 351-357.
https://doi.org/10.1001/jamaoncol.2017.4771
[36] Castello, A., Toschi, L., Rossi, S., Mazziotti, E. and Lopci, E. (2020) The Immune-Metabolic-Prognostic Index and Clinical Outcomes in Patients with Non-Small Cell Lung Carcinoma under Checkpoint Inhibitors. Journal of Cancer Research and Clinical Oncology, 146, 1235-1243.
https://doi.org/10.1007/s00432-020-03150-9
[37] Dercle, L., McGale, J., Sun, S., Marabelle, A., Yeh, R., Deutsch, E., et al. (2022) Artificial Intelligence and Radiomics: Fundamentals, Applications, and Challenges in Immunotherapy. Journal for ImmunoTherapy of Cancer, 10, e005292.
https://doi.org/10.1136/jitc-2022-005292
[38] Dercle, L., Fronheiser, M., Lu, L., Du, S., Hayes, W., Leung, D.K., et al. (2020) Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clinical Cancer Research, 26, 2151-2162.
https://doi.org/10.1158/1078-0432.ccr-19-2942
[39] He, B., Dong, D., She, Y., Zhou, C., Fang, M., Zhu, Y., et al. (2020) Predicting Response to Immunotherapy in Advanced Non-Small-Cell Lung Cancer Using Tumor Mutational Burden Radiomic Biomarker. Journal for ImmunoTherapy of Cancer, 8, e000550.
https://doi.org/10.1136/jitc-2020-000550
[40] Sun, R., Limkin, E.J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S.R., et al. (2018) A Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response to Anti-Pd-1 or Anti-Pd-L1 Immunotherapy: An Imaging Biomarker, Retrospective Multicohort Study. The Lancet Oncology, 19, 1180-1191.
https://doi.org/10.1016/s1470-2045(18)30413-3
[41] Sun, R., Sundahl, N., Hecht, M., Putz, F., Lancia, A., Rouyar, A., et al. (2020) Radiomics to Predict Outcomes and Abscopal Response of Patients with Cancer Treated with Immunotherapy Combined with Radiotherapy Using a Validated Signature of CD8 Cells. Journal for ImmunoTherapy of Cancer, 8, e001429.
https://doi.org/10.1136/jitc-2020-001429
[42] Mekki, A., Dercle, L., Lichtenstein, P., Nasser, G., Marabelle, A., Champiat, S., et al. (2019) Machine Learning Defined Diagnostic Criteria for Differentiating Pituitary Metastasis from Autoimmune Hypophysitis in Patients Undergoing Immune Checkpoint Blockade Therapy. European Journal of Cancer, 119, 44-56.
https://doi.org/10.1016/j.ejca.2019.06.020
[43] Eche, T., Schwartz, L.H., Mokrane, F. and Dercle, L. (2021) Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification. Radiology: Artificial Intelligence, 3, e210097.
https://doi.org/10.1148/ryai.2021210097
[44] Petrova, M.P., Donev, I.S., Radanova, M.A., Eneva, M.I., Dimitrova, E.G., Valchev, G.N., et al. (2020) Sarcopenia and High NLR Are Associated with the Development of Hyperprogressive Disease after Second-Line Pembrolizumab in Patients with Non-Small-Cell Lung Cancer. Clinical and Experimental Immunology, 202, 353-362.
https://doi.org/10.1111/cei.13505
[45] Sinigaglia, M., Assi, T., Besson, F.L., Ammari, S., Edjlali, M., Feltus, W., et al. (2019) Imaging-Guided Precision Medicine in Glioblastoma Patients Treated with Immune Checkpoint Modulators: Research Trend and Future Directions in the Field of Imaging Biomarkers and Artificial Intelligence. EJNMMI Research, 9, Article No. 78.
https://doi.org/10.1186/s13550-019-0542-5
[46] Chen, A., Mokrane, F., Schwartz, L.H., Morschhauser, F., Stamatoullas, A., Schiano de Colella, J., et al. (2019) Early 18f-FDG PET/CT Response Predicts Survival in Relapsed or Refractory Hodgkin Lymphoma Treated with Nivolumab. Journal of Nuclear Medicine, 61, 649-654.
https://doi.org/10.2967/jnumed.119.232827
[47] Mokrane, F., Chen, A., Schwartz, L.H., Morschhauser, F., Stamatoullas, A., Schiano de Colella, J., et al. (2020) Performance of CT Compared with 18F-FDG PET in Predicting the Efficacy of Nivolumab in Relapsed or Refractory Hodgkin Lymphoma. Radiology, 295, 651-661.
https://doi.org/10.1148/radiol.2020192056
[48] Lopci, E., Hicks, R.J., Dimitrakopoulou-Strauss, A., Dercle, L., Iravani, A., Seban, R.D., et al. (2022) Joint EANM/SNMMI/ANZSNM Practice Guidelines/Procedure Standards on Recommended Use of [18F]FDG PET/CT Imaging during Immunomodulatory Treatments in Patients with Solid Tumors Version 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 49, 2323-2341.
https://doi.org/10.1007/s00259-022-05780-2
[49] Wachsmann, J.W., Ganti, R. and Peng, F. (2017) Immune-Mediated Disease in Ipilimumab Immunotherapy of Melanoma with FDG PET-CT. Academic Radiology, 24, 111-115.
https://doi.org/10.1016/j.acra.2016.08.005
[50] Karantanis, D., Bogsrud, T.V., Wiseman, G.A., Mullan, B.P., Subramaniam, R.M., Nathan, M.A., et al. (2007) Clinical Significance of Diffusely Increased 18F-FDG Uptake in the Thyroid Gland. Journal of Nuclear Medicine, 48, 896-901.
https://doi.org/10.2967/jnumed.106.039024
[51] Costa, L.B., Queiroz, M.A., Barbosa, F.G., Nunes, R.F., Zaniboni, E.C., Ruiz, M.M., et al. (2021) Reassessing Patterns of Response to Immunotherapy with PET: From Morphology to Metabolism. RadioGraphics, 41, 120-143.
https://doi.org/10.1148/rg.2021200093
[52] Eshghi, N., Garland, L.L., Nia, E., Betancourt, R., Krupinski, E. and Kuo, P.H. (2018) 18F-FDG PET/CT Can Predict Development of Thyroiditis Due to Immunotherapy for Lung Cancer. Journal of Nuclear Medicine Technology, 46, 260-264.
https://doi.org/10.2967/jnmt.117.204933
[53] Iravani, A., Osman, M.M., Weppler, A.M., Wallace, R., Galligan, A., Lasocki, A., et al. (2020) FDG PET/CT for Tumoral and Systemic Immune Response Monitoring of Advanced Melanoma during First-Line Combination Ipilimumab and Nivolumab Treatment. European Journal of Nuclear Medicine and Molecular Imaging, 47, 2776-2786.
https://doi.org/10.1007/s00259-020-04815-w
[54] Bensch, F., van der Veen, E.L., Lub-de Hooge, M.N., Jorritsma-Smit, A., Boellaard, R., Kok, I.C., et al. (2018) 89Zr-atezolizumab Imaging as a Non-Invasive Approach to Assess Clinical Response to PD-L1 Blockade in Cancer. Nature Medicine, 24, 1852-1858.
https://doi.org/10.1038/s41591-018-0255-8
[55] Farwell, M.D., Gamache, R.F., Babazada, H., Hellmann, M.D., Harding, J.J., Korn, R., et al. (2021) Cd8-Targeted PET Imaging of Tumor Infiltrating T Cells in Patients with Cancer: A Phase I First-in-Human Study of 89zr-Df-IAB22M2C, a Radiolabeled Anti-CD8 Minibody. Journal of Nuclear Medicine, 63, 720-726.
https://doi.org/10.2967/jnumed.121.262485
[56] Pandit-Taskar, N., Postow, M.A., Hellmann, M.D., Harding, J.J., Barker, C.A., O’Donoghue, J.A., et al. (2019) First-In-humans Imaging with 89Zr-Df-IAB22M2C Anti-CD8 Mini-Body in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting. Journal of Nuclear Medicine, 61, 512-519.
https://doi.org/10.2967/jnumed.119.229781
[57] Namavari, M., Chang, Y., Kusler, B., Yaghoubi, S., Mitchell, B.S. and Gambhir, S.S. (2010) Synthesis of 2’-Deoxy-2’-[18F]Fluoro-9-Β-D-Arabinofuranosylguanine: A Novel Agent for Imaging T-Cell Activation with Pet. Molecular Imaging and Biology, 13, 812-818.
https://doi.org/10.1007/s11307-010-0414-x