[1]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33. https://doi.org/10.3322/caac.21654
|
[2]
|
Lu, L., Mullins, C.S., Schafmayer, C., Zeißig, S. and Linnebacher, M. (2021) A Global Assessment of Recent Trends in Gastrointestinal Cancer and Lifestyle-Associated Risk Factors. Cancer Communications, 41, 1137-1151. https://doi.org/10.1002/cac2.12220
|
[3]
|
Guan, W., He, Y. and Xu, R. (2023) Gastric Cancer Treatment: Recent Progress and Future Perspectives. Journal of Hematology & Oncology, 16, Article No. 57. https://doi.org/10.1186/s13045-023-01451-3
|
[4]
|
Li, K., Zhang, A., Li, X., Zhang, H. and Zhao, L. (2021) Advances in Clinical Immunotherapy for Gastric Cancer. Biochimica et Biophysica Acta—Reviews on Cancer, 1876, Article 188615. https://doi.org/10.1016/j.bbcan.2021.188615
|
[5]
|
Pennathur, A., Gibson, M.K., Jobe, B.A. and Luketich, J.D. (2013) Oesophageal Carcinoma. The Lancet, 381, 400-412. https://doi.org/10.1016/s0140-6736(12)60643-6
|
[6]
|
Qiu, H., Cao, S. and Xu, R. (2021) Cancer Incidence, Mortality, and Burden in China: A Time-Trend Analysis and Comparison with the United States and United Kingdom Based on the Global Epidemiological Data Released in 2020. Cancer Communications, 41, 1037-1048. https://doi.org/10.1002/cac2.12197
|
[7]
|
Wagner, A.D., Syn, N.L., Moehler, M., Grothe, W., Yong, W.P., Tai, B., et al. (2017) Chemotherapy for Advanced Gastric Cancer. Cochrane Database of Systematic Reviews, 2017, CD004064. https://doi.org/10.1002/14651858.cd004064.pub4
|
[8]
|
Dercle, L., Sun, S., Seban, R., Mekki, A., Sun, R., Tselikas, L., et al. (2023) Emerging and Evolving Concepts in Cancer Immunotherapy Imaging. Radiology, 306, 32-46. https://doi.org/10.1148/radiol.210518
|
[9]
|
Bai, Y., Xie, T., Wang, Z., Tong, S., Zhao, X., Zhao, F., et al. (2022) Efficacy and Predictive Biomarkers of Immunotherapy in Epstein-Barr Virus-Associated Gastric Cancer. Journal for ImmunoTherapy of Cancer, 10, e004080. https://doi.org/10.1136/jitc-2021-004080
|
[10]
|
Song, J., Wei, R., Huo, S., Gao, J. and Liu, X. (2022) Metastasis Related Epithelial-Mesenchymal Transition Signature Predicts Prognosis and Response to Immunotherapy in Gastric Cancer. Frontiers in Immunology, 13, Article 920512. https://doi.org/10.3389/fimmu.2022.920512
|
[11]
|
Li, Q., Zhou, Z., Lu, J., Luo, H., Wang, S., Peng, Y., et al. (2022) PD-L1P146R Is Prognostic and a Negative Predictor of Response to Immunotherapy in Gastric Cancer. Molecular Therapy, 30, 621-631. https://doi.org/10.1016/j.ymthe.2021.09.013
|
[12]
|
Mellman, I., Coukos, G. and Dranoff, G. (2011) Cancer Immunotherapy Comes of Age. Nature, 480, 480-489. https://doi.org/10.1038/nature10673
|
[13]
|
Kono, K. (2018) Advances in Cancer Immunotherapy for Gastroenterological Malignancy. Annals of Gastroenterological Surgery, 2, 244-245. https://doi.org/10.1002/ags3.12184
|
[14]
|
Robert, C., Thomas, L., Bondarenko, I., O'Day, S., Weber, J., Garbe, C., et al. (2011) Ipilimumab Plus Dacarbazine for Previously Untreated Metastatic Melanoma. New England Journal of Medicine, 364, 2517-2526. https://doi.org/10.1056/nejmoa1104621
|
[15]
|
Bagchi, S., Yuan, R. and Engleman, E.G. (2021) Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual Review of Pathology: Mechanisms of Disease, 16, 223-249. https://doi.org/10.1146/annurev-pathol-042020-042741
|
[16]
|
Ahmed, H., Mahmud, A.R., Shahriar, A., Biswas, P., Shimul, M.E.K., et al. (2023) Role of T Cells in Cancer Immunotherapy: Opportunities and Challenges. Cancer Pathogenesis and Therapy, 1, 116-126. https://doi.org/10.1016/j.cpt.2022.12.002
|
[17]
|
Muro, K., Chung, H.C., Shankaran, V., Geva, R., Catenacci, D., Gupta, S., et al. (2016) Pembrolizumab for Patients with Pd-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. The Lancet Oncology, 17, 717-726. https://doi.org/10.1016/s1470-2045(16)00175-3
|
[18]
|
Shitara, K., Özgüroğlu, M., Bang, Y., Di Bartolomeo, M., Mandalà, M., Ryu, M., et al. (2018) Pembrolizumab versus Paclitaxel for Previously Treated, Advanced Gastric or Gastro-Oesophageal Junction Cancer (KEYNOTE-061): A Randomized, Open-Label, Controlled, Phase 3 Trial. The Lancet, 392, 123-133. https://doi.org/10.1016/s0140-6736(18)31257-1
|
[19]
|
Boku, N., Satoh, T., Ryu, M., Chao, Y., Kato, K., Chung, H.C., et al. (2021) Nivolumab in Previously Treated Advanced Gastric Cancer (ATTRACTION-2): 3-Year Update and Outcome of Treatment Beyond Progression with Nivolumab. Gastric Cancer, 24, 946-958. https://doi.org/10.1007/s10120-021-01173-w
|
[20]
|
Moehler, M., Dvorkin, M., Boku, N., Özgüroğlu, M., Ryu, M., Muntean, A.S., et al. (2021) Phase III Trial of Avelumab Maintenance after First-Line Induction Chemotherapy versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results from JAVELIN Gastric 100. Journal of Clinical Oncology, 39, 966-977. https://doi.org/10.1200/jco.20.00892
|
[21]
|
Sznol, M. and Melero, I. (2021) Revisiting Anti-Ctla-4 Antibodies in Combination with PD-1 Blockade for Cancer Immunotherapy. Annals of Oncology, 32, 295-297. https://doi.org/10.1016/j.annonc.2020.11.018
|
[22]
|
Janjigian, Y.Y., Bendell, J.C., Calvo, E., Kim, J.W., Ascierto, P.A., Sharma, P., et al. (2016) Checkmate-032: Phase I/II, Open-Label Study of Safety and Activity of Nivolumab (nivo) Alone or with Ipilimumab (ipi) in Advanced and Metastatic (A/M) Gastric Cancer (GC). Journal of Clinical Oncology, 34, 4010-4010. https://doi.org/10.1200/jco.2016.34.15_suppl.4010
|
[23]
|
Moehler, M.H., Cho, J.Y., Kim, Y.H., Kim, J.W., Di Bartolomeo, M., Ajani, J.A., et al. (2016) A Randomized, Open-Label, Two-Arm Phase II Trial Comparing the Efficacy of Sequential Ipilimumab (ipi) versus Best Supportive Care (BSC) Following First-Line (1L) Chemotherapy in Patients with Unresectable, Locally Advanced/metastatic (A/M) Gastric or Gastro-Esophageal Junction (G/GEJ) Cancer. Journal of Clinical Oncology, 34, 4011-4011. https://doi.org/10.1200/jco.2016.34.15_suppl.4011
|
[24]
|
Kelly, R.J., Lee, J., Bang, Y., Almhanna, K., Blum-Murphy, M., Catenacci, D.V.T., et al. (2020) Safety and Efficacy of Durvalumab and Tremelimumab Alone or in Combination in Patients with Advanced Gastric and Gastroesophageal Junction Adenocarcinoma. Clinical Cancer Research, 26, 846-854. https://doi.org/10.1158/1078-0432.ccr-19-2443
|
[25]
|
Homann, N., Lorenzen, S., Schenk, M., Thuss-Patience, P.C., Goekkurt, E., Hofheinz, R.D., et al. (2020) Interim Safety Analysis of the DANTE Trial: Perioperative Atezolizumab in Combination with FLOT versus FLOT Alone in Patients with Resectable Esophagogastric Adenocarcinoma—A Randomized, Open-Label Phase II Trial of the German Gastric Group at the AIO and Sakk. Journal of Clinical Oncology, 38, 4549-4549. https://doi.org/10.1200/jco.2020.38.15_suppl.4549
|
[26]
|
Bang, Y., Muro, K., Fuchs, C.S., Golan, T., Geva, R., Hara, H., et al. (2017) KEYNOTE-059 Cohort 2: Safety and Efficacy of Pembrolizumab (pembro) Plus 5-Fluorouracil (5-FU) and Cisplatin for First-Line (1L) Treatment of Advanced Gastric Cancer. Journal of Clinical Oncology, 35, 4012-4012. https://doi.org/10.1200/jco.2017.35.15_suppl.4012
|
[27]
|
Shitara, K., Van Cutsem, E., Bang, Y., Fuchs, C., Wyrwicz, L., Lee, K., et al. (2020) Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients with First-Line, Advanced Gastric Cancer. JAMA Oncology, 6, 1571-1580. https://doi.org/10.1001/jamaoncol.2020.3370
|
[28]
|
Janjigian, Y.Y., Shitara, K., Moehler, M., Garrido, M., Salman, P., Shen, L., et al. (2021) First-line Nivolumab Plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (Checkmate 649): A Randomized, Open-Label, Phase 3 Trial. The Lancet, 398, 27-40. https://doi.org/10.1016/s0140-6736(21)00797-2
|
[29]
|
Wang, F., Wei, X.L., Wang, F.H., Xu, N., Shen, L., Dai, G.H., et al. (2019) Safety, Efficacy and Tumor Mutational Burden as a Biomarker of Overall Survival Benefit in Chemo-Refractory Gastric Cancer Treated with Toripalimab, a PD-1 Antibody in Phase Ib/II Clinical Trial Nct02915432. Annals of Oncology, 30, 1479-1486. https://doi.org/10.1093/annonc/mdz197
|
[30]
|
Xu, J., Bai, Y., Xu, N., Li, E., Wang, B., Wang, J., et al. (2020) Tislelizumab Plus Chemotherapy as First-Line Treatment for Advanced Esophageal Squamous Cell Carcinoma and Gastric/Gastroesophageal Junction Adenocarcinoma. Clinical Cancer Research, 26, 4542-4550. https://doi.org/10.1158/1078-0432.ccr-19-3561
|
[31]
|
Biagioni, A., Skalamera, I., Peri, S., Schiavone, N., Cianchi, F., Giommoni, E., et al. (2019) Update on Gastric Cancer Treatments and Gene Therapies. Cancer and Metastasis Reviews, 38, 537-548. https://doi.org/10.1007/s10555-019-09803-7
|
[32]
|
Wang, R., Dang, M., Harada, K., Han, G., Wang, F., Pool Pizzi, M., et al. (2021) Single-Cell Dissection of Intratumoral Heterogeneity and Lineage Diversity in Metastatic Gastric Adenocarcinoma. Nature Medicine, 27, 141-151. https://doi.org/10.1038/s41591-020-1125-8
|
[33]
|
Noh, S.H., Park, S.R., Yang, H., Chung, H.C., Chung, I., Kim, S., et al. (2014) Adjuvant Capecitabine Plus Oxaliplatin for Gastric Cancer after D2 Gastrectomy (CLASSIC): 5-Year Follow-Up of an Open-Label, Randomized Phase 3 Trial. The Lancet Oncology, 15, 1389-1396. https://doi.org/10.1016/s1470-2045(14)70473-5
|
[34]
|
Dercle, L., Ammari, S., Champiat, S., Massard, C., Ferté, C., Taihi, L., et al. (2016) Rapid and Objective CT Scan Prognostic Scoring Identifies Metastatic Patients with Long-Term Clinical Benefit on Anti-Pd-1/-L1 Therapy. European Journal of Cancer, 65, 33-42. https://doi.org/10.1016/j.ejca.2016.05.031
|
[35]
|
Mezquita, L., Auclin, E., Ferrara, R., Charrier, M., Remon, J., Planchard, D., et al. (2018) Association of the Lung Immune Prognostic Index with Immune Checkpoint Inhibitor Outcomes in Patients with Advanced Non-Small Cell Lung Cancer. JAMA Oncology, 4, 351-357. https://doi.org/10.1001/jamaoncol.2017.4771
|
[36]
|
Castello, A., Toschi, L., Rossi, S., Mazziotti, E. and Lopci, E. (2020) The Immune-Metabolic-Prognostic Index and Clinical Outcomes in Patients with Non-Small Cell Lung Carcinoma under Checkpoint Inhibitors. Journal of Cancer Research and Clinical Oncology, 146, 1235-1243. https://doi.org/10.1007/s00432-020-03150-9
|
[37]
|
Dercle, L., McGale, J., Sun, S., Marabelle, A., Yeh, R., Deutsch, E., et al. (2022) Artificial Intelligence and Radiomics: Fundamentals, Applications, and Challenges in Immunotherapy. Journal for ImmunoTherapy of Cancer, 10, e005292. https://doi.org/10.1136/jitc-2022-005292
|
[38]
|
Dercle, L., Fronheiser, M., Lu, L., Du, S., Hayes, W., Leung, D.K., et al. (2020) Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clinical Cancer Research, 26, 2151-2162. https://doi.org/10.1158/1078-0432.ccr-19-2942
|
[39]
|
He, B., Dong, D., She, Y., Zhou, C., Fang, M., Zhu, Y., et al. (2020) Predicting Response to Immunotherapy in Advanced Non-Small-Cell Lung Cancer Using Tumor Mutational Burden Radiomic Biomarker. Journal for ImmunoTherapy of Cancer, 8, e000550. https://doi.org/10.1136/jitc-2020-000550
|
[40]
|
Sun, R., Limkin, E.J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S.R., et al. (2018) A Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response to Anti-Pd-1 or Anti-Pd-L1 Immunotherapy: An Imaging Biomarker, Retrospective Multicohort Study. The Lancet Oncology, 19, 1180-1191. https://doi.org/10.1016/s1470-2045(18)30413-3
|
[41]
|
Sun, R., Sundahl, N., Hecht, M., Putz, F., Lancia, A., Rouyar, A., et al. (2020) Radiomics to Predict Outcomes and Abscopal Response of Patients with Cancer Treated with Immunotherapy Combined with Radiotherapy Using a Validated Signature of CD8 Cells. Journal for ImmunoTherapy of Cancer, 8, e001429. https://doi.org/10.1136/jitc-2020-001429
|
[42]
|
Mekki, A., Dercle, L., Lichtenstein, P., Nasser, G., Marabelle, A., Champiat, S., et al. (2019) Machine Learning Defined Diagnostic Criteria for Differentiating Pituitary Metastasis from Autoimmune Hypophysitis in Patients Undergoing Immune Checkpoint Blockade Therapy. European Journal of Cancer, 119, 44-56. https://doi.org/10.1016/j.ejca.2019.06.020
|
[43]
|
Eche, T., Schwartz, L.H., Mokrane, F. and Dercle, L. (2021) Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification. Radiology: Artificial Intelligence, 3, e210097. https://doi.org/10.1148/ryai.2021210097
|
[44]
|
Petrova, M.P., Donev, I.S., Radanova, M.A., Eneva, M.I., Dimitrova, E.G., Valchev, G.N., et al. (2020) Sarcopenia and High NLR Are Associated with the Development of Hyperprogressive Disease after Second-Line Pembrolizumab in Patients with Non-Small-Cell Lung Cancer. Clinical and Experimental Immunology, 202, 353-362. https://doi.org/10.1111/cei.13505
|
[45]
|
Sinigaglia, M., Assi, T., Besson, F.L., Ammari, S., Edjlali, M., Feltus, W., et al. (2019) Imaging-Guided Precision Medicine in Glioblastoma Patients Treated with Immune Checkpoint Modulators: Research Trend and Future Directions in the Field of Imaging Biomarkers and Artificial Intelligence. EJNMMI Research, 9, Article No. 78. https://doi.org/10.1186/s13550-019-0542-5
|
[46]
|
Chen, A., Mokrane, F., Schwartz, L.H., Morschhauser, F., Stamatoullas, A., Schiano de Colella, J., et al. (2019) Early 18f-FDG PET/CT Response Predicts Survival in Relapsed or Refractory Hodgkin Lymphoma Treated with Nivolumab. Journal of Nuclear Medicine, 61, 649-654. https://doi.org/10.2967/jnumed.119.232827
|
[47]
|
Mokrane, F., Chen, A., Schwartz, L.H., Morschhauser, F., Stamatoullas, A., Schiano de Colella, J., et al. (2020) Performance of CT Compared with 18F-FDG PET in Predicting the Efficacy of Nivolumab in Relapsed or Refractory Hodgkin Lymphoma. Radiology, 295, 651-661. https://doi.org/10.1148/radiol.2020192056
|
[48]
|
Lopci, E., Hicks, R.J., Dimitrakopoulou-Strauss, A., Dercle, L., Iravani, A., Seban, R.D., et al. (2022) Joint EANM/SNMMI/ANZSNM Practice Guidelines/Procedure Standards on Recommended Use of [18F]FDG PET/CT Imaging during Immunomodulatory Treatments in Patients with Solid Tumors Version 1.0. European Journal of Nuclear Medicine and Molecular Imaging, 49, 2323-2341. https://doi.org/10.1007/s00259-022-05780-2
|
[49]
|
Wachsmann, J.W., Ganti, R. and Peng, F. (2017) Immune-Mediated Disease in Ipilimumab Immunotherapy of Melanoma with FDG PET-CT. Academic Radiology, 24, 111-115. https://doi.org/10.1016/j.acra.2016.08.005
|
[50]
|
Karantanis, D., Bogsrud, T.V., Wiseman, G.A., Mullan, B.P., Subramaniam, R.M., Nathan, M.A., et al. (2007) Clinical Significance of Diffusely Increased 18F-FDG Uptake in the Thyroid Gland. Journal of Nuclear Medicine, 48, 896-901. https://doi.org/10.2967/jnumed.106.039024
|
[51]
|
Costa, L.B., Queiroz, M.A., Barbosa, F.G., Nunes, R.F., Zaniboni, E.C., Ruiz, M.M., et al. (2021) Reassessing Patterns of Response to Immunotherapy with PET: From Morphology to Metabolism. RadioGraphics, 41, 120-143. https://doi.org/10.1148/rg.2021200093
|
[52]
|
Eshghi, N., Garland, L.L., Nia, E., Betancourt, R., Krupinski, E. and Kuo, P.H. (2018) 18F-FDG PET/CT Can Predict Development of Thyroiditis Due to Immunotherapy for Lung Cancer. Journal of Nuclear Medicine Technology, 46, 260-264. https://doi.org/10.2967/jnmt.117.204933
|
[53]
|
Iravani, A., Osman, M.M., Weppler, A.M., Wallace, R., Galligan, A., Lasocki, A., et al. (2020) FDG PET/CT for Tumoral and Systemic Immune Response Monitoring of Advanced Melanoma during First-Line Combination Ipilimumab and Nivolumab Treatment. European Journal of Nuclear Medicine and Molecular Imaging, 47, 2776-2786. https://doi.org/10.1007/s00259-020-04815-w
|
[54]
|
Bensch, F., van der Veen, E.L., Lub-de Hooge, M.N., Jorritsma-Smit, A., Boellaard, R., Kok, I.C., et al. (2018) 89Zr-atezolizumab Imaging as a Non-Invasive Approach to Assess Clinical Response to PD-L1 Blockade in Cancer. Nature Medicine, 24, 1852-1858. https://doi.org/10.1038/s41591-018-0255-8
|
[55]
|
Farwell, M.D., Gamache, R.F., Babazada, H., Hellmann, M.D., Harding, J.J., Korn, R., et al. (2021) Cd8-Targeted PET Imaging of Tumor Infiltrating T Cells in Patients with Cancer: A Phase I First-in-Human Study of 89zr-Df-IAB22M2C, a Radiolabeled Anti-CD8 Minibody. Journal of Nuclear Medicine, 63, 720-726. https://doi.org/10.2967/jnumed.121.262485
|
[56]
|
Pandit-Taskar, N., Postow, M.A., Hellmann, M.D., Harding, J.J., Barker, C.A., O’Donoghue, J.A., et al. (2019) First-In-humans Imaging with 89Zr-Df-IAB22M2C Anti-CD8 Mini-Body in Patients with Solid Malignancies: Preliminary Pharmacokinetics, Biodistribution, and Lesion Targeting. Journal of Nuclear Medicine, 61, 512-519. https://doi.org/10.2967/jnumed.119.229781
|
[57]
|
Namavari, M., Chang, Y., Kusler, B., Yaghoubi, S., Mitchell, B.S. and Gambhir, S.S. (2010) Synthesis of 2’-Deoxy-2’-[18F]Fluoro-9-Β-D-Arabinofuranosylguanine: A Novel Agent for Imaging T-Cell Activation with Pet. Molecular Imaging and Biology, 13, 812-818. https://doi.org/10.1007/s11307-010-0414-x
|