ZSM-5分子筛膜在水处理中的应用研究进展
Research Progress of ZSM-5 Molecular Sieve Membrane in Water Treatment
DOI: 10.12677/ms.2024.149144, PDF, HTML, XML,    科研立项经费支持
作者: 吴 凡, 许 琳, 张 洁, 杨美玲, 易 欢, 熊 伟, 何 柏, 蒋松山*:重庆科技大学化学化工学院,重庆
关键词: ZSM-5分子筛膜材料水处理研究进展ZSM-5 Molecular Sieve Membrane Water Treatment Research Progress
摘要: 新型沸石膜材料在多个领域的新兴应用中表现出高性能。ZSM-5分子筛膜以其独特的微孔结构、可控的硅铝比、高化学稳定性、高渗透性和优异的选择性在水处理中成为研究热点。本文先介绍了各类型ZSM-5分子筛膜材料,然后从水中有机污染物、重金属的去除和有机物分离以及海水淡化除盐等方面综述了ZSM-5分子筛膜的应用。最后,对ZSM-5分子筛膜在水处理应用中存在的不足进行了总结,并对其存在的问题和未来发展进行了分析,以期为ZSM-5分子筛膜在水处理中的应用研究提供参考。
Abstract: The emerging applications of novel zeolite materials demonstrate high performance across multiple fields. ZSM-5 molecular sieve membranes, characterized by their unique microporous structure, controllable Si/Al ratio, high chemical stability, excellent permeability, and superior selectivity, have become a research hotspot in water treatment. This article first introduces various types of ZSM-5 molecular sieve membrane materials. Subsequently, it comprehensively reviews the applications of ZSM-5 molecular sieve membranes in water treatment, including the removal of organic pollutants and heavy metals, separation of organic compounds, and seawater desalination. Finally, the shortcomings of ZSM-5 molecular sieve membranes in water treatment applications are summarized, and an analysis of current issues and future developments is provided, aiming to offer insights for further research on the application of ZSM-5 molecular sieve membranes in water treatment.
文章引用:吴凡, 许琳, 张洁, 杨美玲, 易欢, 熊伟, 何柏, 蒋松山. ZSM-5分子筛膜在水处理中的应用研究进展[J]. 材料科学, 2024, 14(9): 1299-1308. https://doi.org/10.12677/ms.2024.149144

1. 引言

水资源是自然界的生命之源,对所有生物来说都是不可或缺的。然而,由于城市现代化和工业化的发展,产生了大量废水,造成了严重的环境退化和水体污染,并危害人类健康[1]。为降低排入水体中的污染物质,保护水资源环境,建设了一系列污水处理厂。但一些有机物经常规处理后并不能达到排放标准,会对环境造成二次污染[2] [3]。因此,研究者们致力于发展更先进的处理技术以有效去除这些难降解污染物,从而实现人水和谐。

膜技术以其能耗、运行和投资成本低、操作简单、占地面积小、选择性和分离能力强等优点备受学术界和工业界的广泛关注[3] [4]。用于制备膜的材料有很多种,而沸石分子筛膜材料兼具了分子筛和膜的优点,拥有较高的吸附分离性能和机械稳定性,能够实现选择性连续分离液体和气体。通过调整沸石的多孔结构、框架组成和晶体形态,再加上外来活性物质的引入,沸石和沸石基材料在许多挑战性工艺中表现出卓越性能[5] [6]。分子筛膜可控的硅铝比、均一的膜孔径、循环稳定性、耐腐蚀和耐高温高压性能使其成为近几年的研究热点,如应用于催化、吸附、分离和传感器等领域的ZSM-5分子筛膜。

大多数分子筛膜的研究都集中在ZSM-5上。ZSM-5 (MFI框架)分子筛膜是一种耐高温、抗腐蚀且热稳定性好的无机膜,具有可调控的硅铝比和孔径大小,规整的微孔结构和表面电荷效应提高了其在水处理中的分离和渗透性能[7]。ZSM-5分子筛含有可控的硅铝比,具有如图1所示的三维互联通道体系,ZSM-5存在着两种孔道,b轴为近圆形的直线型孔道,以及接近椭圆形的正弦孔道[8]。这种独特的孔道结构阻止了催化反应中缩合物的形成,从而减少了积碳的可能性。可控的孔径大小还适合许多分子的选择性分离,如通过选择性尺寸排除和空间效应进行海水淡化[9]。因此分子筛膜可广泛用于处理各种有机废水和海水淡化除盐等领域。

Figure 1. ZSM-5 molecular sieve structure (MFI): (a) b-axis channel structure; (b) a-axis channel structure

1. ZSM-5分子筛结构(MFI):(a) b轴通道结构;(b) a轴通道结构

2. ZSM-5分子筛膜材料

2.1. 复合ZSM-5分子筛膜

由于分子筛膜本身的机械强度不大,通常需负载在具有高强度的支撑载体上。相较于无支撑载体的分子筛膜,在支撑载体上形成的分子筛薄膜具有高机械稳定性,且膜厚度更均匀[5]。复合膜可以根据不同的需求,调整复合膜的成分和结构,使其适用于不同的分离和催化反应过程,如α-氧化铝[8] [9]、多孔陶瓷[10]、不锈钢[11]和聚合物[12]等常被用作ZSM-5分子筛膜的支撑载体。其中,α-Al2O3与分子筛之间较强的结合力有利于膜的交联生长,提高膜的稳定性,且成本和渗透阻力低,因此,α-Al2O3被认为是合成分子筛膜的最佳支撑载体[7]。如利用常规水热合成法[13]、二次水热合成法[14]以及湿凝胶转化法[15]等技术在α-Al2O3载体上制备了高性能的ZSM-5分子筛膜。ZSM-5分子筛也可作为无机多孔材料,填充于聚合物基体中。各种聚合物负载的ZSM-5分子筛复合膜材料具有一定的经济和技术优势,包括ZSM-5/纤维素[16]、ZSM-5/聚砜[4]和ZSM-5/聚乙烯醇[17]等。与传统膜相比,混合基质膜(MMMs)由于良好的机械、物理化学和转移性能在水处理中得到了广泛的应用[18]。此外Shiva Eslami等人[4]将无机的ZSM-5颗粒掺入到聚砜基体中,使得膜的亲水性增加和表面粗糙度降低,从而提高膜的防污性。

复合膜可以通过控制膜的孔径和厚度,提高ZSM-5膜的通透性、稳定性和提高分离效率,如Peng等人[10]制备了一系列具有介孔可调的新型分级ZSM-5分子筛膜,并在超滤中得到了应用。通常而言,对于复合膜材料的制备,需在多孔载体上引入一层中间层以改善载体表面的粗糙度和孔径大小,并减少金属的消耗,如分子筛、氧化石墨烯、TiO2、ZrO2等材料。郭等人[19]利用二次生长法和化学镀法将Pd沉积在ZSM-5分子筛修饰的大孔Al2O3载体上,ZSM-5作为修饰层(厚约3 μm),改善了多孔载体的粗糙度和孔径大小,有助于金属的沉积,而且可以避免金属间扩散而导致Pd膜受到污染,并保证了一定的膜通量。以α-Al2O3支撑载体为例,图2为ZSM-5膜在支撑载体上形成的复合结构,ZSM-5层负载于载体上(灰色中间层),然后在ZSM-5膜表面沉积一层活性金属薄膜(黄色表层)。

Figure 2. Composite structure of ZSM-5 molecular sieve membrane

2. ZSM-5分子筛膜复合结构

2.2. 改性ZSM-5分子筛膜

相比于纯ZSM-5分子筛膜,改性后的分子筛膜通常表现出更优越的性能特征。研究者们将B [20]、Fe [16] [21]、Cu [22]、Mn [23]、Ge [24]等杂原子引入ZSM-5分子筛晶格骨架中,以改变或增加某些特定的功能。其中,Fe和Cu离子可以均匀地分散到ZSM-5通道深处。Madhuri Lakhane等人[16]采用离子交换技术制备Cu和Fe改性的ZSM-5分子筛膜,并与纳米纤维混合得复合膜,这样改性的ZSM-5膜可以在更宽的pH范围中作用。R. Saranya等人[25]研究表明,在聚苯砜中加入ZSM-5、Cu-ZSM-5和Fe-ZSM-5可以诱导膜表面的亲水性,并且Cu改性的ZSM-5改善了混合膜的防污性能,但Fe改性ZSM-5的加入使得污染率增加。改性ZSM-5分子筛膜比复合膜的应用范围更广,但膜厚度的变化不如复合膜灵活且将杂原子引入和控制的工艺复杂,因此需根据具体的应用和制备条件选取合适的膜材料。

3. ZSM-5分子筛膜在水处理中的应用

膜技术的开发研究,为提高分离效率、增加选择性提供了方向。凭借这些优势,膜技术几乎在所有工业领域取代其他竞争技术,例如水和废水处理,气体分离,能量转换和储存,生物技术和生物精炼等[26]。当前,膜技术广泛应用于有机物、重金属的分离和去除以及海水淡化等领域。

3.1. 有机污染物的去除

含酚废水存在于各种工业制造废水中,同时,苯酚及其衍生物即使在非常低的浓度下也会对人体健康产生不利影响,而膜技术被认为是减少废水中的酚类化合物的最有效的工具之一[27]。Jiang等人[28]将Cu-ZSM-5膜催化剂用于苯酚废水的湿式催化氧化降解,使苯酚100%转化并无有毒副产物的产生。Yan及其课题组[29]又采用Fe制备了Fe-ZSM-5膜。相同条件下,Cu-ZSM-5膜对苯酚的降解率高于Fe-ZSM-5膜(95%),但Fe-ZSM-5膜的稳定性优于Cu-ZSM-5膜。正如前所述,ZSM-5分子筛可作为修饰层,改善材料表面结构形态。He等人[30]在ZSM-5分子筛膜修饰的PSSFs载体上沉积CuO的晶体尺寸更小,结构更加规整,如图3(a)~(f)所示,并且CuO颗粒形状随着Cu负载量的增加由针状变化为球状,如图3(f)~(h),该ZSM-5复合膜催化剂能用于高浓度苯酚废水的降解,最后苯酚被完全还原并矿化为CO2和H2O。以ZSM-5分子筛为分离层的膜材料在含酚废水的处理中拥有高去除效果且不会产生有毒有害的副产物,但催化反应速率相对较慢,需要较长反应时间达到理想的去除效果。另外改性ZSM-5可以实现更高的苯酚转化率和低毒产物的选择性[31]

Figure 3. SEM images of catalysts PSSFs, CuO/PSSFs, ZSM-5/PSSFs, and Cu-ZSM-5/PSSFs: (a) PSSF, (b) Cross-section of PSSFs, (c) CuO/PSSFs, (d) Cross-section of CuO/PSSFs, (e) ZSM-5/PSSFs, (f) Cu-ZSM-5/PSSFs (2%), (g) Cu-ZSM-5/PSSFs (4%), (h) Cu-ZSM-5/PSSFs (6%) [30]

3. PSSFs、CuO/PSSFs、ZSM-5/PSSFs和Cu-ZSM-5/PSSFs催化剂的SEM图像:(a) PSSF,(b) PSSFs横截面,(c) CuO/PSSFs,(d) CuO/PSSFs横截面,(e) ZSM-5/PSSFs,(f) Cu-ZSM-5/PSSFs (2%),(g) Cu-ZSM-5/PSSFs (4%),(h) Cu-ZSM5/PSSFs (6%) [30]

除酚类废水外,环境中大多数的有机染料是有毒的,对人体具有致畸和致突变作用,会对环境及其居民造成严重威胁[32]。而ZSM-5分子筛膜的表面积和活性位点可为有机污染物的去除提供附着位点,从而提高膜的吸附性能[33]。已有研究表明,通过ZSM-5特有的分子筛效应,能够高效去除水中的甲基橙(MO) [34]、亚甲基蓝(MB) [35]、结晶紫(CV) [36]、刚果红(CR) [37]等有机染料。例如,Sabarish Radoor等人将聚乙烯醇/ZSM-5沸石与淀粉[17]或海藻酸钠[33]混合制备成混合基质膜材料,分别用于吸附水体中的铬黑T [17]和刚果红[33],随后,又制备了含PVA/CMC/SA的环保型ZSM-5膜,能够有效地去除水中的孔雀石绿染料[12]。结果表明,此类复合膜具有良好的化学稳定性和热稳定性,并且ZSM-5的含量对膜的整体性能起着核心作用,吸附染料的能力随ZSM-5含量的增加而增大。不同的复合基质膜的优点各不相同,与海藻酸钠混合制备的吸附材料相比,加入琼脂的聚乙烯醇/琼脂/ZSM-5分子筛膜吸附剂[37]在吸附刚果红的应用中具有良好的抗菌性。因此,ZSM-5分子筛膜可以高效去除水中的各种染料并具有高稳定性,有望作为有机污染物处理的可行选择。然而有机废水的复杂性和多样性使得ZSM-5分子筛膜需要进一步的研究改进。

3.2. 重金属离子的去除

ZSM-5分子筛可用于去除水体中铅[38] [39]、镍[40]、铜[38] [41]、镉[41]、汞[42]、锌[43]和铀[39]等重金属。由于吸附机理的不同,在低浓度条件下,ZSM-5对Pb2+的吸附量远大于Cu2+ [38]。G. P. Syed Ibrahim等人[44]以分散良好的沸石ZSM-5为亲水性添加剂对聚砜膜进行了改性,并采用扩散诱导相分离法制备了PSf-ZZSM-5混合基质膜,掺入ZSM-5的膜具有吸附Pb2+、Cd2+等重金属的能力。Zou等人[43]用多孔不锈钢网支撑的低硅沸石ZSM-5膜(Si/Al = 20)对不同重金属阳离子截留,如表1所示,不同金属的离子截留率均达到90%以上。因此,高效的低硅ZSM-5膜被视为去除水体重金属污染物的可行手段。

Table 1. Removal efficiency of ZSM-5 membrane supported on stainless steel mesh for different salt solutions and water flux, Cfeed and Cpermeate denote concentrations of heavy metal cations in feed solution and permeate solution respectively [43]

1. 不锈钢网支撑的ZSM-5膜对不同盐溶液的去除率和水通量,C进料液、C渗透液分别为进料溶液和渗透溶液中的重金属阳离子浓度[43]

重金属类型

C进料液(ppm)

C渗透液(ppm)

通量(kg/m2h)

离子截留率(%)

Zn2+

0.372

0.03

1.29

91.9

Cd2+

0.39

0.023

1.64

94.1

Cr3+

0.5

0.003

1.375

99.4

Cu2+

0.302

0.02

0.97

93.3

Pb2+

0.414

0.025

1.74

94

Hg2+

0.339

0.016

1.2

95.3

3.3. 有机物质的分离

在分离工艺中,膜过滤是一种有效的分离工艺。膜技术是实现木质素高效回收的一种有前途的方法,目前已经有大量研究来研究各种膜从溶液中回收沉淀的木质素的能力[45]。而ZSM-5分子筛膜可用于对木质素等可再生生物质资源的截留和回收。如R. Saranya等人[25]对比了ZSM-5、掺杂ZSM-5以及聚苯砜(PPSU)的混合基质膜在渗透性和木质素截留率的区别,可以发现掺入ZSM-5与Cu-ZSM-5的膜均具有较高的渗透性和截留率,在添加0.5 wt%的ZSM-5时,木质素保留率最高达85.2%。工业生产中的油、润滑剂和溶剂往往会直接或间接进入水体,与水混合形成乳状液,从而在表面水体形成油膜,阻碍水中氧气的溶解,从而影响水中生物的呼吸作用。此外,油脂可以吸附其他有毒物质,如重金属和农药,增加它们的毒性和生物富集效应[46]。而ZSM-5膜在油水分离中具有很高的分离效率[47] [48]。例如Janaıína Rafaella Scheibler等人[49]合成的ZSM-5/γ-Al2O3膜的除油除水性能优于γ-Al2O3膜,由于ZSM-5的覆盖,具有较高的油保留率,ZSM-5/γ-Al2O3膜对油乳的去除率达91.33%。ZSM-5分子筛膜针对油类物质的分离与去除具有一定的潜力。

3.4. 海水淡化除盐

全球面临着水资源短缺的压力,海水资源虽然储量丰富,但含盐量高,无法直接被人体饮用,因此海水淡化成为解决水资源短缺问题的重要方案[50]。海水淡化技术可以有效缓解水资源短缺问题,满足沿海地区居民生活、工业生产和农业灌溉等方面的需求。由于ZSM-5孔径大小介于水分子和盐离子之间,能够有效地去除盐分,因此,ZSM-5分子筛可被制成膜并应用于海水淡化脱盐领域[51] [52]。李等人[53]制备的ZSM-5分子筛膜(Si/Al = 10)在75℃条件下对3.5% NaCl水溶液的水通量达8.35 kg∙m2∙h1,脱盐率达99.99%,且持续使用60 h后仍然稳定。相比于常规ZSM-5膜,Fe改性ZSM-5在脱盐中具有更好的分离效果。例如,徐等人[7]从反渗透和渗透蒸发两个过程对ZSM-5和Fe-ZSM-5分子筛膜的脱盐效果进行了对比,ZSM-5与Fe-ZSM-5分子筛膜均有较高的离子截留率,但总通量有明显差异,反渗透过程的渗透通量比渗透蒸发过程高3~4倍,另外,Fe-ZSM-5分子筛膜在脱盐中的分离性能更好,蒸发渗透的离子截留率高达98.61%,但反渗透的截留率为93.94%。

硅石膜由于疏水和非离子表面,在水环境中对水和质子的透过具有很高的阻力,而低硅铝比ZSM-5分子筛膜的亲水性和离子表面,能提高对水和质子的渗透性[9]。但高铝含量的分子筛膜难以控制形态,因此,制备具有选择性、致密无缺陷且较薄的分子筛膜是实现高效率脱盐的关键[7]。分子筛膜层越薄,传质阻力越低,膜通量就会越高。Cao等人[9]利用浸涂法和气相结晶法在大孔氧化铝基板上制备了超薄(<500 nm) ZSM-5层压膜,这种超薄膜在渗透蒸发脱盐中具有高水通量和脱盐率,可用于NaCl含量高达24%的盐水,并表现出高水通量和盐截留率。该研究者表明,在相同条件下,由于大量盐沉积物在短时间内堵塞了膜层的孔隙,超薄膜的脱盐率远高于常规ZSM-5膜的5倍,如图4(a)图4(c)所示。超薄膜极大的长宽比能够减少边界开口,延长了纳米片间的路径,以最大限度地减少盐水在侧表面的渗透,如图4(d)所示,并且快速的脱水率使得初期盐沉淀层阻止了盐溶液进一步的渗透,提高了脱盐率。

Figure 4. The relationship between permeate evaporation and NaCl concentration in feed saltwater. (a) Water flux and desalination rate, (b) Water permeability, (c) Salt transfer and solid deposition in conventional ZSM-5 membrane (ZSM5-C), (d) Salt transfer in ZSM-5 nanosheet layered membrane [9]

4. 渗透蒸发与原料盐水中NaCl浓度的关系。(a) 水通量和脱盐率,(b) 水渗透率,(c) 常规ZSM-5膜(ZSM5-C)中的盐转移和固体沉积,(d) ZSM-5纳米片层压膜中的盐转移[9]

近年来,各种改性和超薄复合ZSM-5分子筛膜用于海水淡化除盐的研究取得了令人鼓舞的结果。然而,在长期的脱盐实验中,一些膜的结构发生了降解,这表明膜在实际应用中仍然存在一些不足之处。另外,水处理中使用的膜材料常面临着污染问题。这种污染主要由于水中的悬浮颗粒、生物质(细菌和微生物)、有机物质(油脂和蛋白质)、以及无机盐等在分子筛的表面或孔隙中积聚,导致了膜通量和选择性降低,从而影响了性能和运行效率,增加了处理过程中的成本和能耗。以膜过程的结垢机理为例[54],如图5所示,会在膜表面造成的完全堵塞、滤饼过滤堵塞、标准孔隙堵塞以及发生中间孔堵塞。因此,为保证膜材料的长期稳定运行和经济效应,有效的预防和控制膜污染至关重要,以实现ZSM-5分子筛膜在水处理中的可持续应用。

Figure 5. Four mechanisms of membrane fouling [54]

5. 膜污染的四种机制[54]

4. 结论

ZSM-5分子筛膜因其在分子尺度上的孔径和吸附特性而备受关注,本文综述了ZSM-5分子筛膜材料在水处理的应用和成果,ZSM-5分子筛膜材料具有一定的稳定性、防污性和再生性,对水体中持久性有机污染物、重金属以及苦盐水等均具有高去除率和分离效果,在水处理中表现出优异的性能。虽然ZSM-5分子筛膜具有热稳定性高、不易溶胀变形、膜孔径均一和可控的硅铝比等显著优点。然而,目前分子筛膜的应用也存在一些局限性,如ZSM-5的疏水性和表面粗糙度容易造成膜污染,孔径的堵塞和沉淀会导致膜通量和分离效率下降,且本身的机械强度较弱,再生过程复杂。此外,膜的成本和选择性也限制了其的应用。

在未来ZSM-5分子筛膜的应用领域仍需要进一步研究和改进,以解决现存的挑战,并确保其在实际应用中的稳定效率和成本效益。1) 利用ZSM-5的孔隙和通道的各向异性,改变ZSM-5膜在载体上的定向分布。2) 制备各向可控的ZSM-5分子筛。3) 通过改变合成时间和制备方法对ZSM-5膜的形貌进行控制,以提高膜的扩散效率和透过率。4) 改变ZSM-5的亲疏水性、表面粗糙度、表面电荷和孔径大小以减少膜污染。在扩散限制明显的应用以及缺陷较少、特定取向的分子筛膜中,制备超薄且无缺陷的ZSM-5膜可提高机械稳定性并具有重要的应用前景。因此,未来的研究应该致力于解决这些问题,并开发更高效、可行的膜材料,以推动膜技术在实际应用中的发展。

基金项目

重庆科技大学研究生创新计划项目资助(YKJCX2320513和YKJCX2320526)和重庆科技大学大学生科技创新训练计划项目资助(2004052)。

NOTES

*通讯作者。

参考文献

[1] Hassan Rashid, M.A.U., Manzoor, M.M. and Mukhtar, S. (2018) Urbanization and Its Effects on Water Resources: An Exploratory Analysis. Asian Journal of Water, Environment and Pollution, 15, 67-74.
https://doi.org/10.3233/ajw-180007
[2] Manna, M. and Sen, S. (2022) Advanced Oxidation Process: A Sustainable Technology for Treating Refractory Organic Compounds Present in Industrial Wastewater. Environmental Science and Pollution Research, 30, 25477-25505.
https://doi.org/10.1007/s11356-022-19435-0
[3] Rout, P.R., Zhang, T.C., Bhunia, P. and Surampalli, R.Y. (2021) Treatment Technologies for Emerging Contaminants in Wastewater Treatment Plants: A Review. Science of the Total Environment, 753, Article ID: 141990.
https://doi.org/10.1016/j.scitotenv.2020.141990
[4] Eslami, S., Norouzbahari, S., Vatanpour, V., Ghadimi, A. and Rostamizadeh, M. (2024) Synthesis and Characterization of Enhanced Polysulfone-Based Mixed Matrix Membranes Containing ZSM-5 Zeolite for Protein and Dye Removal. Journal of Industrial and Engineering Chemistry, 137, 455-467.
https://doi.org/10.1016/j.jiec.2024.03.032
[5] 王志文. ZSM-5沸石膜的制备及其分离性能研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2017.
[6] Cui, J., Zhang, X., Liu, H., Liu, S. and Yeung, K.L. (2008) Preparation and Application of Zeolite/Ceramic Microfiltration Membranes for Treatment of Oil Contaminated Water. Journal of Membrane Science, 325, 420-426.
https://doi.org/10.1016/j.memsci.2008.08.015
[7] 徐凯. ZSM-5与Fe-ZSM-5分子筛膜的合成, 表征及其在脱盐过程中的应用[D]: [硕士学位论文]. 天津: 天津大学, 2014.
[8] Li, L., Yang, J., Li, J., Wang, J., Lu, J., Yin, D., et al. (2016) High Performance ZSM‐5 Membranes on Coarse Macroporous Α‐Al2O3 Supports for Dehydration of Alcohols. AIChE Journal, 62, 2813-2824.
https://doi.org/10.1002/aic.15234
[9] Cao, Z., Zeng, S., Xu, Z., Arvanitis, A., Yang, S., Gu, X., et al. (2018) Ultrathin ZSM-5 Zeolite Nanosheet Laminated Membrane for High-Flux Desalination of Concentrated Brines. Science Advances, 4, eaau8634.
https://doi.org/10.1126/sciadv.aau8634
[10] Peng, L., Xu, X., Yao, X., Liu, H. and Gu, X. (2018) Fabrication of Novel Hierarchical ZSM-5 Zeolite Membranes with Tunable Mesopores for Ultrafiltration. Journal of Membrane Science, 549, 446-455.
https://doi.org/10.1016/j.memsci.2017.12.039
[11] Chen, H., Zhang, H. and Yan, Y. (2012) Preparation and Characterization of a Novel Gradient Porous ZSM-5 Zeolite Membrane/PSSF Composite and Its Application for Toluene Adsorption. Chemical Engineering Journal, 209, 372-378.
https://doi.org/10.1016/j.cej.2012.08.020
[12] Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J. and Siengchin, S. (2021) An Efficient Removal of Malachite Green Dye from Aqueous Environment Using ZSM-5 Zeolite/Polyvinyl Alcohol/Carboxymethyl Cellulose/Sodium Alginate Bio Composite. Journal of Polymers and the Environment, 29, 2126-2139.
https://doi.org/10.1007/s10924-020-02024-y
[13] Yang, S., Zhang, Y., Guo, W., Zhou, L., Chen, M., Ma, J., et al. (2022) Synthesis of Thin ZSM-5 Zeolite Membranes in a Self-Terminating Mother Liquor. Separation and Purification Technology, 299, Article ID: 121721.
https://doi.org/10.1016/j.seppur.2022.121721
[14] Schneider, H., Schindel, L.K., Gomes, L.B., Tessaro, I.C. and Marcilio, N.R. (2021) Template-Free ZSM-5 Membrane Preparation on Alumina Support by Secondary Hydrothermal Synthesis. Current Research in Green and Sustainable Chemistry, 4, Article ID: 100049.
https://doi.org/10.1016/j.crgsc.2020.100049
[15] Wang, S., Li, L., Li, J., Wang, J., Pan, E., Lu, J., et al. (2021) Sustainable Synthesis of Highly Water-Selective ZSM-5 Membrane by Wet Gel Conversion. Journal of Membrane Science, 635, Article ID: 119431.
https://doi.org/10.1016/j.memsci.2021.119431
[16] Lakhane, M., Mahabole, M., Bogle, K., Khairnar, R. and Kokol, V. (2019) Nanocomposite Films Prepared from Differently Modified ZSM-5 Zeolite and Cellulose Nanofibrils for Cationic and Anionic Dyes Removal. Fibers and Polymers, 20, 2127-2139.
https://doi.org/10.1007/s12221-019-1139-3
[17] Radoor, S., Karayil, J., Parameswaranpillai, J. and Siengchin, S. (2020) Adsorption Study of Anionic Dye, Eriochrome Black T from Aqueous Medium Using Polyvinyl Alcohol/Starch/ZSM-5 Zeolite Membrane. Journal of Polymers and the Environment, 28, 2631-2643.
https://doi.org/10.1007/s10924-020-01812-w
[18] Salahshoori, I., Seyfaee, A. and Babapoor, A. (2021) Recent Advances in Synthesis and Applications of Mixed Matrix Membranes. Synthesis and Sintering, 1, 1-27.
https://doi.org/10.53063/synsint.2021.116
[19] 郭宇, 戴耀城, 吴红梅. Pd-ZSM-5复合膜的制备及其氢气分离性能[J]. 南京工业大学学报(自然科学版), 2024, 46(2): 160-169.
[20] Cui, N., Guo, H., Zhou, J., Li, L., Guo, L. and Hua, Z. (2020) Regulation of Framework Al Distribution of High-Silica Hierarchically Structured ZSM-5 Zeolites by Boron-Modification and Its Effect on Materials Catalytic Performance in Methanol-to-Propylene Reaction. Microporous and Mesoporous Materials, 306, Article ID: 110411.
https://doi.org/10.1016/j.micromeso.2020.110411
[21] Ben Soltan, W., Sun, J., Wang, W., Peng, J., Zhang, Y., Wang, T., et al. (2024) Modification of Fe on Hydrophobic ZSM-5 Zeolite: Optimization of Adsorption and Catalytic Performance for Decomposition of VOCs at Low-Temperature. Separation and Purification Technology, 333, Article ID: 125908.
https://doi.org/10.1016/j.seppur.2023.125908
[22] Yashnik, S.A., Taran, O.P., Surovtsova, T.A., Ayusheev, A.B. and Parmon, V.N. (2022) Cu-and Fe-Substituted ZSM-5 Zeolite as an Effective Catalyst for Wet Peroxide Oxidation of Rhodamine 6 G Dye. Journal of Environmental Chemical Engineering, 10, Article ID: 107950.
https://doi.org/10.1016/j.jece.2022.107950
[23] Chen, H., Zhang, H. and Yan, Y. (2014) Fabrication of Porous Copper/Manganese Binary Oxides Modified ZSM-5 Membrane Catalyst and Potential Application in the Removal of VOCs. Chemical Engineering Journal, 254, 133-142.
https://doi.org/10.1016/j.cej.2014.05.083
[24] Wang, X., Huang, Y., Zhang, X., Feng, X. and Huang, W. (2017) Synthesis of Hydrophilic Acid-Resistant Ge-ZSM-5 Membranes via Secondary Growth Method Using Silicalite-1 Zeolite as Seeds. Chemical Research in Chinese Universities, 33, 12-16.
https://doi.org/10.1007/s40242-017-6198-7
[25] Saranya, R., Arthanareeswaran, G., Ismail, A.F., Reddy, N.L., Shankar, M.V. and Kweon, J. (2017) Efficient Rejection of Organic Compounds Using Functionalized ZSM-5 Incorporated PPSU Mixed Matrix Membrane. RSC Advances, 7, 15536-15552.
https://doi.org/10.1039/c6ra27314a
[26] Wenten, I.G., Khoiruddin, K., Mukti, R.R., Rahmah, W., Wang, Z. and Kawi, S. (2021) Zeolite Membrane Reactors: From Preparation to Application in Heterogeneous Catalytic Reactions. Reaction Chemistry & Engineering, 6, 401-417.
https://doi.org/10.1039/d0re00388c
[27] Raza, W., Lee, J., Raza, N., Luo, Y., Kim, K. and Yang, J. (2019) Removal of Phenolic Compounds from Industrial Waste Water Based on Membrane-Based Technologies. Journal of Industrial and Engineering Chemistry, 71, 1-18.
https://doi.org/10.1016/j.jiec.2018.11.024
[28] Jiang, S., Zhang, H. and Yan, Y. (2015) Catalytic Wet Peroxide Oxidation of Phenol Wastewater over a Novel Cu-ZSM-5 Membrane Catalyst. Catalysis Communications, 71, 28-31.
https://doi.org/10.1016/j.catcom.2015.08.006
[29] Yan, Y., Jiang, S., Zhang, H. and Zhang, X. (2015) Preparation of Novel Fe-ZSM-5 Zeolite Membrane Catalysts for Catalytic Wet Peroxide Oxidation of Phenol in a Membrane Reactor. Chemical Engineering Journal, 259, 243-251.
https://doi.org/10.1016/j.cej.2014.08.018
[30] He, D., Zhang, H. and Yan, Y. (2017) Chemical Vapor Deposition of CuO on ZSM-5 Membrane for Catalytic Wet Peroxide Oxidation of Phenol in a Fixed Bed Reactor. RSC Advances, 7, 47435-47447.
https://doi.org/10.1039/c7ra09676c
[31] Santos, A., Lewis, R.J., Morgan, D.J., Davies, T.E., Hampton, E., Gaskin, P., et al. (2022) The Oxidative Degradation of Phenol via in Situ H2O2 Synthesis Using Pd Supported Fe-Modified ZSM-5 Catalysts. Catalysis Science & Technology, 12, 2943-2953.
https://doi.org/10.1039/d2cy00283c
[32] Erfani, M. and Javanbakht, V. (2018) Methylene Blue Removal from Aqueous Solution by a Biocomposite Synthesized from Sodium Alginate and Wastes of Oil Extraction from Almond Peanut. International Journal of Biological Macromolecules, 114, 244-255.
https://doi.org/10.1016/j.ijbiomac.2018.03.003
[33] Radoor, S., Karayil, J., Parameswaranpillai, J. and Siengchin, S. (2020) Removal of Anionic Dye Congo Red from Aqueous Environment Using Polyvinyl Alcohol/Sodium Alginate/ZSM-5 Zeolite Membrane. Scientific Reports, 10, Article No. 15452.
https://doi.org/10.1038/s41598-020-72398-5
[34] Sabarish, R. and Unnikrishnan, G. (2018) PVA/PDADMAC/ZSM-5 Zeolite Hybrid Matrix Membranes for Dye Adsorption: Fabrication, Characterization, Adsorption, Kinetics and Antimicrobial Properties. Journal of Environmental Chemical Engineering, 6, 3860-3873.
https://doi.org/10.1016/j.jece.2018.05.026
[35] Sabarish, R. and Unnikrishnan, G. (2018) Polyvinyl Alcohol/Carboxymethyl Cellulose/ZSM-5 Zeolite Biocomposite Membranes for Dye Adsorption Applications. Carbohydrate Polymers, 199, 129-140.
https://doi.org/10.1016/j.carbpol.2018.06.123
[36] Ünnü, B.A., Gündüz, G. and Dükkancı, M. (2015) Heterogeneous Fenton-Like Oxidation of Crystal Violet Using an Iron Loaded ZSM-5 Zeolite. Desalination and Water Treatment, 57, 11835-11849.
https://doi.org/10.1080/19443994.2015.1044915
[37] Sabarish, R., Jasila, K., Aswathy, J., Jyotishkumar, P. and Suchart, S. (2020) Fabrication of PVA/Agar/Modified ZSM-5 Zeolite Membrane for Removal of Anionic Dye from Aqueous Solution. International Journal of Environmental Science and Technology, 18, 2571-2586.
https://doi.org/10.1007/s13762-020-02998-1
[38] Gao, J., Lin, Q., Yang, T., Bao, Y.C. and Liu, J. (2023) Preparation and Characterization of ZSM-5 Molecular Sieve Using Coal Gangue as a Raw Material via Solvent-Free Method: Adsorption Performance Tests for Heavy Metal Ions and Methylene Blue. Chemosphere, 341, Article ID: 139741.
https://doi.org/10.1016/j.chemosphere.2023.139741
[39] Wang, X., Shao, D., Hou, G., Wang, X., Alsaedi, A. and Ahmad, B. (2015) Uptake of Pb(II) and U(VI) Ions from Aqueous Solutions by the ZSM-5 Zeolite. Journal of Molecular Liquids, 207, 338-342.
https://doi.org/10.1016/j.molliq.2015.04.029
[40] Hellal, M.S., Rashad, A.M., Kadimpati, K.K., Attia, S.K. and Fawzy, M.E. (2023) Adsorption Characteristics of Nickel (II) from Aqueous Solutions by Zeolite Scony Mobile-5 (ZSM-5) Incorporated in Sodium Alginate Beads. Scientific Reports, 13, Article No. 19601.
https://doi.org/10.1038/s41598-023-45901-x
[41] Priyadi, Iskandar, Suwardi, and Mukti, R.R. (2016) Characteristics of Heavy Metals Adsorption Cu, Pb and Cd Using Synthetics Zeolite ZSM-5. Journal of Tropical Soils, 20, 77-83.
https://doi.org/10.5400/jts.2015.v20i2.77-83
[42] Baile, P., Vidal, L., Aguirre, M.Á. and Canals, A. (2018) A Modified ZSM-5 Zeolite/Fe2O3 Composite as a Sorbent for Magnetic Dispersive Solid-Phase Microextraction of Cadmium, Mercury and Lead from Urine Samples Prior to Inductively Coupled Plasma Optical Emission Spectrometry. Journal of Analytical Atomic Spectrometry, 33, 856-866.
https://doi.org/10.1039/c7ja00366h
[43] Zou, X., Zhu, G., Guo, H., Jing, X., Xu, D. and Qiu, S. (2009) Effective Heavy Metal Removal through Porous Stainless-Steel-Net Supported Low Siliceous Zeolite ZSM-5 Membrane. Microporous and Mesoporous Materials, 124, 70-75.
https://doi.org/10.1016/j.micromeso.2009.04.034
[44] Syed Ibrahim, G.P., M. Isloor, A., Al Ahmed, A. and Lakshmi, B. (2017) Fabrication and Characterization of Polysulfone-Zeolite ZSM-5 Mixed Matrix Membrane for Heavy Metal Ion Removal Application. Journal of Applied Membrane Science & Technology, 18, 25-37.
https://doi.org/10.11113/amst.v18i1.17
[45] Humpert, D., Ebrahimi, M. and Czermak, P. (2016) Membrane Technology for the Recovery of Lignin: A Review. Membranes, 6, Article 42.
https://doi.org/10.3390/membranes6030042
[46] Wen, Y., Xie, Z., Xue, S., Li, W., Ye, H., Shi, W., et al. (2022) Functionalized Polymethyl Methacrylate-Modified Dialdehyde Guar Gum Containing Hydrazide Groups for Effective Removal and Enrichment of Dyes, Ion, and Oil/Water Separation. Journal of Hazardous Materials, 426, Article ID: 127799.
https://doi.org/10.1016/j.jhazmat.2021.127799
[47] Guo, J. and Ji, Z. (2020) Superhydrophilic ZSM-5 Zeolite-Coated Membrane for Enhancing Water Coalescence in Water-In-Oil Emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 595, Article ID: 124727.
https://doi.org/10.1016/j.colsurfa.2020.124727
[48] Samadi, S., Yazd, S.S., Abdoli, H., Jafari, P. and Aliabadi, M. (2017) Fabrication of Novel Chitosan/Pan/Magnetic ZSM-5 Zeolite Coated Sponges for Absorption of Oil from Water Surfaces. International Journal of Biological Macromolecules, 105, 370-376.
https://doi.org/10.1016/j.ijbiomac.2017.07.050
[49] Scheibler, J.R., Santos, E.R.F., Barbosa, A.S. and Rodrigues, M.G.F. (2014) Performance of Zeolite Membrane (ZSM-5/γ-Alumina) in the Oil/Water Separation Process. Desalination and Water Treatment, 56, 3561-3567.
https://doi.org/10.1080/19443994.2014.986536
[50] Elimelech, M. and Phillip, W.A. (2011) The Future of Seawater Desalination: Energy, Technology, and the Environment. Science, 333, 712-717.
https://doi.org/10.1126/science.1200488
[51] Cao, Z., Iskhakova, L., Sun, X., Tang, Z. and Dong, J. (2021) ZSM-5 Zeolite Nanosheet-Based Membranes on Porous Polyvinylidene Fluoride for High-Flux Desalination. ACS Applied Nano Materials, 4, 2895-2902.
https://doi.org/10.1021/acsanm.1c00046
[52] Ziyi, L., Enze, P., Jiaxuan, W., et al. (2021) Preparation of ZSM-5 Zeolite Membrane and Its Application in Desalination. CIESC Journal, 72, 5247-5256.
[53] 李子祎, 潘恩泽, 王佳轩, 等. ZSM-5沸石分子筛膜的制备及脱盐性能研究[J]. 化工学报, 2021, 72(10): 5247-5256.
[54] Kumar, R.V., Goswami, L., Pakshirajan, K. and Pugazhenthi, G. (2016) Dairy Wastewater Treatment Using a Novel Low Cost Tubular Ceramic Membrane and Membrane Fouling Mechanism Using Pore Blocking Models. Journal of Water Process Engineering, 13, 168-175.
https://doi.org/10.1016/j.jwpe.2016.08.012