免疫原性细胞死亡及其在肝癌治疗应用中的研究进展
Progress in Research on Immunogenic Cell Death and Its Application in Hepatocellular Carcinoma Therapy
DOI: 10.12677/acm.2024.1492562, PDF, HTML, XML,   
作者: 巩辰宇:西安医学院研究生工作部,陕西 西安;空军军医大学唐都医院普外科,陕西 西安;谭 凯, 杜锡林*:空军军医大学唐都医院普外科,陕西 西安
关键词: 肝细胞癌免疫原性细胞死亡三磷酸腺苷钙网蛋白高迁移率族蛋白B1Hepatocellular Carcinoma Immunogenic Cell Death Adenosine Triphosphate Calreticulin High Mobility Group Box Protein B1
摘要: 免疫原性细胞死亡(immunogenic cell death, ICD)在肝癌的治疗中有重要作用。机体发生ICD时,细胞分泌多种损伤相关分子模式(damage-associated molecular patterns, DAMPs),包括三磷酸腺苷(adenosine triphosphate, ATP)、钙网蛋白(calreticulin, CRT)、高迁移率族蛋白B1 (high mobility group box protein B1, HMGB1)、热休克蛋白(heat shock protein, HSP)和干扰素(Interferon, IFN)等。DAMPs通过各种模式识别受体吸引自然杀伤细胞、巨噬细胞、树突状细胞等免疫细胞,并促进其成熟、活化从而增强抗肿瘤免疫反应。目前诱导ICD治疗肝癌主要通过药物方式(化疗药物、靶向药物等)、生物方式(溶瘤病毒)及物理方式(纳米脉冲刺激、光动力疗法等)。本文就ICD的相关分子及在肝癌治疗中的研究进展作一综述,以期在临床上为肝癌患者的治疗提供一些有益参考。
Abstract: Immunogenic cell death (ICD) has an important role in the treatment of hepatocellular carcinoma. When ICD occurs in the body, cells secrete various damage-associated molecular patterns (DAMPs), and the major DAMPs include adenosine triphosphate (ATP), calreticulin (CRT), high mobility group box protein B1 (HMGB1), heat shock protein (HSP), and interferon (IFN), etc. DAMPs attract natural killer cells, macrophages, dendritic cells and other immune cells through various pattern recognition receptors, and promote their maturation and activation to enhance anti-tumor immune responses. Currently, the induction of ICD in hepatocellular carcinoma treatment is mainly done by pharmacological (chemotherapeutic drugs, targeted drugs, etc.), biological (oncolytic viruses), and physical (nano-pulse stimulation, photodynamic therapy, etc.) modalities. In this article, we present a review of the important molecules related to ICD and the research progress of induced ICD in hepatocellular carcinoma treatment, in order to help design more effective and precise strategies to treat hepatocellular carcinoma in the future.
文章引用:巩辰宇, 谭凯, 杜锡林. 免疫原性细胞死亡及其在肝癌治疗应用中的研究进展[J]. 临床医学进展, 2024, 14(9): 1025-1033. https://doi.org/10.12677/acm.2024.1492562

1. 肝癌概述

原发性肝癌是最常见的恶性肿瘤之一,其发病率位居全球第六位,死亡率位居全球第三位[1]。原发性肝癌包括肝细胞癌(hepatocellular carcinoma, HCC)、肝内胆管癌(intrahepatic cholangiocarcinoma, ICC)和混合型肝细胞癌–胆管癌(combined hepatocellular-cholangiocarcinoma, cHCC-CCA)三种不同病理学类型。其中HCC最为多见,占原发性肝癌的75%~85% [2]。诱导肝癌发生的危险因素有很多,包括乙型肝炎病毒或丙型肝炎病毒感染、过量饮酒、非酒精性脂肪性肝病[3]、糖尿病及代谢综合征、吸烟及空气污染[4] [5]等,在我国最主要的危险因素是乙肝病毒感染。目前肝癌的治疗措施包括手术切除、肝移植、射频消融、经动脉化疗栓塞和放射治疗等[6],其中手术切除为主要治疗措施[7]。一项流行病学研究显示中国肝癌患者5年生存率仅在10%~19%之间,手术后5年复发率高达40%~60% [8] [9]。并且肝癌起病隐匿,大部分患者就诊时已处于中晚期[10],丧失根治性手术切除机会。近年来随着药物研究与医疗技术的发展,靶向治疗与免疫治疗的出现为中晚期肝癌患者的诊治提供了新的思路[11]

2. 免疫原性细胞死亡

2.1. 免疫原性细胞死亡概念

2005年的一项研究[12]发现了一种与自噬、凋亡、焦亡不同的调节性细胞死亡(Regulated cell death, RCD)方式,并将其称为免疫原性细胞死亡(immunogenic cell death, ICD)。ICD是肿瘤免疫治疗的重要机制之一,在机体发生细胞凋亡时,非免疫原性的细胞能够转化为免疫原性细胞并释放损伤相关分子模式(damage-associated molecular patterns, DAMPs)增强肿瘤免疫效应[13]。在这一过程中,不仅可以杀死由ICD诱导剂诱导产生的细胞,还可以杀死垂死肿瘤细胞,并且这些肿瘤细胞会作为“肿瘤疫苗”引起残留肿瘤细胞的免疫反应。这种方式使得患者从化疗、物理等方式诱导引发的ICD过程中获取到长期的临床获益[14]

2.2. 免疫原性细胞死亡相关分子

2.2.1. 钙网蛋白

内质网(endoplasmic reticulum, ER)中的钙网蛋白(calreticulin, CRT)是一种高度保守的钙结合蛋白,具有分子伴侣、Ca2+稳态维持、基因表达调节等生物学功能[15] [16],在ER内外均发挥作用[17]。在肿瘤细胞ICD反应过程中,真核细胞起始因子2α (eukaryotic translation initiation factor 2α, eIF2α)受外界因素或特定药物的影响磷酸化,导致一系列信号传导反应[18]。包括caspase-8的激活、ER蛋白水解、促凋亡蛋白BAX和BAK在线粒体外膜上积累、CRT在SNAP25 (突触体相关蛋白25)介导下从内质网转运至高尔基体并通过胞质小泡在细胞表面上表达[19] [20]。细胞膜表面暴露的CRT (etco-CRT)表达出“吃掉我”的信号作用,并与CD91结合后促进树突状细胞(dendritic cells, DCs)的成熟和活化,进而激发肿瘤特异性细胞毒性淋巴T细胞(cytotoxic T lymphocyte, CTL)的应答[21]、促炎因子TNF-α和IL-6的释放。ICD期间CRT的移位和暴露可以触发强大的抗肿瘤免疫应答[22],并且是ICD抗肿瘤免疫的重要标志。

2.2.2. 三磷酸腺苷

ATP,即三磷酸腺苷,作为细胞内部含量极高的代谢产物,在ICD过程中,肿瘤细胞通过自噬释放大量ATP [23],其中受损的细胞器、细胞质蛋白和其他成分被降解[24],ATP经由囊泡释放至胞外。释放至胞外的ATP具有“发现我”信号的作用,与DCs上的P2X7和P2Y2受体结合促进DC激活和成熟及巨噬细胞的扩增[25]。另外,ATP同时激活半胱天冬酶1 (caspase-1)依赖性NLRP3炎性小体,引发白介素-1β (interleukin-1β, IL-1β)和白介素-18 (IL-18)的分泌促进抗肿瘤免疫反应[26] [27]

2.2.3. 高迁移率族蛋白B1

高迁移率族蛋白B1 (HMGB1)是一种广泛存在于哺乳动物细胞核中的非组蛋白染色质结合蛋白,具有基因转录调节、蛋白质转录调节和促进V(D)J重组等作用[28]-[30]。在细胞内和细胞外的HMGB1执行不同的功能。细胞内HMGB1与苄氯素1 (Beclin-1)相互作用以介导自噬。细胞外的HMGB1在细胞凋亡的晚期阶段从细胞核中释放和累积,并能通过酶联免疫吸附实验被检测[31]-[33]。细胞外的HMGB1作为DAMP与模式识别受体(PRR)结合,包括Toll样受体4 (Toll-like receptor 4, TLR4)及晚期糖基化终末产物受体(the receptor of advanced glycation end product, RAGE)从而激活单核细胞或巨噬细胞释放细胞因子增强DC的抗原呈递[34]。此外,HMGB2与Toll样受体结合促进核因子-κB (nuclear factor kappa B, NF-κB)的活化[35],导致促炎细胞因子与血管生成因子增加及肿瘤组织的破坏以进一步促进炎症反应[36]

2.2.4. 热休克蛋白

热休克蛋白(heat shock protein, HSP)是一种高度保守的保护性蛋白,它的主要功能是协助蛋白质的折叠与成熟并帮助细胞维持正常的生理活性,除此之外它还具有一定的抗凋亡能力[37] [38]。HSP通常在肿瘤细胞中过表达,其中主要参与肿瘤细胞ICD过程的HSP是HSP70和HSP90 [39],HSP70是参与蛋白质折叠和转运的重要蛋白,它在肿瘤细胞的质膜和细胞外介导肿瘤免疫应答[40]。HSP 90是一种肿瘤标志物,它参与肿瘤细胞的生长、侵袭、转移、血管生成及蛋白合成和凋亡[41]。在肿瘤细胞ICD过程中,HSP70和HSP90与抗原结合形成复合物,不但刺激肿瘤抗原的摄取及DC细胞的成熟和活化[42],还可诱导CTLs与NK细胞的激活以发挥关键的肿瘤杀伤作用[43]

2.2.5. 干扰素

干扰素(Interferon, IFN)是具有多种作用的细胞因子,具有抗病毒感染、抗肿瘤活性和免疫调节的作用。I型干扰素包括IFN-α和IFN-β在内的多个亚型,在免疫应答过程中IFN I可通过与Ⅰ型干扰素受体(type Ⅰ interferon receptor, IFNAR)结合来诱导肿瘤细胞凋亡、抗血管生成和对免疫系统的细胞产生直接影响[44]。IFN-γ是II型干扰素家族中的唯一成员,通过上调组织相容性复合体(major histocompatibility complex, MHC) I和MHC II分子的表达促进效应T细胞(effector T cellI Teff)识别病原体来源的抗原、提高NK细胞和巨噬细胞的活性。此外,IFN-γ的信号传导促进DC成熟及刺激分子的高表达。

3. 免疫原性细胞死亡在肝癌中的诱导

3.1. 药物诱导ICD

3.1.1. 化疗药物

一些化疗药物如奥沙利铂、博来霉素、环磷酰胺、硼替佐米和蒽环类药物等已经被证实可以诱发ICD,并形成持久的保护性免疫。铂类化疗药物(如顺铂或奥沙利铂)单独使用或与其他化疗药物(如吉西他滨)联合使用已被批准用于临床治疗或在临床试验中被评估。在日本和韩国,HAIC (肝动脉灌注化疗)-FOLFOX (氟尿嘧啶、亚叶酸和奥沙利铂)方案在晚期肝癌的转化降期方面表现出了较好的结果[45]。一项研究发现,奥沙利铂(而非顺铂)在人和小鼠的肝癌细胞中通过促进CRT暴露、HMGB1和ATP分泌及DC成熟来诱导并增强ICD。除此之外,奥沙利铂与PD-1联用有效抑制了肿瘤生长且获得比单药治疗更好的结局[46]。氟尿嘧啶(Fu)尽管已经被证明可以在体内诱导ICD,但是由于耐药性和低选择性导致不可避免的毒副作用及不理想的免疫应答。近年来出现如石墨烯、共价有机框架、硒纳米颗粒和金纳米颗粒等载体通过负载Fu以提高其靶向性及免疫原性[47]。如何更精确的输送化疗药物至肿瘤处以触发肿瘤细胞发生ICD亟待更多研究。

3.1.2. 靶向药物

目前用于肝癌治疗的靶向药物有索拉非尼、仑伐替尼、贝伐珠单抗联合阿替利珠单抗和多纳非尼等[48]。其中索拉非尼是美国食品药物管理局批准的第一个血管内皮生长因子(VEGF)通路抑制剂,最初被开发用于治疗肾细胞癌,也在那时被批准用于肝癌[49]。索拉非尼可诱导活性氧(ROS)的过度产生,引发氧化损伤和铁凋亡导致ICD的产生[50]。仑伐替尼是一种酪氨酸酶抑制剂,能够抑制多种酪氨酸激酶。一项研究显示,接受仑伐替尼治疗的病人肝癌细胞中DAMPs显著增加(包括CRT释放、ATP释放和HMGB1释放增加)、DAMPs下游受体(TLR3和TLR4)表达上调和PD-L1表达上调[51]

3.1.3. 纳米药物

纳米颗粒包封可通过精确控制药物剂量以降低药物毒性,并且一些研究发现纳米材料可放大癌细胞死亡的免疫原性[52],纳米颗粒搭载化疗药物为增强抗癌疗效和减轻副作用提供了有希望的前景。Yin [53]等人构建了靶向肝癌干细胞(LCSCs)的生物响应性Au-miR-183抑制剂(Au@miR-183)给药系统。Au@miR-183首次实现向LCSCs的特异性靶向递送,并在微环境中消耗NADPH和H2O2导致氧化还原稳态紊乱,调节LCSCs生态诱导LCSC的干细胞退化。同时Au@miR-183提高了肿瘤部位的免疫原性,增加了ATP分泌和HMGB1的释放、促进DC等抗原呈递细胞成熟、诱导CD8 + T细胞的浸润从而激活体内抗肿瘤免疫。Zhou [54]等人设计了一种普鲁士蓝(PB)纳米颗粒(NP),它将负载索拉非尼的多孔金属有机框架与肝癌特异靶向肽SP94和近红外染料花青(Cy)5.5缀合,实现了索拉非尼的靶向递送和控制释放,减少了索拉非尼的副作用;同时缓解了肝癌缺氧,产生免疫促进的肿瘤微环境。Chen [55]等人发现,与游离多柔比星相比,将多柔比星加载在H-铁蛋白纳米笼(HFn)中表现出了更优秀的靶向肿瘤递送和肿瘤内渗透能力。HFn负载多柔比星不但提高了多柔比星的治疗效果,而且显著降低了体内毒性作用,并且使肿瘤细胞对免疫活化敏感,与抗PD-1抗体疗法组合进一步增强肝癌的治疗效果。一项研究发现将奥沙利铂(OxP, OX)衍生物和亚叶酸(FnA, FOL)的纳米制剂与含氟尿嘧啶(5-FU, F)的纳米制剂组合使用相比任一单一纳米制剂增强了ATP与HMGB1的分泌与释放,使肿瘤微环境由“冷环境”转变为“热环境”。通过联合使用两种纳米制剂,CD8 + T细胞、CD4 + T细胞和DC细胞在肿瘤中被显著激活,并伴随IFN-γ、TNF-α和IL-12的上调。此外,这两种纳米制剂与抗PD-L1单克隆抗体联用时,与单用两种纳米制剂或单用抗PD-L1单克隆抗体相比更显著地抑制肝转移[56]。目前纳米药物的临床数据较少,未来还需更多临床试验验证其对肝癌的治疗效果。

3.2. 溶瘤病毒(Oncolytic Virus, OVs)疗法诱导ICD

OVs与传统的抗肿瘤药物相比具有许多优势,因为具有感染和杀死癌细胞而不损害健康组织的生物学特性。OV介导的溶瘤作用不仅导致肿瘤消退,还向树突状细胞(DC)和其他抗原呈递细胞(APC)提供的关键信号以引发额外的强效抗肿瘤免疫应答[57]。并且OVs介导的癌细胞溶瘤过程中还观察到ICD的典型特征,如钙网蛋白表面暴露、HMGB1和ATP释放以及内质网应激[58]。据报道,构建有肿瘤诱导和免疫刺激分子的腺病毒在肝癌细胞系中导致肝癌细胞死亡增加及IFN-γ表达上调[59]。一项研究表明一种来源于牛痘病毒的溶瘤病毒Pexa-vec (pexastimogene devacirepvec)改善了不可切除肝癌患者的总生存期,并且患者对这一溶瘤病毒耐受性良好[60],但是在索拉非尼治疗失败的患者中则没有达到预期的治疗效果[61]

3.3. 物理疗法诱导ICD

3.3.1. 纳米脉冲刺激(Nano-Pulse Stimulation, NPS)

NPS,也可以称为纳秒脉冲电场(Nanosecond pulsed electric field, nsPEF)是一种作用于细胞,导致细胞中的膜纳米孔的形成和离子通道的激活、细胞质Ca2+浓度增加、内质网应激和ROS释放增加的ICD诱导方式[62],在特定能量下的NPS治疗能够触发三种关键DAMP的发射,其水平与阿霉素(DOX)等药物治疗相当。并且多项肝癌小鼠实验表明,NPS改变了TME中的免疫细胞组成导致TME中的巨噬细胞增加,从而有效地消除肿瘤延长小鼠的生存时间[63] [64]。此外,Chen [65]等人发现T细胞和NK细胞的浸润指标颗粒酶-B (granzyme B)在NPS后的TME中累积,提示NPS可能引起TME中的T细胞和NK细胞增加来增强抗肿瘤作用。

3.3.2. 近红外光免疫疗法(Near-Infrared Photo-Immunotherapy, NIR-PIT)

NIR-PIT是一种用于肿瘤的分子靶向光疗,首先向肿瘤细胞注射一种靶向肿瘤细胞表面表达抗原的单克隆抗体(mAb)与光活化二氧化硅酞菁九光敏剂IRDye700DX (IR700)共轭物,随后将肿瘤细胞局部暴露于NIR光。当肿瘤细胞暴露于NIR光时,就会触发一系列选择性细胞毒性作用诱导肿瘤细胞的快速和高度选择性ICD [66]。Ogawa [67]等人发现NIR-PIT会诱导细胞体积快速增大与破裂、CRT和HSP的质膜表达增加、HMGB 1和ATP的快速分泌及DC成熟。Hanaoka [68]等人报道了一例在肝癌动物模型中抗磷脂酰肌醇蛋白聚糖-3的mAb (YP7)与IR700共轭的抗体–光敏剂偶联物进行的NIR-PIT。在这项研究中,IR700-YP7在肿瘤中积累,与未处理的对照组相比显著抑制肿瘤生长并在暴露于NIR后快速诱导靶向细胞死亡。

3.3.3. 氧增强光动力疗法(Photodynamic Therapy, PDT)

PDT通过向机体注射光敏剂后用特定波长的光来照射肿瘤部位使ROS水平增加来触发肿瘤细胞凋亡[69]。缺氧在实体瘤中会促进肿瘤细胞转移,而缺氧也会极大降低PDT的疗效[70],为了解决缺氧对PDT的限制作用,Hou [71]等人开发了锰氧化物交联的牛白蛋白/透明质酸纳米粒子(BHM),实现阿霉素(DOX)和吲哚菁绿(ICG)的连续负载,获得DOX/ICG共载的BHM纳米平台(简称BHMDI)。BHMDI可通过催化细胞内H2O2分解为O2来有效缓解肿瘤缺氧,显著提高PDT疗效。BHMDI纳米平台还降低了肿瘤中M2巨噬细胞的比例、促进了DC的成熟、CD8 + T细胞的浸润。此外,BHMDI纳米平台与PD-1联合使用不仅根除了原发性肿瘤,而且通过触发强大的全身抗肿瘤免疫抑制了肝癌的肿瘤复发、远端肿瘤生长和肺转移。Xu [72]等人制备了一种靶向和ROS敏感的共负载聚集诱导发射(AIE)光敏剂(TB)和紫杉醇(PTX)的光触发纳米(TB/PTX@RTK)胶束。光照射下,TB/PTX@RTK胶束可以在局部区域产生高浓度的ROS以促进PTX的释放,其与TB介导的PDT有效协同以产生很强的肿瘤杀伤和抗肿瘤免疫激活作用。TB/PTX@ RTK介导的化学PDT不改变肝癌细胞的总CRT含量,但比单独的PDT显著增加细胞膜表面上CRT的表达。与单一治疗模式相比,TB/PTX@RTK介导的化学PDT能更强的诱导ICD。同时TB/PTX@RTK胶束可显著上调肿瘤细胞PD-L1的表达,与抗PD-L1抗体有效协同诱导远端效应,建立长期免疫记忆,抑制肿瘤的复发和转移。

4. 总结与展望

肝癌因为其起病隐匿,我国早期肝癌发现率不足30%,70%~80%的肝癌在发现时已到中晚期,治疗选择十分有限,5年生存率不足20%。手术、放疗、化疗等的联合使用在一定程度上延长了患者的生存期,但肝癌治疗目前在医学上仍是一大难题。ICD作为一种增强肿瘤免疫效应的细胞死亡形式,在抗肿瘤治疗方面展现出优异的前景。但目前绝大多数为基础实验与动物实验,ICD相关的肝癌临床研究仍旧较少,如何在肝癌患者中诱导ICD以提高其生存率和治愈率在未来需要更多的探索与研究。

本文就ICD的概念、分子机制及在肝癌中诱导方式做一综述以期在临床上为肝癌患者的治疗提供一些有益参考。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] 国家癌症中心国家肿瘤质控中心肝癌质控专家委员会. 中国肝癌规范诊疗质量控制指标(2022版) [J]. 肝癌电子杂志, 2022, 9(4): 1-11.
[3] Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/s0140-6736(20)32511-3
[4] European Association for the Study of the Liver and European Organisation for Research and Treatment of Cancer (2012) EASL-EORTC Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. Journal of Hepatology, 56, 908-943.
https://doi.org/10.1016/j.jhep.2011.12.001
[5] Toh, M.R., Wong, E.Y.T., Wong, S.H., Ng, A.W.T., Loo, L., Chow, P.K., et al. (2023) Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology, 164, 766-782.
https://doi.org/10.1053/j.gastro.2023.01.033
[6] Ren, Z., Ma, X., Duan, Z. and Chen, X. (2020) Diagnosis, Therapy, and Prognosis for Hepatocellular Carcinoma. Analytical Cellular Pathology, 2020, Article ID: 8157406.
https://doi.org/10.1155/2020/8157406
[7] Befeler, A.S. and di Bisceglie, A.M. (2002) Hepatocellular Carcinoma: Diagnosis and Treatment. Gastroenterology, 122, 1609-1619.
https://doi.org/10.1053/gast.2002.33411
[8] Allemani, C., Matsuda, T., di Carlo, V., et al. (2018) Global Surveillance of Trends in Cancer Survival 2000-14 (CON-CORD-3): Analysis of Individual Records for 37 513 025 Patients Diagnosed with One of 18 Cancers from 322 Population-Based Registries in 71 Countries. Lancet, 391, 1023-1075.
[9] Yao, L., Qiu, H., Pu, J., Diao, Y., LI, C., PAWLIK, T.M., et al. (2022) Clinical Features of Recurrence after Hepatic Resection for Early-Stage Hepatocellular Carcinoma and Long-Term Survival Outcomes of Patients with Recurrence: A Multi-Institutional Analysis. Annals of Hepato-Biliary-Pancreatic Surgery, 26, S302-S302.
https://doi.org/10.14701/ahbps.2022s1.ep-20
[10] Park, J., Chen, M., Colombo, M., Roberts, L.R., Schwartz, M., Chen, P., et al. (2015) Global Patterns of Hepatocellular Carcinoma Management from Diagnosis to Death: The bridge Study. Liver International, 35, 2155-2166.
https://doi.org/10.1111/liv.12818
[11] Kalasekar, S.M., VanSant-Webb, C.H. and Evason, K.J. (2021) Intratumor Heterogeneity in Hepatocellular Carcinoma: Challenges and Opportunities. Cancers, 13, Article 5524.
https://doi.org/10.3390/cancers13215524
[12] Casares, N., Pequignot, M.O., Tesniere, A., Ghiringhelli, F., Roux, S., Chaput, N., et al. (2005) Caspase-Dependent Immunogenicity of Doxorubicin-Induced Tumor Cell Death. The Journal of Experimental Medicine, 202, 1691-1701.
https://doi.org/10.1084/jem.20050915
[13] Kroemer, G., Galluzzi, L., Kepp, O. and Zitvogel, L. (2013) Immunogenic Cell Death in Cancer Therapy. Annual Review of Immunology, 31, 51-72.
https://doi.org/10.1146/annurev-immunol-032712-100008
[14] Zitvogel, L., Kepp, O. and Kroemer, G. (2011) Immune Parameters Affecting the Efficacy of Chemotherapeutic Regimens. Nature Reviews Clinical Oncology, 8, 151-160.
https://doi.org/10.1038/nrclinonc.2010.223
[15] Wang, W., Groenendyk, J. and Michalak, M. (2012) Calreticulin Signaling in Health and Disease. The International Journal of Biochemistry & Cell Biology, 44, 842-846.
https://doi.org/10.1016/j.biocel.2012.02.009
[16] Zamanian, M., Veerakumarasivam, A., Fau-Abdullah, S., Abdullah, S., Fau-Rosli, R., et al. (2021) Calreticulin and cancer. Cell Research, 31, 5-16.
[17] Gold, L.I., Eggleton, P., Sweetwyne, M.T., Van Duyn, L.B., Greives, M.R., Naylor, S., et al. (2009) Calreticulin: Non‐endoplasmic Reticulum Functions in Physiology and Disease. The FASEB Journal, 24, 665-683.
https://doi.org/10.1096/fj.09-145482
[18] Bezu, L., Sauvat, A., Humeau, J., Gomes-da-Silva, L.C., Iribarren, K., Forveille, S., et al. (2018) eIF2α Phosphorylation Is Pathognomonic for Immunogenic Cell Death. Cell Death & Differentiation, 25, 1375-1393.
https://doi.org/10.1038/s41418-017-0044-9
[19] Panaretakis, T., Kepp, O., Brockmeier, U., Tesniere, A., Bjorklund, A., Chapman, D.C., et al. (2009) Mechanisms of Pre-Apoptotic Calreticulin Exposure in Immunogenic Cell Death. The EMBO Journal, 28, 578-590.
https://doi.org/10.1038/emboj.2009.1
[20] Zitvogel, L., Kepp, O., Senovilla, L., Menger, L., Chaput, N. and Kroemer, G. (2010) Immunogenic Tumor Cell Death for Optimal Anticancer Therapy: The Calreticulin Exposure Pathway. Clinical Cancer Research, 16, 3100-3104.
https://doi.org/10.1158/1078-0432.ccr-09-2891
[21] Liu, C., Leclair, P., Pedari, F., Vieira, H., Monajemi, M., Sly, L.M., et al. (2019) Integrins and ERp57 Coordinate to Regulate Cell Surface Calreticulin in Immunogenic Cell Death. Frontiers in Oncology, 9, Article 411.
https://doi.org/10.3389/fonc.2019.00411
[22] Gebremeskel, S. and Johnston, B. (2015) Concepts and Mechanisms Underlying Chemotherapy Induced Immunogenic Cell Death: Impact on Clinical Studies and Considerations for Combined Therapies. Oncotarget, 6, 41600-41619.
https://doi.org/10.18632/oncotarget.6113
[23] Vultaggio-Poma, V., Sarti, A.C. and Di Virgilio, F. (2020) Extracellular ATP: A Feasible Target for Cancer Therapy. Cells, 9, Article 2496.
https://doi.org/10.3390/cells9112496
[24] Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12.
https://doi.org/10.1186/s12943-020-1138-4
[25] Elliott, M.R., Chekeni, F.B., Trampont, P.C., Lazarowski, E.R., Kadl, A., Walk, S.F., et al. (2009) Nucleotides Released by Apoptotic Cells Act as a Find-Me Signal to Promote Phagocytic Clearance. Nature, 461, 282-286.
https://doi.org/10.1038/nature08296
[26] Ghiringhelli, F., Apetoh, L., Tesniere, A., Aymeric, L., Ma, Y., Ortiz, C., et al. (2009) Activation of the NLRP3 Inflammasome in Dendritic Cells Induces Il-1β-Dependent Adaptive Immunity against Tumors. Nature Medicine, 15, 1170-1178.
https://doi.org/10.1038/nm.2028
[27] Swanson, K.V., Deng, M. and Ting, J.P. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489.
https://doi.org/10.1038/s41577-019-0165-0
[28] Tang, D., Kang, R., Coyne, C.B., Zeh, H.J. and Lotze, M.T. (2012) PAMPs and DAMPs: Signal 0s That Spur Autophagy and Immunity. Immunological Reviews, 249, 158-175.
https://doi.org/10.1111/j.1600-065x.2012.01146.x
[29] de Mendonça Amarante, A., Jupatanakul, N., de Abreu da Silva, I.C., Carneiro, V.C., Vicentino, A.R.R., Dimopolous, G., et al. (2017) The DNA Chaperone HMGB1 Potentiates the Transcriptional Activity of Rel1a in the Mosquito Aedes Aegypti. Insect Biochemistry and Molecular Biology, 80, 32-41.
https://doi.org/10.1016/j.ibmb.2016.11.006
[30] Thwaites, D.T., Carter, C., Lawless, D., Savic, S. and Boyes, J.M. (2019) A Novel RAG1 Mutation Reveals a Critical in Vivo Role for HMGB1/2 during V(D)J Recombination. Blood, 133, 820-829.
https://doi.org/10.1182/blood-2018-07-866939
[31] Menger, L., Vacchelli, E., Adjemian, S., Martins, I., Ma, Y., Shen, S., et al. (2012) Cardiac Glycosides Exert Anticancer Effects by Inducing Immunogenic Cell Death. Science Translational Medicine, 4, 143ra99.
https://doi.org/10.1126/scitranslmed.3003807
[32] Bell, C.W., Jiang, W., Reich, C.F. and Pisetsky, D.S. (2006) The Extracellular Release of HMGB1 during Apoptotic Cell Death. American Journal of Physiology-Cell Physiology, 291, C1318-C1325.
https://doi.org/10.1152/ajpcell.00616.2005
[33] Kalinina, N., Agrotis, A., Antropova, Y., DiVitto, G., Kanellakis, P., Kostolias, G., et al. (2004) Increased Expression of the DNA-Binding Cytokine HMGB1 in Human Atherosclerotic Lesions: Role of Activated Macrophages and Cytokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 2320-2325.
https://doi.org/10.1161/01.atv.0000145573.36113.8a
[34] van Beijnum, J.R., Buurman, W.A. and Griffioen, A.W. (2008) Convergence and Amplification of Toll-Like Receptor (TLR) and Receptor for Advanced Glycation End Products (RAGE) Signaling Pathways via High Mobility Group B1 (HMGB1). Angiogenesis, 11, 91-99.
https://doi.org/10.1007/s10456-008-9093-5
[35] Behl, T., Sharma, E., Sehgal, A., Kaur, I., Kumar, A., Arora, R., et al. (2021) Expatiating the Molecular Approaches of HMGB1 in Diabetes Mellitus: Highlighting Signalling Pathways via RAGE and TLRs. Molecular Biology Reports, 48, 1869-1881.
https://doi.org/10.1007/s11033-020-06130-x
[36] Lan, J., Luo, H., Wu, R., Wang, J., Zhou, B., Zhang, Y., et al. (2020) Internalization of HMGB1 (High Mobility Group Box 1) Promotes Angiogenesis in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 2922-2940.
https://doi.org/10.1161/atvbaha.120.315151
[37] Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X. and Cao, S. (2017) Heat Shock Proteins and Cancer. Trends in Pharmacological Sciences, 38, 226-256.
https://doi.org/10.1016/j.tips.2016.11.009
[38] Yun, C.W., Kim, H.J., Lim, J.H. and Lee, S.H. (2019) Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells, 9, 60.
https://doi.org/10.3390/cells9010060
[39] Zhu, M., Yang, M., Zhang, J., Yin, Y., Fan, X., Zhang, Y., et al. (2021) Immunogenic Cell Death Induction by Ionizing Radiation. Frontiers in Immunology, 12, Article 705361.
https://doi.org/10.3389/fimmu.2021.705361
[40] Jego, G., Hazoumé, A., Seigneuric, R. and Garrido, C. (2013) Targeting Heat Shock Proteins in Cancer. Cancer Letters, 332, 275-285.
https://doi.org/10.1016/j.canlet.2010.10.014
[41] Kampinga, H.H., Hageman, J., Vos, M.J., Kubota, H., Tanguay, R.M., Bruford, E.A., et al. (2009) Guidelines for the Nomenclature of the Human Heat Shock Proteins. Cell Stress and Chaperones, 14, 105-111.
https://doi.org/10.1007/s12192-008-0068-7
[42] Montico, B., Nigro, A., Casolaro, V. and Dal Col, J. (2018) Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development. International Journal of Molecular Sciences, 19, Article 594.
https://doi.org/10.3390/ijms19020594
[43] Hickman-Miller, H.D. and Hildebrand, W.H. (2004) The Immune Response under Stress: The Role of HSP-Derived Peptides. Trends in Immunology, 25, 427-433.
https://doi.org/10.1016/j.it.2004.05.011
[44] Hervas-Stubbs, S., Perez-Gracia, J.L., Rouzaut, A., Sanmamed, M.F., Le Bon, A. and Melero, I. (2011) Direct Effects of Type I Interferons on Cells of the Immune System. Clinical Cancer Research, 17, 2619-2627.
https://doi.org/10.1158/1078-0432.ccr-10-1114
[45] Zhou, H. and Song, T. (2021) Conversion Therapy and Maintenance Therapy for Primary Hepatocellular Carcinoma. BioScience Trends, 15, 155-160.
https://doi.org/10.5582/bst.2021.01091
[46] Zhu, H., Shan, Y., Ge, K., Lu, J., Kong, W. and Jia, C. (2020) Oxaliplatin Induces Immunogenic Cell Death in Hepatocellular Carcinoma Cells and Synergizes with Immune Checkpoint Blockade Therapy. Cellular Oncology, 43, 1203-1214.
https://doi.org/10.1007/s13402-020-00552-2
[47] Lei, L., Dong, Z., Xu, L., Yang, F., Yin, B., Wang, Y., et al. (2022) Metal-fluorouracil Networks with Disruption of Mitochondrion Enhanced Ferroptosis for Synergistic Immune Activation. Theranostics, 12, 6207-6222.
https://doi.org/10.7150/thno.75323
[48] 中国医师协会肝癌专业委员会. 肝细胞癌分子靶向药物临床应用中国专家共识(2020版) [J]. 中华医学杂志, 2021, 101(28): 2185-2194.
[49] Li, J., Zhang, L., Ge, T., Liu, J., Wang, C. and Yu, Q. (2024) Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications. Drug Design, Development and Therapy, 18, 829-843.
https://doi.org/10.2147/dddt.s443107
[50] Li, Q., Chen, K., Zhang, T., Jiang, D., Chen, L., Jiang, J., et al. (2023) Understanding Sorafenib-Induced Ferroptosis and Resistance Mechanisms: Implications for Cancer Therapy. European Journal of Pharmacology, 955, 175913.
https://doi.org/10.1016/j.ejphar.2023.175913
[51] Zhou, C., Yang, Z., Sun, B., Yi, Y., Wang, Z., Zhou, J., et al. (2023) Lenvatinib Induces Immunogenic Cell Death and Triggers Toll-Like Receptor-3/4 Ligands in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 10, 697-712.
https://doi.org/10.2147/jhc.s401639
[52] Mishchenko, T., Mitroshina, E., Balalaeva, I., Krysko, O., Vedunova, M. and Krysko, D.V. (2019) An Emerging Role for Nanomaterials in Increasing Immunogenicity of Cancer Cell Death. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1871, 99-108.
https://doi.org/10.1016/j.bbcan.2018.11.004
[53] Yin, L., Wei, Y., Liu, Y., Mo, X., Song, J. and Cai, W. (2024) Bio-responsive Au-Mir-183 Inhibitor Enhances Immunotherapy in Hepatocellular Carcinoma by Inducing Immunogenic Cell Death. Journal of Controlled Release, 368, 498-517.
https://doi.org/10.1016/j.jconrel.2024.02.036
[54] Zhou, T., Liang, X., Wang, P., Hu, Y., Qi, Y., Jin, Y., et al. (2020) A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities That, Combined with Immunotherapy, Inhibits Metastasis and Recurrence. ACS Nano, 14, 12679-12696.
https://doi.org/10.1021/acsnano.0c01453
[55] Chen, Y., Zeng, L., Zhu, H., Wu, Q., Liu, R., Liang, Q., et al. (2022) Ferritin Nanocaged Doxorubicin Potentiates Chemo‐immunotherapy against Hepatocellular Carcinoma via Immunogenic Cell Death. Small Methods, 7, Article ID: 2201086.
https://doi.org/10.1002/smtd.202201086
[56] Guo, J., Yu, Z., Sun, D., Zou, Y., Liu, Y. and Huang, L. (2021) Two Nanoformulations Induce Reactive Oxygen Species and Immunogenetic Cell Death for Synergistic Chemo-Immunotherapy Eradicating Colorectal Cancer and Hepatocellular Carcinoma. Molecular Cancer, 20, Article No. 10
https://doi.org/10.1186/s12943-020-01297-0
[57] Kaufman, H.L., Kohlhapp, F.J. and Zloza, A. (2015) Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nature Reviews Drug Discovery, 14, 642-662.
https://doi.org/10.1038/nrd4663
[58] Gujar, S., Pol, J.G., Kim, Y., Lee, P.W. and Kroemer, G. (2018) Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends in Immunology, 39, 209-221.
https://doi.org/10.1016/j.it.2017.11.006
[59] El-Shemi, A.G., Ashshi, A.M., Na, Y., Li, Y., Basalamah, M., Al-Allaf, F.A., et al. (2016) Combined Therapy with Oncolytic Adenoviruses Encoding TRAIL and IL-12 Genes Markedly Suppressed Human Hepatocellular Carcinoma Both in Vitro and in an Orthotopic Transplanted Mouse Model. Journal of Experimental & Clinical Cancer Research, 35, Article No. 74.
https://doi.org/10.1186/s13046-016-0353-8
[60] Heo, J., Reid, T., Ruo, L., Breitbach, C.J., Rose, S., Bloomston, M., et al. (2013) Randomized Dose-Finding Clinical Trial of Oncolytic Immunotherapeutic Vaccinia JX-594 in Liver Cancer. Nature Medicine, 19, 329-336.
https://doi.org/10.1038/nm.3089
[61] Moehler, M., Heo, J., Lee, H.C., Tak, W.Y., Chao, Y., Paik, S.W., et al. (2019) Vaccinia-Based Oncolytic Immunotherapy Pexastimogene Devacirepvec in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: A Randomized Multicenter Phase IIb Trial (Traverse). OncoImmunology, 8, Article ID: 1615817.
https://doi.org/10.1080/2162402x.2019.1615817
[62] Ruiz-Fernández, A.R., Campos, L., Gutierrez-Maldonado, S.E., Núñez, G., Villanelo, F. and Perez-Acle, T. (2022) Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. International Journal of Molecular Sciences, 23, Article 6158.
https://doi.org/10.3390/ijms23116158
[63] Yin, S., Chen, X., Hu, C., Zhang, X., Hu, Z., Yu, J., et al. (2014) Nanosecond Pulsed Electric Field (nsPEF) Treatment for Hepatocellular Carcinoma: A Novel Locoregional Ablation Decreasing Lung Metastasis. Cancer Letters, 346, 285-291.
https://doi.org/10.1016/j.canlet.2014.01.009
[64] Chen, X., Yin, S., Hu, C., Chen, X., Jiang, K., Ye, S., et al. (2014) Comparative Study of Nanosecond Electric Fields in Vitro and in Vivo on Hepatocellular Carcinoma Indicate Macrophage Infiltration Contribute to Tumor Ablation in Vivo. PLOS ONE, 9, e86421.
https://doi.org/10.1371/journal.pone.0086421
[65] Chen, R., Sain, N.M., Harlow, K.T., Chen, Y., Shires, P.K., Heller, R., et al. (2014) A Protective Effect after Clearance of Orthotopic Rat Hepatocellular Carcinoma by Nanosecond Pulsed Electric Fields. European Journal of Cancer, 50, 2705-2713.
https://doi.org/10.1016/j.ejca.2014.07.006
[66] Kobayashi, H. and Choyke, P.L. (2019) Near-Infrared Photoimmunotherapy of Cancer. Accounts of Chemical Research, 52, 2332-2339.
https://doi.org/10.1021/acs.accounts.9b00273
[67] Ogawa, M., Tomita, Y., Nakamura, Y., Lee, M., Lee, S., Tomita, S., et al. (2017) Immunogenic Cancer Cell Death Selectively Induced by near Infrared Photoimmunotherapy Initiates Host Tumor Immunity. Oncotarget, 8, 10425-10436.
https://doi.org/10.18632/oncotarget.14425
[68] Hanaoka, H., Nakajima, T., Sato, K., Watanabe, R., Phung, Y., Gao, W., et al. (2015) Photoimmunotherapy of Hepatocellular Carcinoma-Targeting Glypican-3 Combined with Nanosized Albumin-Bound Paclitaxel. Nanomedicine, 10, 1139-1147.
https://doi.org/10.2217/nnm.14.194
[69] Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., et al. (2018) Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomedicine & Pharmacotherapy, 106, 1098-1107.
https://doi.org/10.1016/j.biopha.2018.07.049
[70] Chouaib, S., Noman, M.Z., Kosmatopoulos, K. and Curran, M.A. (2016) Hypoxic Stress: Obstacles and Opportunities for Innovative Immunotherapy of Cancer. Oncogene, 36, 439-445.
https://doi.org/10.1038/onc.2016.225
[71] Hou, G., Qian, J., Guo, M., Xu, W., Wang, J., Wang, Y., et al. (2022) Hydrazide-Manganese Coordinated Multifunctional Nanoplatform for Potentiating Immunotherapy in Hepatocellular Carcinoma. Journal of Colloid and Interface Science, 628, 968-983.
https://doi.org/10.1016/j.jcis.2022.08.091
[72] Xu, J., Zheng, Q., Cheng, X., et al. (2021) Chemo-Photodynamic Therapy with Light-Triggered Disassembly of Theranostic Nano-Platform in Combination with Checkpoint Blockade for Immunotherapy of Hepatocellular Carcinoma. Journal of Nanobiotechnology, 19, 355.