|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
国家癌症中心国家肿瘤质控中心肝癌质控专家委员会. 中国肝癌规范诊疗质量控制指标(2022版) [J]. 肝癌电子杂志, 2022, 9(4): 1-11.
|
|
[3]
|
Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
European Association for the Study of the Liver and European Organisation for Research and Treatment of Cancer (2012) EASL-EORTC Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. Journal of Hepatology, 56, 908-943. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Toh, M.R., Wong, E.Y.T., Wong, S.H., Ng, A.W.T., Loo, L., Chow, P.K., et al. (2023) Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology, 164, 766-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ren, Z., Ma, X., Duan, Z. and Chen, X. (2020) Diagnosis, Therapy, and Prognosis for Hepatocellular Carcinoma. Analytical Cellular Pathology, 2020, Article ID: 8157406. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Befeler, A.S. and di Bisceglie, A.M. (2002) Hepatocellular Carcinoma: Diagnosis and Treatment. Gastroenterology, 122, 1609-1619. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Allemani, C., Matsuda, T., di Carlo, V., et al. (2018) Global Surveillance of Trends in Cancer Survival 2000-14 (CON-CORD-3): Analysis of Individual Records for 37 513 025 Patients Diagnosed with One of 18 Cancers from 322 Population-Based Registries in 71 Countries. Lancet, 391, 1023-1075.
|
|
[9]
|
Yao, L., Qiu, H., Pu, J., Diao, Y., LI, C., PAWLIK, T.M., et al. (2022) Clinical Features of Recurrence after Hepatic Resection for Early-Stage Hepatocellular Carcinoma and Long-Term Survival Outcomes of Patients with Recurrence: A Multi-Institutional Analysis. Annals of Hepato-Biliary-Pancreatic Surgery, 26, S302-S302. [Google Scholar] [CrossRef]
|
|
[10]
|
Park, J., Chen, M., Colombo, M., Roberts, L.R., Schwartz, M., Chen, P., et al. (2015) Global Patterns of Hepatocellular Carcinoma Management from Diagnosis to Death: The bridge Study. Liver International, 35, 2155-2166. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kalasekar, S.M., VanSant-Webb, C.H. and Evason, K.J. (2021) Intratumor Heterogeneity in Hepatocellular Carcinoma: Challenges and Opportunities. Cancers, 13, Article 5524. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Casares, N., Pequignot, M.O., Tesniere, A., Ghiringhelli, F., Roux, S., Chaput, N., et al. (2005) Caspase-Dependent Immunogenicity of Doxorubicin-Induced Tumor Cell Death. The Journal of Experimental Medicine, 202, 1691-1701. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kroemer, G., Galluzzi, L., Kepp, O. and Zitvogel, L. (2013) Immunogenic Cell Death in Cancer Therapy. Annual Review of Immunology, 31, 51-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zitvogel, L., Kepp, O. and Kroemer, G. (2011) Immune Parameters Affecting the Efficacy of Chemotherapeutic Regimens. Nature Reviews Clinical Oncology, 8, 151-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, W., Groenendyk, J. and Michalak, M. (2012) Calreticulin Signaling in Health and Disease. The International Journal of Biochemistry & Cell Biology, 44, 842-846. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zamanian, M., Veerakumarasivam, A., Fau-Abdullah, S., Abdullah, S., Fau-Rosli, R., et al. (2021) Calreticulin and cancer. Cell Research, 31, 5-16.
|
|
[17]
|
Gold, L.I., Eggleton, P., Sweetwyne, M.T., Van Duyn, L.B., Greives, M.R., Naylor, S., et al. (2009) Calreticulin: Non‐endoplasmic Reticulum Functions in Physiology and Disease. The FASEB Journal, 24, 665-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bezu, L., Sauvat, A., Humeau, J., Gomes-da-Silva, L.C., Iribarren, K., Forveille, S., et al. (2018) eIF2α Phosphorylation Is Pathognomonic for Immunogenic Cell Death. Cell Death & Differentiation, 25, 1375-1393. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Panaretakis, T., Kepp, O., Brockmeier, U., Tesniere, A., Bjorklund, A., Chapman, D.C., et al. (2009) Mechanisms of Pre-Apoptotic Calreticulin Exposure in Immunogenic Cell Death. The EMBO Journal, 28, 578-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zitvogel, L., Kepp, O., Senovilla, L., Menger, L., Chaput, N. and Kroemer, G. (2010) Immunogenic Tumor Cell Death for Optimal Anticancer Therapy: The Calreticulin Exposure Pathway. Clinical Cancer Research, 16, 3100-3104. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, C., Leclair, P., Pedari, F., Vieira, H., Monajemi, M., Sly, L.M., et al. (2019) Integrins and ERp57 Coordinate to Regulate Cell Surface Calreticulin in Immunogenic Cell Death. Frontiers in Oncology, 9, Article 411. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gebremeskel, S. and Johnston, B. (2015) Concepts and Mechanisms Underlying Chemotherapy Induced Immunogenic Cell Death: Impact on Clinical Studies and Considerations for Combined Therapies. Oncotarget, 6, 41600-41619. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Vultaggio-Poma, V., Sarti, A.C. and Di Virgilio, F. (2020) Extracellular ATP: A Feasible Target for Cancer Therapy. Cells, 9, Article 2496. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Elliott, M.R., Chekeni, F.B., Trampont, P.C., Lazarowski, E.R., Kadl, A., Walk, S.F., et al. (2009) Nucleotides Released by Apoptotic Cells Act as a Find-Me Signal to Promote Phagocytic Clearance. Nature, 461, 282-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ghiringhelli, F., Apetoh, L., Tesniere, A., Aymeric, L., Ma, Y., Ortiz, C., et al. (2009) Activation of the NLRP3 Inflammasome in Dendritic Cells Induces Il-1β-Dependent Adaptive Immunity against Tumors. Nature Medicine, 15, 1170-1178. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Swanson, K.V., Deng, M. and Ting, J.P. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tang, D., Kang, R., Coyne, C.B., Zeh, H.J. and Lotze, M.T. (2012) PAMPs and DAMPs: Signal 0s That Spur Autophagy and Immunity. Immunological Reviews, 249, 158-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
de Mendonça Amarante, A., Jupatanakul, N., de Abreu da Silva, I.C., Carneiro, V.C., Vicentino, A.R.R., Dimopolous, G., et al. (2017) The DNA Chaperone HMGB1 Potentiates the Transcriptional Activity of Rel1a in the Mosquito Aedes Aegypti. Insect Biochemistry and Molecular Biology, 80, 32-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Thwaites, D.T., Carter, C., Lawless, D., Savic, S. and Boyes, J.M. (2019) A Novel RAG1 Mutation Reveals a Critical in Vivo Role for HMGB1/2 during V(D)J Recombination. Blood, 133, 820-829. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Menger, L., Vacchelli, E., Adjemian, S., Martins, I., Ma, Y., Shen, S., et al. (2012) Cardiac Glycosides Exert Anticancer Effects by Inducing Immunogenic Cell Death. Science Translational Medicine, 4, 143ra99. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bell, C.W., Jiang, W., Reich, C.F. and Pisetsky, D.S. (2006) The Extracellular Release of HMGB1 during Apoptotic Cell Death. American Journal of Physiology-Cell Physiology, 291, C1318-C1325. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kalinina, N., Agrotis, A., Antropova, Y., DiVitto, G., Kanellakis, P., Kostolias, G., et al. (2004) Increased Expression of the DNA-Binding Cytokine HMGB1 in Human Atherosclerotic Lesions: Role of Activated Macrophages and Cytokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 2320-2325. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
van Beijnum, J.R., Buurman, W.A. and Griffioen, A.W. (2008) Convergence and Amplification of Toll-Like Receptor (TLR) and Receptor for Advanced Glycation End Products (RAGE) Signaling Pathways via High Mobility Group B1 (HMGB1). Angiogenesis, 11, 91-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Behl, T., Sharma, E., Sehgal, A., Kaur, I., Kumar, A., Arora, R., et al. (2021) Expatiating the Molecular Approaches of HMGB1 in Diabetes Mellitus: Highlighting Signalling Pathways via RAGE and TLRs. Molecular Biology Reports, 48, 1869-1881. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lan, J., Luo, H., Wu, R., Wang, J., Zhou, B., Zhang, Y., et al. (2020) Internalization of HMGB1 (High Mobility Group Box 1) Promotes Angiogenesis in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 2922-2940. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X. and Cao, S. (2017) Heat Shock Proteins and Cancer. Trends in Pharmacological Sciences, 38, 226-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yun, C.W., Kim, H.J., Lim, J.H. and Lee, S.H. (2019) Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells, 9, 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhu, M., Yang, M., Zhang, J., Yin, Y., Fan, X., Zhang, Y., et al. (2021) Immunogenic Cell Death Induction by Ionizing Radiation. Frontiers in Immunology, 12, Article 705361. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Jego, G., Hazoumé, A., Seigneuric, R. and Garrido, C. (2013) Targeting Heat Shock Proteins in Cancer. Cancer Letters, 332, 275-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kampinga, H.H., Hageman, J., Vos, M.J., Kubota, H., Tanguay, R.M., Bruford, E.A., et al. (2009) Guidelines for the Nomenclature of the Human Heat Shock Proteins. Cell Stress and Chaperones, 14, 105-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Montico, B., Nigro, A., Casolaro, V. and Dal Col, J. (2018) Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development. International Journal of Molecular Sciences, 19, Article 594. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Hickman-Miller, H.D. and Hildebrand, W.H. (2004) The Immune Response under Stress: The Role of HSP-Derived Peptides. Trends in Immunology, 25, 427-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hervas-Stubbs, S., Perez-Gracia, J.L., Rouzaut, A., Sanmamed, M.F., Le Bon, A. and Melero, I. (2011) Direct Effects of Type I Interferons on Cells of the Immune System. Clinical Cancer Research, 17, 2619-2627. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhou, H. and Song, T. (2021) Conversion Therapy and Maintenance Therapy for Primary Hepatocellular Carcinoma. BioScience Trends, 15, 155-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhu, H., Shan, Y., Ge, K., Lu, J., Kong, W. and Jia, C. (2020) Oxaliplatin Induces Immunogenic Cell Death in Hepatocellular Carcinoma Cells and Synergizes with Immune Checkpoint Blockade Therapy. Cellular Oncology, 43, 1203-1214. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lei, L., Dong, Z., Xu, L., Yang, F., Yin, B., Wang, Y., et al. (2022) Metal-fluorouracil Networks with Disruption of Mitochondrion Enhanced Ferroptosis for Synergistic Immune Activation. Theranostics, 12, 6207-6222. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
中国医师协会肝癌专业委员会. 肝细胞癌分子靶向药物临床应用中国专家共识(2020版) [J]. 中华医学杂志, 2021, 101(28): 2185-2194.
|
|
[49]
|
Li, J., Zhang, L., Ge, T., Liu, J., Wang, C. and Yu, Q. (2024) Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications. Drug Design, Development and Therapy, 18, 829-843. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, Q., Chen, K., Zhang, T., Jiang, D., Chen, L., Jiang, J., et al. (2023) Understanding Sorafenib-Induced Ferroptosis and Resistance Mechanisms: Implications for Cancer Therapy. European Journal of Pharmacology, 955, 175913. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhou, C., Yang, Z., Sun, B., Yi, Y., Wang, Z., Zhou, J., et al. (2023) Lenvatinib Induces Immunogenic Cell Death and Triggers Toll-Like Receptor-3/4 Ligands in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 10, 697-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mishchenko, T., Mitroshina, E., Balalaeva, I., Krysko, O., Vedunova, M. and Krysko, D.V. (2019) An Emerging Role for Nanomaterials in Increasing Immunogenicity of Cancer Cell Death. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1871, 99-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Yin, L., Wei, Y., Liu, Y., Mo, X., Song, J. and Cai, W. (2024) Bio-responsive Au-Mir-183 Inhibitor Enhances Immunotherapy in Hepatocellular Carcinoma by Inducing Immunogenic Cell Death. Journal of Controlled Release, 368, 498-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhou, T., Liang, X., Wang, P., Hu, Y., Qi, Y., Jin, Y., et al. (2020) A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities That, Combined with Immunotherapy, Inhibits Metastasis and Recurrence. ACS Nano, 14, 12679-12696. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Chen, Y., Zeng, L., Zhu, H., Wu, Q., Liu, R., Liang, Q., et al. (2022) Ferritin Nanocaged Doxorubicin Potentiates Chemo‐immunotherapy against Hepatocellular Carcinoma via Immunogenic Cell Death. Small Methods, 7, Article ID: 2201086. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Guo, J., Yu, Z., Sun, D., Zou, Y., Liu, Y. and Huang, L. (2021) Two Nanoformulations Induce Reactive Oxygen Species and Immunogenetic Cell Death for Synergistic Chemo-Immunotherapy Eradicating Colorectal Cancer and Hepatocellular Carcinoma. Molecular Cancer, 20, Article No. 10 [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kaufman, H.L., Kohlhapp, F.J. and Zloza, A. (2015) Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nature Reviews Drug Discovery, 14, 642-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Gujar, S., Pol, J.G., Kim, Y., Lee, P.W. and Kroemer, G. (2018) Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Virotherapies. Trends in Immunology, 39, 209-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
El-Shemi, A.G., Ashshi, A.M., Na, Y., Li, Y., Basalamah, M., Al-Allaf, F.A., et al. (2016) Combined Therapy with Oncolytic Adenoviruses Encoding TRAIL and IL-12 Genes Markedly Suppressed Human Hepatocellular Carcinoma Both in Vitro and in an Orthotopic Transplanted Mouse Model. Journal of Experimental & Clinical Cancer Research, 35, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Heo, J., Reid, T., Ruo, L., Breitbach, C.J., Rose, S., Bloomston, M., et al. (2013) Randomized Dose-Finding Clinical Trial of Oncolytic Immunotherapeutic Vaccinia JX-594 in Liver Cancer. Nature Medicine, 19, 329-336. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Moehler, M., Heo, J., Lee, H.C., Tak, W.Y., Chao, Y., Paik, S.W., et al. (2019) Vaccinia-Based Oncolytic Immunotherapy Pexastimogene Devacirepvec in Patients with Advanced Hepatocellular Carcinoma after Sorafenib Failure: A Randomized Multicenter Phase IIb Trial (Traverse). OncoImmunology, 8, Article ID: 1615817. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ruiz-Fernández, A.R., Campos, L., Gutierrez-Maldonado, S.E., Núñez, G., Villanelo, F. and Perez-Acle, T. (2022) Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. International Journal of Molecular Sciences, 23, Article 6158. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yin, S., Chen, X., Hu, C., Zhang, X., Hu, Z., Yu, J., et al. (2014) Nanosecond Pulsed Electric Field (nsPEF) Treatment for Hepatocellular Carcinoma: A Novel Locoregional Ablation Decreasing Lung Metastasis. Cancer Letters, 346, 285-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Chen, X., Yin, S., Hu, C., Chen, X., Jiang, K., Ye, S., et al. (2014) Comparative Study of Nanosecond Electric Fields in Vitro and in Vivo on Hepatocellular Carcinoma Indicate Macrophage Infiltration Contribute to Tumor Ablation in Vivo. PLOS ONE, 9, e86421. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Chen, R., Sain, N.M., Harlow, K.T., Chen, Y., Shires, P.K., Heller, R., et al. (2014) A Protective Effect after Clearance of Orthotopic Rat Hepatocellular Carcinoma by Nanosecond Pulsed Electric Fields. European Journal of Cancer, 50, 2705-2713. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Kobayashi, H. and Choyke, P.L. (2019) Near-Infrared Photoimmunotherapy of Cancer. Accounts of Chemical Research, 52, 2332-2339. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Ogawa, M., Tomita, Y., Nakamura, Y., Lee, M., Lee, S., Tomita, S., et al. (2017) Immunogenic Cancer Cell Death Selectively Induced by near Infrared Photoimmunotherapy Initiates Host Tumor Immunity. Oncotarget, 8, 10425-10436. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Hanaoka, H., Nakajima, T., Sato, K., Watanabe, R., Phung, Y., Gao, W., et al. (2015) Photoimmunotherapy of Hepatocellular Carcinoma-Targeting Glypican-3 Combined with Nanosized Albumin-Bound Paclitaxel. Nanomedicine, 10, 1139-1147. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., et al. (2018) Photodynamic Therapy—Mechanisms, Photosensitizers and Combinations. Biomedicine & Pharmacotherapy, 106, 1098-1107. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Chouaib, S., Noman, M.Z., Kosmatopoulos, K. and Curran, M.A. (2016) Hypoxic Stress: Obstacles and Opportunities for Innovative Immunotherapy of Cancer. Oncogene, 36, 439-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Hou, G., Qian, J., Guo, M., Xu, W., Wang, J., Wang, Y., et al. (2022) Hydrazide-Manganese Coordinated Multifunctional Nanoplatform for Potentiating Immunotherapy in Hepatocellular Carcinoma. Journal of Colloid and Interface Science, 628, 968-983. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Xu, J., Zheng, Q., Cheng, X., et al. (2021) Chemo-Photodynamic Therapy with Light-Triggered Disassembly of Theranostic Nano-Platform in Combination with Checkpoint Blockade for Immunotherapy of Hepatocellular Carcinoma. Journal of Nanobiotechnology, 19, 355.
|