[1]
|
Kuwar, R., Rolfe, A., Di, L., Blevins, H., Xu, Y., Sun, X., et al. (2021) A Novel Inhibitor Targeting NLRP3 Inflammasome Reduces Neuropathology and Improves Cognitive Function in Alzheimer’s Disease Transgenic Mice. Journal of Alzheimer’s Disease, 82, 1769-1783. https://doi.org/10.3233/jad-210400
|
[2]
|
Subramaniyan, S. and Terrando, N. (2019) Neuroinflammation and Perioperative Neurocognitive Disorders. Anesthesia & Analgesia, 128, 781-788. https://doi.org/10.1213/ane.0000000000004053
|
[3]
|
Zhao, Y., Liu, B., Wang, J., Xu, L., Yu, S., Fu, J., et al. (2022) Aβ and Tau Regulate Microglia Metabolism via Exosomes in Alzheimer’s Disease. Biomedicines, 10, Article 1800. https://doi.org/10.3390/biomedicines10081800
|
[4]
|
Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., et al. (1991) Physical Basis of Cognitive Alterations in Alzheimer’s Disease: Synapse Loss Is the Major Correlate of Cognitive Impairment. Annals of Neurology, 30, 572-580. https://doi.org/10.1002/ana.410300410
|
[5]
|
Blennow, K., Bogdanovic, N., Alafuzoff, I., Ekman, R. and Davidsson, P. (1996) Synaptic Pathology in Alzheimer’s Disease: Relation to Severity of Dementia, but Not to Senile Plaques, Neurofibrillary Tangles, or the ApoE4 Allele. Journal of Neural Transmission, 103, 603-618. https://doi.org/10.1007/bf01273157
|
[6]
|
Colbran, R.J. (2015) Thematic Minireview Series: Molecular Mechanisms of Synaptic Plasticity. Journal of Biological Chemistry, 290, 28594-28595. https://doi.org/10.1074/jbc.r115.696468
|
[7]
|
Cai, H., Pang, Y., Ren, Z., Fu, X. and Jia, L. (2024) Delivering Synaptic Protein mRNAs via Extracellular Vesicles Ameliorates Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. BMC Medicine, 22, Article No. 138. https://doi.org/10.1186/s12916-024-03359-2
|
[8]
|
(2021) 2021 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 17, 327-406. https://doi.org/10.1002/alz.12328
|
[9]
|
Andersson, E.M., Hoff, E.J., Waldö, M.L. and Englund, E. (2020) Clinicopathological Concordance in Cognitive Disease Diagnostics. Clinical Neuropathology, 39, 99-104. https://doi.org/10.5414/np301204
|
[10]
|
Ahmadi, H., Fatemizadeh, E. and Motie-Nasrabadi, A. (2020) Identifying Brain Functional Connectivity Alterations during Different Stages of Alzheimer’s Disease. International Journal of Neuroscience, 132, 1005-1013. https://doi.org/10.1080/00207454.2020.1860037
|
[11]
|
Babaei, P. (2021) NMDA and AMPA Receptors Dysregulation in Alzheimer’s Disease. European Journal of Pharmacology, 908, Article ID: 174310. https://doi.org/10.1016/j.ejphar.2021.174310
|
[12]
|
Nunes, D., Loureiro, J.A. and Pereira, M.C. (2022) Drug Delivery Systems as a Strategy to Improve the Efficacy of FDA-Approved Alzheimer’s Drugs. Pharmaceutics, 14, Article 2296. https://doi.org/10.3390/pharmaceutics14112296
|
[13]
|
Chin, E., Jaqua, E., Safaeipour, M. and Ladue, T. (2022) Conventional versus New Treatment: Comparing the Effects of Acetylcholinesterase Inhibitors and N-Methyl-D-Aspartate Receptor Antagonist with Aducanumab. Cureus, 14, e31065. https://doi.org/10.7759/cureus.31065
|
[14]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
|
[15]
|
Caruso Bavisotto, C., Scalia, F., Marino Gammazza, A., Carlisi, D., Bucchieri, F., Conway de Macario, E., et al. (2019) Extracellular Vesicle-Mediated Cell-Cell Communication in the Nervous System: Focus on Neurological Diseases. International Journal of Molecular Sciences, 20, Article 434. https://doi.org/10.3390/ijms20020434
|
[16]
|
Zhang, T., Ma, S., Lv, J., Wang, X., Afewerky, H.K., Li, H., et al. (2021) The Emerging Role of Exosomes in Alzheimer’s Disease. Ageing Research Reviews, 68, Article ID: 101321. https://doi.org/10.1016/j.arr.2021.101321
|
[17]
|
Yuyama, K. and Igarashi, Y. (2016) Physiological and Pathological Roles of Exosomes in the Nervous System. Biomolecular Concepts, 7, 53-68. https://doi.org/10.1515/bmc-2015-0033
|
[18]
|
Rajendran, L., Bali, J., Barr, M.M., Court, F.A., Krämer-Albers, E., Picou, F., et al. (2014) Emerging Roles of Extracellular Vesicles in the Nervous System. The Journal of Neuroscience, 34, 15482-15489. https://doi.org/10.1523/jneurosci.3258-14.2014
|
[19]
|
Schnatz, A., Müller, C., Brahmer, A. and Krämer‐Albers, E. (2021) Extracellular Vesicles in Neural Cell Interaction and CNS Homeostasis. FASEB BioAdvances, 3, 577-592. https://doi.org/10.1096/fba.2021-00035
|
[20]
|
Yáñez‐Mó, M., Siljander, P.R.‐., Andreu, Z., Bedina Zavec, A., Borràs, F.E., Buzas, E.I., et al. (2015) Biological Properties of Extracellular Vesicles and Their Physiological Functions. Journal of Extracellular Vesicles, 4, Article ID: 27066. https://doi.org/10.3402/jev.v4.27066
|
[21]
|
Raposo, G. and Stoorvogel, W. (2013) Extracellular Vesicles: Exosomes, Microvesicles, and Friends. Journal of Cell Biology, 200, 373-383. https://doi.org/10.1083/jcb.201211138
|
[22]
|
Battistelli, M. and Falcieri, E. (2020) Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology, 9, Article 21. https://doi.org/10.3390/biology9010021
|
[23]
|
Ha, D., Yang, N. and Nadithe, V. (2016) Exosomes as Therapeutic Drug Carriers and Delivery Vehicles across Biological Membranes: Current Perspectives and Future Challenges. Acta Pharmaceutica Sinica B, 6, 287-296. https://doi.org/10.1016/j.apsb.2016.02.001
|
[24]
|
Jiao, Z., He, Z., Liu, N., Lai, Y. and Zhong, T. (2022) Multiple Roles of Neuronal Extracellular Vesicles in Neurological Disorders. Frontiers in Cellular Neuroscience, 16, Article 979856. https://doi.org/10.3389/fncel.2022.979856
|
[25]
|
Hessvik, N.P. and Llorente, A. (2017) Current Knowledge on Exosome Biogenesis and Release. Cellular and Molecular Life Sciences, 75, 193-208. https://doi.org/10.1007/s00018-017-2595-9
|
[26]
|
Malm, T., Loppi, S. and Kanninen, K.M. (2016) Exosomes in Alzheimer’s Disease. Neurochemistry International, 97, 193-199. https://doi.org/10.1016/j.neuint.2016.04.011
|
[27]
|
Elkin, S.R., Lakoduk, A.M. and Schmid, S.L. (2016) Endocytic Pathways and Endosomal Trafficking: A Primer. Wiener Medizinische Wochenschrift, 166, 196-204. https://doi.org/10.1007/s10354-016-0432-7
|
[28]
|
Soares Martins, T., Trindade, D., Vaz, M., Campelo, I., Almeida, M., Trigo, G., et al. (2020) Diagnostic and Therapeutic Potential of Exosomes in Alzheimer’s Disease. Journal of Neurochemistry, 156, 162-181. https://doi.org/10.1111/jnc.15112
|
[29]
|
Luzio, J.P., Gray, S.R. and Bright, N.A. (2010) Endosome-Lysosome Fusion. Biochemical Society Transactions, 38, 1413-1416. https://doi.org/10.1042/bst0381413
|
[30]
|
Janas, A.M., Sapoń, K., Janas, T., Stowell, M.H.B. and Janas, T. (2016) Exosomes and Other Extracellular Vesicles in Neural Cells and Neurodegenerative Diseases. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1858, 1139-1151. https://doi.org/10.1016/j.bbamem.2016.02.011
|
[31]
|
van Niel, G., D’Angelo, G. and Raposo, G. (2018) Shedding Light on the Cell Biology of Extracellular Vesicles. Nature Reviews Molecular Cell Biology, 19, 213-228. https://doi.org/10.1038/nrm.2017.125
|
[32]
|
Saeedi, S., Israel, S., Nagy, C. and Turecki, G. (2019) The Emerging Role of Exosomes in Mental Disorders. Translational Psychiatry, 9, Article No. 122. https://doi.org/10.1038/s41398-019-0459-9
|
[33]
|
Pastuzyn, E.D., Day, C.E., Kearns, R.B., Kyrke-Smith, M., Taibi, A.V., McCormick, J., et al. (2018) The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein That Mediates Intercellular RNA Transfer. Cell, 172, 275-288.e18. https://doi.org/10.1016/j.cell.2017.12.024
|
[34]
|
Peng, C., Trojanowski, J.Q. and Lee, V.M.-. (2020) Protein Transmission in Neurodegenerative Disease. Nature Reviews Neurology, 16, 199-212. https://doi.org/10.1038/s41582-020-0333-7
|
[35]
|
Wang, Y., Balaji, V., Kaniyappan, S., Krüger, L., Irsen, S., Tepper, K., et al. (2017) The Release and Trans-Synaptic Transmission of Tau via Exosomes. Molecular Neurodegeneration, 12, Article No. 5. https://doi.org/10.1186/s13024-016-0143-y
|
[36]
|
Yin, Z., Han, Z., Hu, T., Zhang, S., Ge, X., Huang, S., et al. (2020) Neuron-Derived Exosomes with High Mir-21-5p Expression Promoted Polarization of M1 Microglia in Culture. Brain, Behavior, and Immunity, 83, 270-282. https://doi.org/10.1016/j.bbi.2019.11.004
|
[37]
|
Zhou, B., Zuo, Y. and Jiang, R. (2019) Astrocyte Morphology: Diversity, Plasticity, and Role in Neurological Diseases. CNS Neuroscience & Therapeutics, 25, 665-673. https://doi.org/10.1111/cns.13123
|
[38]
|
Datta Chaudhuri, A., Dasgheyb, R.M., DeVine, L.R., Bi, H., Cole, R.N. and Haughey, N.J. (2019) Stimulus‐Dependent Modifications in Astrocyte‐Derived Extracellular Vesicle Cargo Regulate Neuronal Excitability. Glia, 68, 128-144. https://doi.org/10.1002/glia.23708
|
[39]
|
Woodbury, M.E. and Ikezu, T. (2013) Fibroblast Growth Factor-2 Signaling in Neurogenesis and Neurodegeneration. Journal of Neuroimmune Pharmacology, 9, 92-101. https://doi.org/10.1007/s11481-013-9501-5
|
[40]
|
Zhao, Y., Lin, M., Lin, Q., Yang, W., Yu, X., Tian, F., et al. (2016) Intranasal Delivery of bFGF with Nanoliposomes Enhances in Vivo Neuroprotection and Neural Injury Recovery in a Rodent Stroke Model. Journal of Controlled Release, 224, 165-175. https://doi.org/10.1016/j.jconrel.2016.01.017
|
[41]
|
Shim, J. and Madsen, J. (2018) VEGF Signaling in Neurological Disorders. International Journal of Molecular Sciences, 19, Article 275. https://doi.org/10.3390/ijms19010275
|
[42]
|
Fournier, N.M. and Duman, R.S. (2012) Role of Vascular Endothelial Growth Factor in Adult Hippocampal Neurogenesis: Implications for the Pathophysiology and Treatment of Depression. Behavioural Brain Research, 227, 440-449. https://doi.org/10.1016/j.bbr.2011.04.022
|
[43]
|
Tillo, M., Ruhrberg, C. and Mackenzie, F. (2012) Emerging Roles for Semaphorins and VEGFs in Synaptogenesis and Synaptic Plasticity. Cell Adhesion & Migration, 6, 541-546. https://doi.org/10.4161/cam.22408
|
[44]
|
Lange, C., Storkebaum, E., de Almodóvar, C.R., Dewerchin, M. and Carmeliet, P. (2016) Vascular Endothelial Growth Factor: A Neurovascular Target in Neurological Diseases. Nature Reviews Neurology, 12, 439-454. https://doi.org/10.1038/nrneurol.2016.88
|
[45]
|
Pascua-Maestro, R., González, E., Lillo, C., Ganfornina, M.D., Falcón-Pérez, J.M. and Sanchez, D. (2019) Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Frontiers in Cellular Neuroscience, 12, Article 526. https://doi.org/10.3389/fncel.2018.00526
|
[46]
|
Li, H., Ruberu, K., Muñoz, S.S., Jenner, A.M., Spiro, A., Zhao, H., et al. (2015) Apolipoprotein D Modulates Amyloid Pathology in APP/PS1 Alzheimer’s Disease Mice. Neurobiology of Aging, 36, 1820-1833. https://doi.org/10.1016/j.neurobiolaging.2015.02.010
|
[47]
|
Uddin, M.S. and Lim, L.W. (2022) Glial Cells in Alzheimer’s Disease: From Neuropathological Changes to Therapeutic Implications. Ageing Research Reviews, 78, Article ID: 101622. https://doi.org/10.1016/j.arr.2022.101622
|
[48]
|
Yan, Y., Gao, Y., Kumar, G., Fang, Q., Yan, H., Zhang, N., et al. (2024) Exosomal MicroRNAs Modulate the Cognitive Function in Fasudil Treated APPswe/PSEN1dE9 Transgenic (APP/PS1) Mice Model of Alzheimer’s Disease. Metabolic Brain Disease. https://doi.org/10.1007/s11011-024-01395-8
|
[49]
|
Weng, S., Lai, Q., Wang, J., Zhuang, L., Cheng, L., Mo, Y., et al. (2022) The Role of Exosomes as Mediators of Neuroinflammation in the Pathogenesis and Treatment of Alzheimer’s Disease. Frontiers in Aging Neuroscience, 14, Article 899944. https://doi.org/10.3389/fnagi.2022.899944
|
[50]
|
Silverman, J.M., Christy, D., Shyu, C.C., Moon, K., Fernando, S., Gidden, Z., et al. (2019) CNS-Derived Extracellular Vesicles from Superoxide Dismutase 1 (SOD1)G93A ALS Mice Originate from Astrocytes and Neurons and Carry Misfolded Sod1. Journal of Biological Chemistry, 294, 3744-3759. https://doi.org/10.1074/jbc.ra118.004825
|
[51]
|
Peng, D., Wang, Y., Xiao, Y., Peng, M., Mai, W., Hu, B., et al. (2022) Extracellular Vesicles Derived from Astrocyte-Treated with haFGF14-154 Attenuate Alzheimer Phenotype in AD Mice. Theranostics, 12, 3862-3881. https://doi.org/10.7150/thno.70951
|
[52]
|
Nouri, Z., Barfar, A., Perseh, S., Motasadizadeh, H., Maghsoudian, S., Fatahi, Y., et al. (2024) Exosomes as Therapeutic and Drug Delivery Vehicle for Neurodegenerative Diseases. Journal of Nanobiotechnology, 22, Article No. 463. https://doi.org/10.1186/s12951-024-02681-4
|
[53]
|
Liu, J., Zhou, J., You, C., Xia, H., Gao, Y., Liu, Y., et al. (2024) Research Progress in the Mechanism of Acupuncture Regulating Microglia in the Treatment of Alzheimer’s Disease. Frontiers in Neuroscience, 18, Article 1435082. https://doi.org/10.3389/fnins.2024.1435082
|
[54]
|
Colonna, M. and Butovsky, O. (2017) Microglia Function in the Central Nervous System during Health and Neurodegeneration. Annual Review of Immunology, 35, 441-468. https://doi.org/10.1146/annurev-immunol-051116-052358
|
[55]
|
Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., et al. (2010) Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science, 330, 841-845. https://doi.org/10.1126/science.1194637
|
[56]
|
Subhramanyam, C.S., Wang, C., Hu, Q. and Dheen, S.T. (2019) Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Seminars in Cell & Developmental Biology, 94, 112-120. https://doi.org/10.1016/j.semcdb.2019.05.004
|
[57]
|
Ceccarelli, L., Giacomelli, C., Marchetti, L. and Martini, C. (2021) Microglia Extracellular Vesicles: Focus on Molecular Composition and Biological Function. Biochemical Society Transactions, 49, 1779-1790. https://doi.org/10.1042/bst20210202
|
[58]
|
Huang, S., Ge, X., Yu, J., Han, Z., Yin, Z., Li, Y., et al. (2017) Increased miR‐124‐3p in Microglial Exosomes Following Traumatic Brain Injury Inhibits Neuronal Inflammation and Contributes to Neurite Outgrowth via Their Transfer into Neurons. The FASEB Journal, 32, 512-528. https://doi.org/10.1096/fj.201700673r
|
[59]
|
Sardar Sinha, M., Ansell-Schultz, A., Civitelli, L., Hildesjö, C., Larsson, M., Lannfelt, L., et al. (2018) Alzheimer’s Disease Pathology Propagation by Exosomes Containing Toxic Amyloid-β Oligomers. Acta Neuropathologica, 136, 41-56. https://doi.org/10.1007/s00401-018-1868-1
|
[60]
|
Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., et al. (2015) Depletion of Microglia and Inhibition of Exosome Synthesis Halt Tau Propagation. Nature Neuroscience, 18, 1584-1593. https://doi.org/10.1038/nn.4132
|
[61]
|
Gao, S., Jia, S., Bai, L., Li, D. and Meng, C. (2022) Transcriptome Analysis Unveils That Exosomes Derived from M1-Polarized Microglia Induce Ferroptosis of Neuronal Cells. Cells, 11, Article 3956. https://doi.org/10.3390/cells11243956
|
[62]
|
Falcicchia, C., Tozzi, F., Gabrielli, M., Amoretti, S., Masini, G., Nardi, G., et al. (2023) Microglial Extracellular Vesicles Induce Alzheimer’s Disease-Related Cortico-Hippocampal Network Dysfunction. Brain Communications, 5, fcad170. https://doi.org/10.1093/braincomms/fcad170
|