神经源性外泌体对阿尔兹海默病治疗的研究进展
Research Progress of Neurogenic Exosomes in the Treatment of Alzheimer’s Disease
DOI: 10.12677/acm.2024.1492563, PDF, HTML, XML,   
作者: 黄思柔:西安医学院研究生工作部,陕西 西安;杨 浩:西安市中心医院神经外科,陕西 西安;刘卫平*:西安医学院第一附属医院神经外科,陕西 西安
关键词: 阿尔兹海默病外泌体神经炎症血脑屏障Alzheimer’s Disease Exosomes Neuroinflammation Blood-Brain Barrier
摘要: 阿尔茨海默病(Alzheimer’s disease, AD)是一种进行性的神经退行性疾病,也是最常见的痴呆症。世界上65岁及以上的老年人超过10%患有AD。AD在神经病理学上与特定脑区域中神经元和突触的进行性损失、淀粉样蛋白斑块和神经纤维缠结的沉积、神经炎症、血脑屏障(Blood-brain barrier, BBB)破坏、线粒体功能障碍及氧化应激相关。尽管做了大量的努力,仍然没有治愈该疾病的方法。近年来,随着科学家们对外泌体进行深入研究,发现神经源性外泌体在治疗包括AD在内的各种疾病方面具有很大的前景,因为它们含有多种抗凋亡、抗炎和抗氧化成分。不仅如此,神经源性外泌体还促进神经发生和血管生成并修复受损的BBB。因此,本文主要概述外泌体的生物发生及吸收、总结神经源性外泌体治疗AD的最新数据及讨论神经源性外泌体治疗AD的挑战和前景。
Abstract: Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common form of dementia. More than 10% of the world’s elderly people aged 65 and over have AD. AD is neuropathologically associated with progressive loss of neurons and synapses in specific brain regions, deposition of amyloid plaques and neurofibrillary tangles, neuroinflammation, blood-brain barrier (BBB) disruption, mitochondrial dysfunction, and oxidative stress. Despite a lot of efforts, there is still no cure for the disease. In recent years, as scientists have conducted in-depth research on exosomes, it has been found that neurogenic exosomes have great promise in the treatment of various diseases, including AD, because they contain a variety of anti-apoptotic, anti-inflammatory, and antioxidant components. Not only that, neurogenic exosomes also promote neurogenesis and angiogenesis and repair damaged BBBs. Therefore, this article mainly summarizes the biogenesis and absorption of exosomes, summarizes the latest data of neurogenic exosomes in the treatment of AD, and discusses the challenges and prospects of neurogenic exosomes in the treatment of AD.
文章引用:黄思柔, 杨浩, 刘卫平. 神经源性外泌体对阿尔兹海默病治疗的研究进展[J]. 临床医学进展, 2024, 14(9): 1034-1041. https://doi.org/10.12677/acm.2024.1492563

1. 引言

阿尔茨海默病(Alzheimer’s disease, AD)是一种与衰老密切相关的神经退行性疾病。这种疾病会逐渐损害学习、记忆、解决问题、语言和其他思维能力,最终导致认知障碍[1]。炎症失调和神经元损伤是认知障碍的主要特征,神经炎症甚至被认为是神经认知疾病(如AD)发生认知障碍的起始和致病因素[2],其促使大量小胶质细胞活化并改变神经炎症微环境[3],同时使内皮功能失调、BBB破坏造成脑血管的损伤,进一步加剧神经炎症。此外,突触功能障碍也是AD的重要病理特征,有研究证实,此改变可能先于神经元变性和死亡[4],并与认知障碍的相关性最强[5]。突触的正常功能对于神经冲动的传递和记忆的形成与储存至关重要[6],并且突触蛋白在记忆加工、学习和AD发病机制中发挥关键作用[7]。AD是最常见的痴呆形式,占所有痴呆病例的60%~70% [8]。其他主要形式的痴呆包括血管性痴呆、额颞叶痴呆、路易体痴呆和混合性痴呆[9]。有研究表明,AD患者这些病理学改变比痴呆症状显现要早数年[10]。随着老龄化人口的增加,AD已迅速成为全球范围内的主要公共卫生问题。在AD中,除胆碱能受体外,N-甲基-D-天冬氨酸(NMDA)受体也失调,导致神经元死亡[11]。因此,NMDA受体拮抗剂美金刚(FDA授权药物)为治疗中重度AD患者提供了一种选择[12]。尽管这些药物在改善和稳定症状方面具有临床获益,但只能在有限的时间内减轻AD引起的认知症状,而不能停止或逆转神经元死亡[13]。因此,开发有效的治疗方法治疗AD已成为当务之急。越来越多的数据表明,神经源性外泌体作为治疗剂和药物载体,有望成为AD新的治疗策略。

外泌体是MVB胞吐时释放的纳米大小的细胞外囊泡,其特征在于双层膜结构,外泌体可由大多数细胞类型分泌,并通常存在于体液中[14]。中枢神经系统(Central nervous system, CNS)中的外泌体在细胞内局部传递信息,并通过脑脊液(Cerebrospinal fluid, CSF)广泛传递信息[15]。外泌体含有蛋白质、脂质和核酸分子,通过吞噬作用、胞饮作用、胞吞作用等机制从供体细胞转运至远处的受体细胞,或者与质膜融合[16]。此外,外泌体被视为可在细胞间的货物载体,促进物质和信息交换。研究表明,CNS内的几种细胞,例如神经元、星形胶质细胞、小胶质细胞等能够释放外泌体[17]-[19]。这些外泌体在正常和疾病状态下都可能有积极或消极的影响。因此,研究神经源性外泌体在AD中的具体机制显得尤为重要。

2. 外泌体生物发生与吸收

根据它们的大小和来源鉴定了EV的三个主要类别,即外泌体、微泡(Microvesicles, MV)和凋亡小体。MV是通过从质膜上发芽而产生的,直径通常在100至1000 nm之间[20] [21]。直径在100至2000 nm之间的凋亡小体是由凋亡细胞的质膜产生的,它们通常不参与细胞通讯,因为它们被吞噬细胞摄取[22]。外泌体是在胞吞作用期间形成的最小的细胞外囊泡,通常直径为30至150 nm [23] [24]。外泌体发育始于内体系统,并与膜细胞器的加工有关,如高尔基网络、内质网、溶酶体、和自噬体[25]。内吞作用期间形成内吞体,通过吞噬帮助细胞吸收物质(如蛋白质、脂质和分子) [26] [27]。细胞内吞作用发生于早期的内吞体,涉及质膜和外部货物。高尔基体网络和内质网在早期内体的形成中起作用。早期内体随着其成熟而转变为晚期内体。内体进一步内陷形成腔内囊泡(Intraluminal Vesicles, ILVs) [28],最终导致多泡体(Multivesicular Bodies, MVBs)的形成。MVBs直接与溶酶体或自噬体融合,导致囊泡内容物的降解[29]。或者MVBs与质膜融合,以排出作为外泌体的ILVs [30] [31],通过配体-受体相互作用、膜融合、内吞作用和吞噬作用与受体细胞接合进而发挥生物学功能。

3. 神经源性外泌体与AD

3.1. 神经元外泌体

神经元是构成大脑和神经系统的细胞,也是发送和接收信号的基本单位,使我们能够运动肌肉、感受外部世界、思考、形成记忆等[24]。在神经系统中,活性神经元能够以谷氨酸调节方式释放含有脂质、蛋白质和RNA转录物的外泌体。这些外泌体可以改变邻近神经胶质细胞、神经元和干细胞中的蛋白质表达、神经传递和神经发生[32]。不仅如此,神经元衍生的外泌体还能从细胞中去除过量和/或不必要的成分以维持细胞内环境平衡和细胞间通讯,这一过程与自噬相似,都被认为是清除细胞垃圾的过程[24]。外泌体对受体细胞的作用依赖于神经元的状态,神经元在生理状态或药物作用下产生的外泌体对其他细胞有保护作用,如神经元通过分泌外泌体将miR-132转移至内皮细胞,然后通过直接靶向真核细胞延伸因子2激酶(The eukaryotic elongation factor 2 kinase, eef 2k)来调节血管内皮钙粘蛋白(VE-cadherin)的表达,以维持脑血管完整性。充足的血液供应以及血管结构和功能的完整性是正常脑功能的关键,一旦血–脑脊液屏障的完整性遭到破坏,将会诱发神经炎症。神经元基因Arc是哺乳动物脑中持久信息储存所必需的,其介导各种形式的突触可塑性,并与神经发育障碍有关。Pastuzyn等[33]发现,神经元Arc蛋白自组装成病毒样衣壳包裹Arc mRNA,介导了外泌体中Arc蛋白和Arc mRNA在神经元之间的传递,并进行活性依赖性翻译以调节受体神经元的突触可塑性。此外,将神经元来源的外泌体注射到AD转基因小鼠的脑中有助于Aβ肽清除。相反,在AD病程中,受损神经元中的基因表达会导致包装到外泌体中的货物失调,失调的货物分子随后被递送到胶质细胞或其它神经元细胞,诱导其正常内源性对应蛋白质错误折叠形成Aβ和tau聚集体[34],它们作为“病理性种子”不能被有效地降解或清除,导致神经元功能受损和受体细胞中Aβ和tau蛋白构象的扩增[35],从而使细胞功能发生失调。例如,Yin和他的同事发现,在PC12细胞和来自PC12细胞的外泌体中,划痕损伤后miRNA-21-5p的表达显著升高。这些含有miRNA-21-5p的外泌体穿梭进入BV2细胞,诱导细胞极化,随后极化的BV2细胞通过分泌促炎因子如IL-1β、IL-6和TNF-α引起慢性神经炎症[36]。总之,这些“不寻常的外泌体”被其他神经元或胶质细胞吸收,通过干扰基因表达或蛋白质折叠来扰乱细胞内稳态,诱导炎症,介导神经元和突触损失,加速AD认知障碍进程。

3.2. 星形胶质细胞外泌体

星形胶质细胞是神经胶质细胞的一种,约占CNS总细胞群的20~40% [37],参与了健康和疾病的多个过程并在维持CNS的结构和功能方面起着关键作用。细胞外囊泡(Extracellular vesicles, EVs)是星形胶质细胞和神经元之间的重要通信形式之一[38]。在正常条件下,星形胶质细胞源性外泌体(Astrocyte-derived Evs, ADEVs)具有成纤维细胞生长因子-2 (Fibroblast growth factor-2, FGF-2)、血管内皮生长因子(Vascular endothelial growth factor, VEGF)、载脂蛋白-D、热休克蛋白70、突触蛋白1、独特的microRNA和谷氨酸转运蛋白等神经保护化合物。其中FGF-2可增加海马神经发生[39],并在不利条件下具有神经保护作用[40];VEGF促进脑中的血管生成[41]、神经发生[42]、突触发生和突触可塑性[43]以及神经保护活性[44];载脂蛋白-D (Apo-D),可促进神经元在不利条件下(如氧化应激增加等)功能的完整性和存活[45],并且Apo-D还参与β-淀粉样斑块病理学的调节[46],从而发挥神经营养和神经保护特性。然而,在AD中,神经胶质细胞经历了病理变化,例如活化和功能障碍,这些变化与病情的进展密切相关[47]。活化的神经胶质细胞会释放外泌体,这些外泌体含有β-淀粉样蛋白和tau蛋白等与疾病相关的分子,外泌体通过将这些分子释放到细胞外环境中,促进了神经炎症的进程[48] [49],这与之前Silverman等学者的研究结果一致[50]。此外,星形胶质细胞外泌体能够靶向AD相关的神经元,传递治疗性分子,如脑源性神经营养因子(Brain-derived neurotrophic factor, BDNF),从而促进神经细胞的存活和功能恢复[51]。如NOURI等学者发现,酸性成纤维细胞生长因子(Acidic fibroblast growth factor, aFGF)减弱星形胶质细胞的活化,AD小鼠BDNF基因受miR-206-3p负调控,星形胶质细胞外泌体通过miR-206-3p/BDNF轴抑制δ-分泌酶(Asparagine endopeptidase, AEP)激活,以减轻AD脑中的Aβ负荷[52]。研究表明,星形胶质细胞外泌体在AD病理过程中起着双重作用:既作为病理介导者,又成为治疗靶点[16],有望成为AD新的干预或治疗手段。

3.3. 小胶质细胞外泌体

小胶质细胞是CNS中的常驻巨噬细胞,约占CNS总细胞群的10%~15% [53]。静息状态(M0型)小胶质细胞具有分支形态,并发挥“免疫监视”作用。交替活化(M2型)小胶质细胞参与吞噬作用,从CNS中清除有害物质,如细菌、死细胞和聚集蛋白,并分泌可溶性因子(例如,化学引诱物、细胞因子和神经营养因子)参与免疫应答和受损脑组织的修复,从而参与神经保护[54]。经典激活(M1型)小胶质细胞释放促炎因子和有毒物质以杀死病原体[55]。临床研究表明,过度活化的M1小胶质细胞可导致神经元功能障碍、损伤和变性,并在AD中发挥重要作用[56]。一般情况下,小胶质细胞外泌体可以介导神经元的兴奋性,并在不同细胞之间转移生物分子,如蛋白质和RNA [57]。小胶质细胞外泌体功能的多样性依赖于小胶质细胞的表型。例如,神经保护性小胶质细胞衍生的外泌体通过将修复相关分子转移到神经元中以抑制神经元炎症和促进神经突生长[58]。在AD中,极化的小胶质细胞释放含有与阿尔兹海默病相关蛋白质的外泌体,如Aβ [59]和tau [60],介导神经炎症和突触功能障碍。GAO等学者还发现M1极化的BV2小胶质细胞外泌体可诱导神经元细胞铁蛋白增多,从而加重神经元的损伤[61]。值得注意的是,外泌体在AD中充当致病蛋白(包括Aβ)的远距离载体。FALCICCHIA等学者发现在外侧内嗅皮层(LEC)中单次注射携带Aβ的小胶质细胞外泌体能够抑制长时程增强(Long-term potentiation, LTP) [62],继而证明了小胶质细胞外泌体参与淀粉样蛋白病理沿着突触连接区域的传播,导致大脑网络活动和记忆表现的异常。

4. 展望

本文主要就外泌体的生物发生及吸收、神经源性外泌体在阿尔茨海默病病理及治疗中的作用进行综述。外泌体因其体积小、在细胞间通讯中的重要功能、生物相容性、安全性以及作为多种脑疾病(如AD)的诊断和治疗工具的潜在用途而引起了相当大的兴趣。外泌体似乎在AD中具有双重功能,既参与疾病的发展,也可能参与疾病的改善。外泌体可以通过促进疾病相关蛋白的传播、触发炎症和氧化应激、血管生成或引发细胞死亡来加速疾病过程。相反,外泌体已被证明可通过促进Aβ和tau蛋白的清除来减缓疾病进展。然而,外泌体发挥这些不同功能的潜在机制仍然不够清楚,需要进一步深入研究来探讨外泌体参与AD的机制并验证其作为候选药物的潜力,这不仅需要更多的数据来揭示外泌体在AD中的功能,而且还需要利用先进的成像标记方法使之能够实时观察细胞或动物中外泌体的相互作用。此外,尽管外泌体具有独特的分子特征,但其作为AD有前途的治疗剂仍处于开发的初期阶段,不仅如此,如何大规模生产和纯化外泌体仍然是一个技术难题。因此需要开发标准化的方法来确保外泌体的质量和一致性。相信随着技术的不断进步和研究的深入,眼前的困难终将得到良好解决。

NOTES

*通讯作者。

参考文献

[1] Kuwar, R., Rolfe, A., Di, L., Blevins, H., Xu, Y., Sun, X., et al. (2021) A Novel Inhibitor Targeting NLRP3 Inflammasome Reduces Neuropathology and Improves Cognitive Function in Alzheimer’s Disease Transgenic Mice. Journal of Alzheimers Disease, 82, 1769-1783.
https://doi.org/10.3233/jad-210400
[2] Subramaniyan, S. and Terrando, N. (2019) Neuroinflammation and Perioperative Neurocognitive Disorders. Anesthesia & Analgesia, 128, 781-788.
https://doi.org/10.1213/ane.0000000000004053
[3] Zhao, Y., Liu, B., Wang, J., Xu, L., Yu, S., Fu, J., et al. (2022) Aβ and Tau Regulate Microglia Metabolism via Exosomes in Alzheimer’s Disease. Biomedicines, 10, Article 1800.
https://doi.org/10.3390/biomedicines10081800
[4] Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., et al. (1991) Physical Basis of Cognitive Alterations in Alzheimer’s Disease: Synapse Loss Is the Major Correlate of Cognitive Impairment. Annals of Neurology, 30, 572-580.
https://doi.org/10.1002/ana.410300410
[5] Blennow, K., Bogdanovic, N., Alafuzoff, I., Ekman, R. and Davidsson, P. (1996) Synaptic Pathology in Alzheimer’s Disease: Relation to Severity of Dementia, but Not to Senile Plaques, Neurofibrillary Tangles, or the ApoE4 Allele. Journal of Neural Transmission, 103, 603-618.
https://doi.org/10.1007/bf01273157
[6] Colbran, R.J. (2015) Thematic Minireview Series: Molecular Mechanisms of Synaptic Plasticity. Journal of Biological Chemistry, 290, 28594-28595.
https://doi.org/10.1074/jbc.r115.696468
[7] Cai, H., Pang, Y., Ren, Z., Fu, X. and Jia, L. (2024) Delivering Synaptic Protein mRNAs via Extracellular Vesicles Ameliorates Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. BMC Medicine, 22, Article No. 138.
https://doi.org/10.1186/s12916-024-03359-2
[8] (2021) 2021 Alzheimer’s Disease Facts and Figures. Alzheimers & Dementia: The Journal of the Alzheimers Association, 17, 327-406.
https://doi.org/10.1002/alz.12328
[9] Andersson, E.M., Hoff, E.J., Waldö, M.L. and Englund, E. (2020) Clinicopathological Concordance in Cognitive Disease Diagnostics. Clinical Neuropathology, 39, 99-104.
https://doi.org/10.5414/np301204
[10] Ahmadi, H., Fatemizadeh, E. and Motie-Nasrabadi, A. (2020) Identifying Brain Functional Connectivity Alterations during Different Stages of Alzheimer’s Disease. International Journal of Neuroscience, 132, 1005-1013.
https://doi.org/10.1080/00207454.2020.1860037
[11] Babaei, P. (2021) NMDA and AMPA Receptors Dysregulation in Alzheimer’s Disease. European Journal of Pharmacology, 908, Article ID: 174310.
https://doi.org/10.1016/j.ejphar.2021.174310
[12] Nunes, D., Loureiro, J.A. and Pereira, M.C. (2022) Drug Delivery Systems as a Strategy to Improve the Efficacy of FDA-Approved Alzheimer’s Drugs. Pharmaceutics, 14, Article 2296.
https://doi.org/10.3390/pharmaceutics14112296
[13] Chin, E., Jaqua, E., Safaeipour, M. and Ladue, T. (2022) Conventional versus New Treatment: Comparing the Effects of Acetylcholinesterase Inhibitors and N-Methyl-D-Aspartate Receptor Antagonist with Aducanumab. Cureus, 14, e31065.
https://doi.org/10.7759/cureus.31065
[14] Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[15] Caruso Bavisotto, C., Scalia, F., Marino Gammazza, A., Carlisi, D., Bucchieri, F., Conway de Macario, E., et al. (2019) Extracellular Vesicle-Mediated Cell-Cell Communication in the Nervous System: Focus on Neurological Diseases. International Journal of Molecular Sciences, 20, Article 434.
https://doi.org/10.3390/ijms20020434
[16] Zhang, T., Ma, S., Lv, J., Wang, X., Afewerky, H.K., Li, H., et al. (2021) The Emerging Role of Exosomes in Alzheimer’s Disease. Ageing Research Reviews, 68, Article ID: 101321.
https://doi.org/10.1016/j.arr.2021.101321
[17] Yuyama, K. and Igarashi, Y. (2016) Physiological and Pathological Roles of Exosomes in the Nervous System. Biomolecular Concepts, 7, 53-68.
https://doi.org/10.1515/bmc-2015-0033
[18] Rajendran, L., Bali, J., Barr, M.M., Court, F.A., Krämer-Albers, E., Picou, F., et al. (2014) Emerging Roles of Extracellular Vesicles in the Nervous System. The Journal of Neuroscience, 34, 15482-15489.
https://doi.org/10.1523/jneurosci.3258-14.2014
[19] Schnatz, A., Müller, C., Brahmer, A. and Krämer‐Albers, E. (2021) Extracellular Vesicles in Neural Cell Interaction and CNS Homeostasis. FASEB BioAdvances, 3, 577-592.
https://doi.org/10.1096/fba.2021-00035
[20] Yáñez‐Mó, M., Siljander, P.R.‐., Andreu, Z., Bedina Zavec, A., Borràs, F.E., Buzas, E.I., et al. (2015) Biological Properties of Extracellular Vesicles and Their Physiological Functions. Journal of Extracellular Vesicles, 4, Article ID: 27066.
https://doi.org/10.3402/jev.v4.27066
[21] Raposo, G. and Stoorvogel, W. (2013) Extracellular Vesicles: Exosomes, Microvesicles, and Friends. Journal of Cell Biology, 200, 373-383.
https://doi.org/10.1083/jcb.201211138
[22] Battistelli, M. and Falcieri, E. (2020) Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology, 9, Article 21.
https://doi.org/10.3390/biology9010021
[23] Ha, D., Yang, N. and Nadithe, V. (2016) Exosomes as Therapeutic Drug Carriers and Delivery Vehicles across Biological Membranes: Current Perspectives and Future Challenges. Acta Pharmaceutica Sinica B, 6, 287-296.
https://doi.org/10.1016/j.apsb.2016.02.001
[24] Jiao, Z., He, Z., Liu, N., Lai, Y. and Zhong, T. (2022) Multiple Roles of Neuronal Extracellular Vesicles in Neurological Disorders. Frontiers in Cellular Neuroscience, 16, Article 979856.
https://doi.org/10.3389/fncel.2022.979856
[25] Hessvik, N.P. and Llorente, A. (2017) Current Knowledge on Exosome Biogenesis and Release. Cellular and Molecular Life Sciences, 75, 193-208.
https://doi.org/10.1007/s00018-017-2595-9
[26] Malm, T., Loppi, S. and Kanninen, K.M. (2016) Exosomes in Alzheimer’s Disease. Neurochemistry International, 97, 193-199.
https://doi.org/10.1016/j.neuint.2016.04.011
[27] Elkin, S.R., Lakoduk, A.M. and Schmid, S.L. (2016) Endocytic Pathways and Endosomal Trafficking: A Primer. Wiener Medizinische Wochenschrift, 166, 196-204.
https://doi.org/10.1007/s10354-016-0432-7
[28] Soares Martins, T., Trindade, D., Vaz, M., Campelo, I., Almeida, M., Trigo, G., et al. (2020) Diagnostic and Therapeutic Potential of Exosomes in Alzheimer’s Disease. Journal of Neurochemistry, 156, 162-181.
https://doi.org/10.1111/jnc.15112
[29] Luzio, J.P., Gray, S.R. and Bright, N.A. (2010) Endosome-Lysosome Fusion. Biochemical Society Transactions, 38, 1413-1416.
https://doi.org/10.1042/bst0381413
[30] Janas, A.M., Sapoń, K., Janas, T., Stowell, M.H.B. and Janas, T. (2016) Exosomes and Other Extracellular Vesicles in Neural Cells and Neurodegenerative Diseases. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1858, 1139-1151.
https://doi.org/10.1016/j.bbamem.2016.02.011
[31] van Niel, G., D’Angelo, G. and Raposo, G. (2018) Shedding Light on the Cell Biology of Extracellular Vesicles. Nature Reviews Molecular Cell Biology, 19, 213-228.
https://doi.org/10.1038/nrm.2017.125
[32] Saeedi, S., Israel, S., Nagy, C. and Turecki, G. (2019) The Emerging Role of Exosomes in Mental Disorders. Translational Psychiatry, 9, Article No. 122.
https://doi.org/10.1038/s41398-019-0459-9
[33] Pastuzyn, E.D., Day, C.E., Kearns, R.B., Kyrke-Smith, M., Taibi, A.V., McCormick, J., et al. (2018) The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein That Mediates Intercellular RNA Transfer. Cell, 172, 275-288.e18.
https://doi.org/10.1016/j.cell.2017.12.024
[34] Peng, C., Trojanowski, J.Q. and Lee, V.M.-. (2020) Protein Transmission in Neurodegenerative Disease. Nature Reviews Neurology, 16, 199-212.
https://doi.org/10.1038/s41582-020-0333-7
[35] Wang, Y., Balaji, V., Kaniyappan, S., Krüger, L., Irsen, S., Tepper, K., et al. (2017) The Release and Trans-Synaptic Transmission of Tau via Exosomes. Molecular Neurodegeneration, 12, Article No. 5.
https://doi.org/10.1186/s13024-016-0143-y
[36] Yin, Z., Han, Z., Hu, T., Zhang, S., Ge, X., Huang, S., et al. (2020) Neuron-Derived Exosomes with High Mir-21-5p Expression Promoted Polarization of M1 Microglia in Culture. Brain, Behavior, and Immunity, 83, 270-282.
https://doi.org/10.1016/j.bbi.2019.11.004
[37] Zhou, B., Zuo, Y. and Jiang, R. (2019) Astrocyte Morphology: Diversity, Plasticity, and Role in Neurological Diseases. CNS Neuroscience & Therapeutics, 25, 665-673.
https://doi.org/10.1111/cns.13123
[38] Datta Chaudhuri, A., Dasgheyb, R.M., DeVine, L.R., Bi, H., Cole, R.N. and Haughey, N.J. (2019) Stimulus‐Dependent Modifications in Astrocyte‐Derived Extracellular Vesicle Cargo Regulate Neuronal Excitability. Glia, 68, 128-144.
https://doi.org/10.1002/glia.23708
[39] Woodbury, M.E. and Ikezu, T. (2013) Fibroblast Growth Factor-2 Signaling in Neurogenesis and Neurodegeneration. Journal of Neuroimmune Pharmacology, 9, 92-101.
https://doi.org/10.1007/s11481-013-9501-5
[40] Zhao, Y., Lin, M., Lin, Q., Yang, W., Yu, X., Tian, F., et al. (2016) Intranasal Delivery of bFGF with Nanoliposomes Enhances in Vivo Neuroprotection and Neural Injury Recovery in a Rodent Stroke Model. Journal of Controlled Release, 224, 165-175.
https://doi.org/10.1016/j.jconrel.2016.01.017
[41] Shim, J. and Madsen, J. (2018) VEGF Signaling in Neurological Disorders. International Journal of Molecular Sciences, 19, Article 275.
https://doi.org/10.3390/ijms19010275
[42] Fournier, N.M. and Duman, R.S. (2012) Role of Vascular Endothelial Growth Factor in Adult Hippocampal Neurogenesis: Implications for the Pathophysiology and Treatment of Depression. Behavioural Brain Research, 227, 440-449.
https://doi.org/10.1016/j.bbr.2011.04.022
[43] Tillo, M., Ruhrberg, C. and Mackenzie, F. (2012) Emerging Roles for Semaphorins and VEGFs in Synaptogenesis and Synaptic Plasticity. Cell Adhesion & Migration, 6, 541-546.
https://doi.org/10.4161/cam.22408
[44] Lange, C., Storkebaum, E., de Almodóvar, C.R., Dewerchin, M. and Carmeliet, P. (2016) Vascular Endothelial Growth Factor: A Neurovascular Target in Neurological Diseases. Nature Reviews Neurology, 12, 439-454.
https://doi.org/10.1038/nrneurol.2016.88
[45] Pascua-Maestro, R., González, E., Lillo, C., Ganfornina, M.D., Falcón-Pérez, J.M. and Sanchez, D. (2019) Extracellular Vesicles Secreted by Astroglial Cells Transport Apolipoprotein D to Neurons and Mediate Neuronal Survival Upon Oxidative Stress. Frontiers in Cellular Neuroscience, 12, Article 526.
https://doi.org/10.3389/fncel.2018.00526
[46] Li, H., Ruberu, K., Muñoz, S.S., Jenner, A.M., Spiro, A., Zhao, H., et al. (2015) Apolipoprotein D Modulates Amyloid Pathology in APP/PS1 Alzheimer’s Disease Mice. Neurobiology of Aging, 36, 1820-1833.
https://doi.org/10.1016/j.neurobiolaging.2015.02.010
[47] Uddin, M.S. and Lim, L.W. (2022) Glial Cells in Alzheimer’s Disease: From Neuropathological Changes to Therapeutic Implications. Ageing Research Reviews, 78, Article ID: 101622.
https://doi.org/10.1016/j.arr.2022.101622
[48] Yan, Y., Gao, Y., Kumar, G., Fang, Q., Yan, H., Zhang, N., et al. (2024) Exosomal MicroRNAs Modulate the Cognitive Function in Fasudil Treated APPswe/PSEN1dE9 Transgenic (APP/PS1) Mice Model of Alzheimer’s Disease. Metabolic Brain Disease.
https://doi.org/10.1007/s11011-024-01395-8
[49] Weng, S., Lai, Q., Wang, J., Zhuang, L., Cheng, L., Mo, Y., et al. (2022) The Role of Exosomes as Mediators of Neuroinflammation in the Pathogenesis and Treatment of Alzheimer’s Disease. Frontiers in Aging Neuroscience, 14, Article 899944.
https://doi.org/10.3389/fnagi.2022.899944
[50] Silverman, J.M., Christy, D., Shyu, C.C., Moon, K., Fernando, S., Gidden, Z., et al. (2019) CNS-Derived Extracellular Vesicles from Superoxide Dismutase 1 (SOD1)G93A ALS Mice Originate from Astrocytes and Neurons and Carry Misfolded Sod1. Journal of Biological Chemistry, 294, 3744-3759.
https://doi.org/10.1074/jbc.ra118.004825
[51] Peng, D., Wang, Y., Xiao, Y., Peng, M., Mai, W., Hu, B., et al. (2022) Extracellular Vesicles Derived from Astrocyte-Treated with haFGF14-154 Attenuate Alzheimer Phenotype in AD Mice. Theranostics, 12, 3862-3881.
https://doi.org/10.7150/thno.70951
[52] Nouri, Z., Barfar, A., Perseh, S., Motasadizadeh, H., Maghsoudian, S., Fatahi, Y., et al. (2024) Exosomes as Therapeutic and Drug Delivery Vehicle for Neurodegenerative Diseases. Journal of Nanobiotechnology, 22, Article No. 463.
https://doi.org/10.1186/s12951-024-02681-4
[53] Liu, J., Zhou, J., You, C., Xia, H., Gao, Y., Liu, Y., et al. (2024) Research Progress in the Mechanism of Acupuncture Regulating Microglia in the Treatment of Alzheimer’s Disease. Frontiers in Neuroscience, 18, Article 1435082.
https://doi.org/10.3389/fnins.2024.1435082
[54] Colonna, M. and Butovsky, O. (2017) Microglia Function in the Central Nervous System during Health and Neurodegeneration. Annual Review of Immunology, 35, 441-468.
https://doi.org/10.1146/annurev-immunol-051116-052358
[55] Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., et al. (2010) Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science, 330, 841-845.
https://doi.org/10.1126/science.1194637
[56] Subhramanyam, C.S., Wang, C., Hu, Q. and Dheen, S.T. (2019) Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Seminars in Cell & Developmental Biology, 94, 112-120.
https://doi.org/10.1016/j.semcdb.2019.05.004
[57] Ceccarelli, L., Giacomelli, C., Marchetti, L. and Martini, C. (2021) Microglia Extracellular Vesicles: Focus on Molecular Composition and Biological Function. Biochemical Society Transactions, 49, 1779-1790.
https://doi.org/10.1042/bst20210202
[58] Huang, S., Ge, X., Yu, J., Han, Z., Yin, Z., Li, Y., et al. (2017) Increased miR‐124‐3p in Microglial Exosomes Following Traumatic Brain Injury Inhibits Neuronal Inflammation and Contributes to Neurite Outgrowth via Their Transfer into Neurons. The FASEB Journal, 32, 512-528.
https://doi.org/10.1096/fj.201700673r
[59] Sardar Sinha, M., Ansell-Schultz, A., Civitelli, L., Hildesjö, C., Larsson, M., Lannfelt, L., et al. (2018) Alzheimer’s Disease Pathology Propagation by Exosomes Containing Toxic Amyloid-β Oligomers. Acta Neuropathologica, 136, 41-56.
https://doi.org/10.1007/s00401-018-1868-1
[60] Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., et al. (2015) Depletion of Microglia and Inhibition of Exosome Synthesis Halt Tau Propagation. Nature Neuroscience, 18, 1584-1593.
https://doi.org/10.1038/nn.4132
[61] Gao, S., Jia, S., Bai, L., Li, D. and Meng, C. (2022) Transcriptome Analysis Unveils That Exosomes Derived from M1-Polarized Microglia Induce Ferroptosis of Neuronal Cells. Cells, 11, Article 3956.
https://doi.org/10.3390/cells11243956
[62] Falcicchia, C., Tozzi, F., Gabrielli, M., Amoretti, S., Masini, G., Nardi, G., et al. (2023) Microglial Extracellular Vesicles Induce Alzheimer’s Disease-Related Cortico-Hippocampal Network Dysfunction. Brain Communications, 5, fcad170.
https://doi.org/10.1093/braincomms/fcad170