[1]
|
Li, S., Jiang, X., Luo, Y., Zhou, B., Shi, M., Liu, F., et al. (2019) Sodium/Calcium Overload and Sirt1/Nrf2/OH-1 Pathway Are Critical Events in Mercuric Chloride-Induced Nephrotoxicity. Chemosphere, 234, 579-588. https://doi.org/10.1016/j.chemosphere.2019.06.095
|
[2]
|
Wu, T., Yao, H., Zhang, B., Zhou, S., Hou, P. and Chen, K. (2021) κ Opioid Receptor Agonist Inhibits Myocardial Injury in Heart Failure Rats through Activating Nrf2/HO‐1 Pathway and Regulating Ca2+‐SERCA2a. Oxidative Medicine and Cellular Longevity, 2021, Article 7328437. https://doi.org/10.1155/2021/7328437
|
[3]
|
Park, H., Kim, H., Kim, C.Y., Seo, M. and Baek, S. (2021) Synergistic Protection by Isoquercitrin and Quercetin against Glutamate-Induced Oxidative Cell Death in HT22 Cells via Activating Nrf2 and HO-1 Signaling Pathway: Neuroprotective Principles and Mechanisms of Dendropanax morbifera Leaves. Antioxidants, 10, Article 554. https://doi.org/10.3390/antiox10040554
|
[4]
|
Yang, R., Gao, W., Wang, Z., Jian, H., Peng, L., Yu, X., et al. (2024) Polyphyllin I Induced Ferroptosis to Suppress the Progression of Hepatocellular Carcinoma through Activation of the Mitochondrial Dysfunction via Nrf2/HO-1/GPX4 Axis. Phytomedicine, 122, Article 155135. https://doi.org/10.1016/j.phymed.2023.155135
|
[5]
|
Li, H., Leung, J.C.K., Yiu, W.H., Chan, L.Y.Y., Li, B., Lok, S.W.Y., et al. (2022) Tubular β-Catenin Alleviates Mitochondrial Dysfunction and Cell Death in Acute Kidney Injury. Cell Death & Disease, 13, Article No. 1061. https://doi.org/10.1038/s41419-022-05395-3
|
[6]
|
Zhu, H., Dai, Z., Liu, X., Zhou, H. and Wang, Y. (2023) Serine/Threonine Kinase 3 Promotes Oxidative Stress and Mitochondrial Damage in Septic Cardiomyopathy through Inducing Kelch-Like ECH-Associated Protein 1 Phosphorylation and Nuclear Factor Erythroid 2-Related Factor 2 Degradation. International Journal of Biological Sciences, 19, 1369-1381. https://doi.org/10.7150/ijbs.80800
|
[7]
|
Cai, X., Hua, S., Deng, J., Du, Z., Zhang, D., Liu, Z., et al. (2022) Astaxanthin Activated the Nrf2/HO-1 Pathway to Enhance Autophagy and Inhibit Ferroptosis, Ameliorating Acetaminophen-Induced Liver Injury. ACS Applied Materials & Interfaces, 14, 42887-42903. https://doi.org/10.1021/acsami.2c10506
|
[8]
|
Li, S., Zheng, L., Zhang, J., Liu, X. and Wu, Z. (2021) Inhibition of Ferroptosis by Up-Regulating Nrf2 Delayed the Progression of Diabetic Nephropathy. Free Radical Biology and Medicine, 162, 435-449. https://doi.org/10.1016/j.freeradbiomed.2020.10.323
|
[9]
|
Yang, S., Xie, Z., Pei, T., Zeng, Y., Xiong, Q., Wei, H., et al. (2022) Salidroside Attenuates Neuronal Ferroptosis by Activating the Nrf2/HO1 Signaling Pathway in Aβ1-42-Induced Alzheimer’s Disease Mice and Glutamate-Injured HT22 Cells. Chinese Medicine, 17, Article No. 82. https://doi.org/10.1186/s13020-022-00634-3
|
[10]
|
Wang, L., Liu, J., Wang, Z., Qian, X., Zhao, Y., Wang, Q., et al. (2023) Dexmedetomidine Abates Myocardial Ischemia Reperfusion Injury through Inhibition of Pyroptosis via Regulation of miR-665/MEF2D/Nrf2 Axis. Biomedicine & Pharmacotherapy, 165, Article 115255. https://doi.org/10.1016/j.biopha.2023.115255
|
[11]
|
Lin, Y., Luo, T., Weng, A., Huang, X., Yao, Y., Fu, Z., et al. (2020) Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis through Enhancing Nrf2 Signaling. Frontiers in Immunology, 11, Article 580593. https://doi.org/10.3389/fimmu.2020.580593
|
[12]
|
Zou, Y., Luo, X., Feng, Y., Fang, S., Tian, J., Yu, B., et al. (2021) Luteolin Prevents THP-1 Macrophage Pyroptosis by Suppressing ROS Production via Nrf2 Activation. Chemico-Biological Interactions, 345, Article 109573. https://doi.org/10.1016/j.cbi.2021.109573
|
[13]
|
Wang, S., Zheng, Y., Jin, S., Fu, Y. and Liu, Y. (2022) Dioscin Protects against Cisplatin-Induced Acute Kidney Injury by Reducing Ferroptosis and Apoptosis through Activating Nrf2/HO-1 Signaling. Antioxidants, 11, Article 2443. https://doi.org/10.3390/antiox11122443
|
[14]
|
Wang, Y., Liu, Z., Ma, J., Xv, Q., Gao, H., Yin, H., et al. (2022) Lycopene Attenuates the Inflammation and Apoptosis in Aristolochic Acid Nephropathy by Targeting the Nrf2 Antioxidant System. Redox Biology, 57, Article 102494. https://doi.org/10.1016/j.redox.2022.102494
|
[15]
|
Meng, M., Huo, R., Wang, Y., Ma, N., Shi, X., Shen, X., et al. (2022) Lentinan Inhibits Oxidative Stress and Alleviates LPS-Induced Inflammation and Apoptosis of BMECs by Activating the Nrf2 Signaling Pathway. International Journal of Biological Macromolecules, 222, 2375-2391. https://doi.org/10.1016/j.ijbiomac.2022.10.024
|
[16]
|
李德东, 杨陈祎, 孙健, 等. 高糖诱发施万细胞损伤时自噬与Nrf2信号通路的关系[J]. 中华麻醉学杂志, 2021, 41(2): 185-188.
|
[17]
|
Zang, H., Wu, W., Qi, L., Tan, W., Nagarkatti, P., Nagarkatti, M., et al. (2020) Autophagy Inhibition Enables Nrf2 to Exaggerate the Progression of Diabetic Cardiomyopathy in Mice. Diabetes, 69, 2720-2734. https://doi.org/10.2337/db19-1176
|
[18]
|
Shao, D., Shen, W., Miao, Y., Gao, Z., Pan, M., Wei, Q., et al. (2023) Sulforaphane Prevents LPS-Induced Inflammation by Regulating the Nrf2-Mediated Autophagy Pathway in Goat Mammary Epithelial Cells and a Mouse Model of Mastitis. Journal of Animal Science and Biotechnology, 14, Article No. 61. https://doi.org/10.1186/s40104-023-00858-9
|
[19]
|
Sharma, V., Kaur, A. and Singh, T.G. (2020) Counteracting Role of Nuclear Factor Erythroid 2-Related Factor 2 Pathway in Alzheimer’s Disease. Biomedicine & Pharmacotherapy, 129, Article 110373. https://doi.org/10.1016/j.biopha.2020.110373
|
[20]
|
Jiang, J., Pan, H., Shen, F., Tan, Y. and Chen, S. (2023) Ketogenic Diet Alleviates Cognitive Dysfunction and Neuroinflammation in APP/PS1 Mice via the Nrf2/HO-1 and NF-κB Signaling Pathways. Neural Regeneration Research, 18, 2767-2772. https://doi.org/10.4103/1673-5374.373715
|
[21]
|
Kim, S., Indu Viswanath, A.N., Park, J., Lee, H.E., Park, A.Y., Choi, J.W., et al. (2020) Nrf2 Activator via Interference of Nrf2-Keap1 Interaction Has Antioxidant and Anti-Inflammatory Properties in Parkinson’s Disease Animal Model. Neuropharmacology, 167, Article 107989. https://doi.org/10.1016/j.neuropharm.2020.107989
|
[22]
|
Tong, H., Zhang, X., Meng, X., Lu, L., Mai, D. and Qu, S. (2018) Simvastatin Inhibits Activation of NADPH Oxidase/p38 MAPK Pathway and Enhances Expression of Antioxidant Protein in Parkinson Disease Models. Frontiers in Molecular Neuroscience, 11, Article 165. https://doi.org/10.3389/fnmol.2018.00165
|
[23]
|
Masaki, Y., Izumi, Y., Matsumura, A., Akaike, A. and Kume, T. (2017) Protective Effect of Nrf2-ARE Activator Isolated from Green Perilla Leaves on Dopaminergic Neuronal Loss in a Parkinson’s Disease Model. European Journal of Pharmacology, 798, 26-34. https://doi.org/10.1016/j.ejphar.2017.02.005
|
[24]
|
Gafson, A.R., Kim, K., Cencioni, M.T., van Hecke, W., Nicholas, R., Baranzini, S.E., et al. (2018) Mononuclear Cell Transcriptome Changes Associated with Dimethyl Fumarate in MS. Neurology Neuroimmunology & Neuroinflammation, 5, e470. https://doi.org/10.1212/nxi.0000000000000470
|
[25]
|
Wheeler, M.A., Clark, I.C., Tjon, E.C., Li, Z., Zandee, S.E.J., Couturier, C.P., et al. (2020) MAFG-Driven Astrocytes Promote CNS Inflammation. Nature, 578, 593-599. https://doi.org/10.1038/s41586-020-1999-0
|
[26]
|
鞠文媛, 陈阳阳, 褚果果, 李晓慧, 张海飞, 宋丽娟, 等. 白果内酯激活Nrf2/HO-1通路抑制星形胶质细胞的氧化应激缓解CPZ诱导的髓鞘脱失[J]. 中国免疫学杂志, 2022, 38(3): 257-262.
|
[27]
|
王明盛, 崔焕喜, 崔红凯, 等. Ngn2调节Nrf2/HO-1对脑缺血模型大鼠脑微结构、角质细胞活性的影响[J]. 中国组织工程研究, 2023, 27(33): 5298-5303.
|
[28]
|
罗佳, 吴宇, 刘京东, 等. 香叶醇通过调控Nrf2/HO-1途径调节氧化应激减轻大鼠脑缺血/再灌注损伤[J]. 中国药理学通报, 2024, 40(3): 431-439.
|
[29]
|
师荣荣, 刘伟, 王海龙. 氢吗啡酮对脑缺血再灌注损伤大鼠Ca MMKβ及Nrf2/HO-1信号通路表达的影响[J]. 国际麻醉学与复苏杂志, 2023, 44(2): 122-127.
|
[30]
|
Li, J., Tian, M., Hua, T., Wang, H., Yang, M., Li, W., et al. (2021) Combination of Autophagy and NFE2L2/NRF2 Activation as a Treatment Approach for Neuropathic Pain. Autophagy, 17, 4062-4082. https://doi.org/10.1080/15548627.2021.1900498
|
[31]
|
邵寒雨, 符元元, 王娟, 等. 背根神经节血红素加氧酶1过表达缓解小鼠神经病理性疼痛[J]. 中国疼痛医学杂志, 2021, 27(2): 105-112.
|
[32]
|
Sun, Q., Hu, T., Zhang, Y., Wang, X., Liu, J., Chen, W., et al. (2022) IRG1/Itaconate Increases IL-10 Release to Alleviate Mechanical and Thermal Hypersensitivity in Mice after Nerve Injury. Frontiers in Immunology, 13, Article 1012442. https://doi.org/10.3389/fimmu.2022.1012442
|