外泌体在脓毒症免疫麻痹机制中的研究进展
Research Progress of Exosomes in the Mechanism of Immunosuppression in Sepsis
DOI: 10.12677/acm.2024.1492570, PDF, HTML, XML,   
作者: 向俊洁:南华大学衡阳医学院,湖南 衡阳;周建亮*:南华大学怀化临床学院,湖南 怀化
关键词: 外泌体免疫麻痹脓毒症程序性死亡受体1嗜中性粒细胞细胞外陷阱Exosomes Immune Paralysis Sepsis Programmed Death Receptor 1 (PD-1) Neutrophil Extracellular Trap (NET)
摘要: 脓毒症(sepsis)作为一种在重症监护病房中常见的高危疾病,其特征是由于宿主体内感染引发的免疫反应失衡,进而导致生命威胁性的多器官功能衰竭。免疫系统的调控紊乱是脓毒症发病的核心机制,而在疾病进程中,免疫细胞的凋亡加速和炎症因子的异常释放所引发的免疫功能抑制,是造成多数患者死亡的重要原因。近年来,外泌体在脓毒症中的角色受到了广泛关注,特别是在免疫调节方面的作用,可在细胞间传递信息,影响宿主的免疫响应。在脓毒症中,外泌体可能通过携带特定的信号分子影响免疫细胞的功能,从而在免疫麻痹中起到一定的作用。免疫功能监测与免疫治疗在肿瘤领域成为研究的热点并取得一定成果,脓毒症同样涉及免疫麻痹,但其具体机制值得进一步探究。本文就脓毒症免疫麻痹机制中外泌体可能通过的两个机制的研究进展进行综述。
Abstract: Sepsis is a common high-risk disease in intensive care units. It is characterized by an imbalance in the immune response caused by infection in the host, which in turn leads to life-threatening multiple organ failure. The disorder of immune system regulation is the core mechanism of sepsis pathogenesis. In the disease process, the accelerated apoptosis of immune cells and the abnormal release of inflammatory factors causing immunosuppression are important reasons for the death of most patients. In recent years, the role of exosomes in sepsis has received extensive attention, especially their role in immune regulation. They can transmit information between cells and affect the host’s immune response. In sepsis, exosomes may affect the function of immune cells by carrying specific signal molecules, thus playing a certain role in immune paralysis. Immune function monitoring and immunotherapy have become research hotspots in the field of tumors and have achieved certain results. Sepsis also involves immune paralysis, but its specific mechanism is worthy of further exploration. This article reviews the research progress of two possible mechanisms through which exosomes may act in the mechanism of immunosuppression in sepsis.
文章引用:向俊洁, 周建亮. 外泌体在脓毒症免疫麻痹机制中的研究进展[J]. 临床医学进展, 2024, 14(9): 1086-1092. https://doi.org/10.12677/acm.2024.1492570

1. 引言

2016年第三次国际共识重新定义脓毒症,定义为宿主对感染的反应失调,导致器官功能障碍综合征(syndrome function)威胁生命[1]。脓毒症具有高病死率、高异质性等特点,全世界范围内,脓毒症的住院死亡率高达10%以上,在脓毒症进一步严重发展成脓毒性休克后,其住院死亡率进一步升高,超过了40% [2]。仅在中国,每年有超过100万例脓毒症相关死亡病例[3],且2020年一项国家横断面调查显示ICU中脓毒症的发生率为每100例ICU住院患者中有20.6例[4]。脓毒症发生时,通过机体固有性免疫和适应性免疫的改变参与免疫麻痹[5],在脓毒症的发病过程中,机体的先天免疫与获得性免疫系统经历了一系列的变化,这些变化共同促成了免疫功能的抑制状态,即所谓的免疫麻痹。这一复杂的免疫反应涉及到多种生物学过程,如细胞凋亡、自噬作用、对内毒素的耐受能力、代谢途径的重塑以及表观遗传学的调控等。特别是,这种由脓毒症引发的免疫抑制现象,往往伴随着T细胞、B细胞和树突状细胞等关键免疫细胞的凋亡[6]

外泌体,亦称为细胞外囊泡(Extracellular Vesicles, EVs),是细胞释放的纳米级天然囊泡,直径在40~150 nm之间。包含多种成分,如miRNA、mRNA、长非编码RNA、蛋白质和脂质,这些成分决定了外泌体的生物学功能。在组织和细胞之间的信息传递中发挥着关键作用,利用携带的蛋白质、脂质和核酸等物质来实现组织和细胞之间的交流[7]。既往有研究表明脓毒症时外泌体的含量和功能发生改变。在脓毒症中,外泌体携带增加水平的细胞因子和损伤相关分子模式(Damage-associated molecular pattern, DAMPs)来诱导炎症,脓毒症时释放的外泌体对机体的多个器官均有影响,如肺、肾、肝、心血管和中枢系统等[8]。其次,外泌体在肿瘤、自身免疫性疾病、心血管疾病、神经退行性疾病等多种人类疾病中发挥作用[9]。但其具体参与机体免疫麻痹的作用机制目前仍不明确,有待进一步探讨与研究。本文就脓毒症免疫麻痹机制中外泌体可能通过的两个机制的研究进展进行综述,即程序性死亡受体-1/程序性死亡配体通路(Programmed cell death-1/Programmed cell death-Ligand, PD-1/PD-L)、嗜中性粒细胞细胞外陷阱(Neutrophil extracellular traps, NETs),目的在于探讨其在脓毒症发病、发展和治疗中的潜在作用。

2. 外泌体的生物学特点

最初,科学家的研究揭露了一种存在于哺乳动物体内的微型囊泡,这些囊泡被一层细胞质膜包裹着。随着对该领域的持续探索,这些囊泡最终被赋予了一个正式名称,即外泌体[10]。外泌体是一种普遍存在的微小囊泡,它们由多种细胞类型分泌,包括但不限于间充质干细胞、诱导多能干细胞、血小板、巨核细胞、T细胞、脂肪干细胞、神经元以及少突胶质细胞等[11]。这些微小的囊泡可以在人体的各种液体中发现,例如血液、尿液、精液、唾液、羊水和母乳等。外泌体具有极其复杂的内部结构,并在多种疾病和生理过程中扮演着关键角色。其在体细胞上具有特殊表面标记蛋白,如CD63、CD9、CD81等[9]

3. 血浆中外泌体的生物学特点

当细胞内多泡体(Multivesicular body, MVB)与细胞膜融合时,外泌体会从细胞中释放到细胞外基质中。在正常的情况下,体内水平较低的外泌体在体内维持着生理平衡,而外泌体则释放到血浆中。血浆中外泌体水平的高低,取决于肝脾形成和消除之间动态平衡的高低[12]。在循环外泌体中,80%~90%来自血小板、淋巴细胞、树突状细胞、炎症细胞、内皮细胞、其他免疫细胞等,各细胞分泌的外泌体在血浆中的浓度在机体受到各种损伤产生免疫应激时会明显升高[13]。并且,在脓毒症时,外泌体对炎症有明显的促进作用[14]。在正常的生理状态或疾病状态下,血小板都是血液中循环的外泌体的主要生产者。这些血小板衍生的外泌体具有明显的生物活性,能够激活白细胞、血管内皮细胞以及血小板自身,作为炎症反应的触发点,激发这些细胞产生更多的外泌体,以此放大或调整炎症反应的强度[15]。特别是内皮细胞和白细胞产生的外泌体在炎症反应中扮演着重要角色。源自炎症细胞的外泌体能够促进接受它们的细胞合成炎症因子、上调细胞黏附分子的表达,并产生溶血磷脂酸和花生四烯酸等脂质介质[16]。因此,在此正反馈回路中,炎性细胞因子可以反过来继续刺激靶细胞分泌外泌体,在此正反馈回路中促进炎性反应的进一步发展[12]

4. 外泌体在脓毒症中的作用机制

免疫细胞异常诱导的细胞耗竭是脓毒症免疫麻痹的先导原因。免疫麻痹患者的预后取决于自身免疫反应和抗炎反应之间的复杂相互作用,并且大多数死亡病例发生在这种双相疾病导致的免疫麻痹阶段[17]。脓毒症诱导的免疫麻痹主要指包括B细胞、CD4+和CD8+T细胞以及树突状细胞等免疫细胞发生凋亡,同时伴随着促炎细胞因子以及抗炎细胞因子,如肿瘤坏死因子-α (Tumor necrosis factor -alpha, TNF-α)、白介素-1 (IL-1)、白介素-6 (IL-6)、白介素-8 (IL-8)、白介素-12 (IL-12)、γ干扰素(Interferon-gamma, IFN-γ)和白介素-10 (IL-10)等异常表达[18]。在脓毒症进展期,CD4+和CD8+ T细胞的数量均显著下降,并且其下降幅度与患者存活率密切相关[19]。有临床研究显示,对脓毒症患者进行生长因子白介素-1 (IL-7)治疗,可有效刺激T淋巴细胞的增殖和成熟,包括Bcl-2抗凋亡蛋白的上调和循环血CD4+和CD8+T细胞绝对数量的恢复[20]。由此可知,免疫麻痹的调节是抑制脓毒症的有效途径。

4.1. 外泌体通过PD-1/PD-L1途径参与免疫

4.1.1. PD-1/PD-L1

程序性死亡受体-1 (PD-1),也称为分化簇279 (CD279),是B7/CD28超家族的一种含268氨基酸残基的I型跨膜蛋白,一种重要的免疫抑制分子,主要在抗原提呈细胞、T细胞及B细胞的表面表达[21]。程序性死亡–配体1 (即PD-L1)作为PD-1的特定配体,其表达主要集中在树突状细胞和巨噬细胞上[22],但同时也出现在非免疫细胞群体中,例如上皮细胞和内皮细胞,显示了PD-1/PD-L1信号途径在这些细胞中的存在[23]

4.1.2. 外泌体通过PD-1/PD-L1途径参与脓毒症免疫麻痹机制

近年来,针对肿瘤浸润性T淋巴细胞中的PD-1/PD-L通路的治疗在癌症免疫治疗领域取得了不错的成绩[24]。免疫功能抑制在脓毒症中也与T淋巴细胞的功能减退有关,同时伴随着多种细胞表面PD-L1分子的表达水平上升现象。在脓毒症的发展过程中,可以观察到T淋巴细胞、单核细胞以及基质树突状细胞等多种细胞类型的PD-L1表达显著提升,这一现象暗示了PD-1/PD-L1信号通路的过度激活可能是导致脓毒症患者出现免疫抑制状态的关键因素[25]。2022年一项来自德国的临床试验收纳了泌尿生殖道脓毒症患者及健康对照各18名,结果表明脓毒症患者血液中可溶性PD-L1 (sPD-L1)水平显著升高,且与中性粒细胞呈正相关,与淋巴细胞mRNAs呈负相关,提示脓毒症的不良预后[26]。2023年一项临床研究表明,脓毒症患者血清中sPD-L1水平较健康对照组明显升高,并且在存在肾损伤或革兰阴性杆菌感染的患者中表达更高的水平[27]。PD1/PDL1通路在脓毒症诱导的免疫麻痹发病机制中的重要性已在小鼠脓毒症模型中得到证实。在2021年的一项动物模型体外细胞研究中,研究人员发现使用PD-1/PD-L1抑制剂能够有效抑制肺泡巨噬细胞的凋亡过程,同时减少炎症相关因子的分泌,这有助于缓解由于炎症反应过度激活所导致的症状。因此,这类抑制剂被认为可能对治疗由脓毒症引发的急性肺部损伤具有积极的治疗潜力[28];2023年一项动物实验研究提示对CLP诱导的脓毒症小鼠维生素C处理可以促进STAT1的磷酸化,并增加PD-L1的表达水平[29]。同年,国内的一项动物及细胞实验证明紫草素(Shikonin)可通过调节PKM2抑制脓毒症肿巨噬细胞免疫检查点PD-L1的表达[30]。来源于血小板的外泌体是携带多种分子的脂囊体,在脓毒症期间会引起炎症和心肌功能障碍[31]。而外泌体携带的PD-L1似乎对T细胞上的PD-1与外泌体PD-L1相互作用的PD-L1抗体阻断剂具有一定的抗性[32]。另有研究显示,在脓毒症患者的血浆外泌体中,PD-L1和PD-L2的协同可促进外泌体和淋巴细胞的结合,并通过PD-1传递的负信号抑制T细胞的活化[33]。2023年的一项动物实验提示抗PD1/PD-L1治疗不能提高致死性金黄色葡萄球菌肺炎小鼠模型的生存率,但可减少PD-L1的检测[34]。2023年一项临床水平前瞻性观察研究提示了PD-1/PD-L1表达与脓毒症和医院获得性感染患者死亡率的关系[35]。目前对于PD-1/PD-L1通路的具体机制研究不明,具有很大的研究前景及价值。

4.2. 外泌体通过促进嗜中性粒细胞细胞外陷阱(NETs)的形成参与免疫

4.2.1. NETs

多形核中性粒细胞(Polymorphonuclear leukocytes, PMNs),作为哺乳动物体内数量最多的白细胞类型,在脓毒症期间对于启动先天免疫防御机制至关重要。除了传统的颗粒释放和吞噬功能外,这些细胞还能产生一种称为嗜中性粒细胞胞外陷阱(NETs)的结构,用以捕捉并消灭入侵的微生物[36]。NETs是由组蛋白和嗜中性粒细胞颗粒蛋白修饰的去浓缩DNA的细胞外链。脓毒症时过度的NETs形成可导致多器官功能障碍的发展[37]。已经在肺中发现了NETs,它可以诱导由细胞外组蛋白、嗜中性粒细胞颗粒蛋白和细胞外DNA缠结网络介导的肺内皮损伤[38]

4.2.2. 外泌体通过促进NET形成参与脓毒症免疫麻痹机制的进展

有研究显示,外泌体通过HMGB1 (携带高迁移率组框1)促进感染性休克期间NETs的形成[39]。过度形成的NETs通过与血小板的相互作用促进凝血状态的加重,进一步导致炎症因子的产生[40]。在肿瘤研究中抑制NET会通过增加CD8+T细胞浸润和细胞毒性,进而抑制抗PD-1阻断剂的活性[41]。更有最新研究显示,aspase-11/GSDMD通路的激活,抑制了脓毒症期间中性粒细胞的NET释放,有效抑制了脓毒症导致的多器官功能衰竭,并降低了小鼠脓毒症的致死率[42]。经感染性休克患者来源的外泌体处理后,NETs成分(dsDNA和MPO-DNA复合物)显著增加,并与疾病严重程度和结果呈正相关。在动物盲肠结扎穿刺(CLP)模型中,血小板减少降低了血浆外泌体浓度、NETs形成和肺损伤[38]。会导致看不清楚。

5. 结语

综上所述,外泌体在脓毒症免疫麻痹发生发展中发挥了重要的作用,尤其是血小板来源外泌体,因其携带无数信号分子、促炎性细胞因子及激活细胞信号的相关信号通路的关键因子,在脓毒症免疫机制中发挥了重要的作用。各种研究提示其通过分泌PD-1与免疫细胞上的PD-L1结合引起细胞凋亡,从而导致免疫麻痹;其次,脓毒症时外泌体通过刺激NETs的形成促进免疫麻痹,目前其在体外及动物水平研究取得了一定的成果,但缺乏高质量的临床水平研究,值得进一步研究。外泌体、PD-1/PD-L1通路和NETs在脓毒症的免疫麻痹机制中扮演了重要角色。外泌体可能在细胞间的通信中发挥作用,PD-1/PD-L1通路的激活可能导致T细胞功能受损,而NETs的过度产生可能加剧组织损伤和凝血异常。外泌体在脓毒症免疫机制中的研究为理解脓毒症的发病机制提供了新的视角,并为开发新型治疗策略提供了可能。未来的研究需要进一步阐明外泌体在脓毒症中的具体作用机制,并探索其在临床应用中的潜力。随着研究的深入,外泌体有望成为脓毒症治疗和诊断的重要工具。

NOTES

*通讯作者。

参考文献

[1] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2] Font, M.D., Thyagarajan, B. and Khanna, A.K. (2020) Sepsis and Septic Shock—Basics of Diagnosis, Pathophysiology and Clinical Decision Making. Medical Clinics of North America, 104, 573-585.
https://doi.org/10.1016/j.mcna.2020.02.011
[3] Weng, L., Zeng, X., Yin, P., Wang, L., Wang, C., Jiang, W., et al. (2018) Sepsis-Related Mortality in China: A Descriptive Analysis. Intensive Care Medicine, 44, 1071-1080.
https://doi.org/10.1007/s00134-018-5203-z
[4] Xie, J., Wang, H., Kang, Y., Zhou, L., Liu, Z., Qin, B., et al. (2020) The Epidemiology of Sepsis in Chinese Icus: A National Cross-Sectional Survey. Critical Care Medicine, 48, e209-e218.
https://doi.org/10.1097/ccm.0000000000004155
[5] 翟昭, 王楠, 张宇晨, 等. 脓毒症的免疫病理机制及诊断和预后预测生物标志物研究进展[J]. 山东医药, 2022, 62(21): 108-112.
[6] Venet, F. and Monneret, G. (2017) Advances in the Understanding and Treatment of Sepsis-Induced Immunosuppression. Nature Reviews Nephrology, 14, 121-137.
https://doi.org/10.1038/nrneph.2017.165
[7] Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[8] Murao, A., Brenner, M., Aziz, M. and Wang, P. (2020) Exosomes in Sepsis. Frontiers in Immunology, 11, Article No. 2140.
https://doi.org/10.3389/fimmu.2020.02140
[9] Familtseva, A., Jeremic, N. and Tyagi, S.C. (2019) Exosomes: Cell-Created Drug Delivery Systems. Molecular and Cellular Biochemistry, 459, 1-6.
https://doi.org/10.1007/s11010-019-03545-4
[10] Kimiz-Gebologlu, I. and Oncel, S.S. (2022) Exosomes: Large-Scale Production, Isolation, Drug Loading Efficiency, and Biodistribution and Uptake. Journal of Controlled Release, 347, 533-543.
https://doi.org/10.1016/j.jconrel.2022.05.027
[11] Pegtel, D.M. and Gould, S.J. (2019) Exosomes. Annual Review of Biochemistry, 88, 487-514.
https://doi.org/10.1146/annurev-biochem-013118-111902
[12] 韩丹. 外泌体在脓毒症诊疗作用中的研究进展[J]. 医学信息, 2023, 36(5): 173-176.
[13] Zhou, Y., Li, P., Goodwin, A.J., Cook, J.A., Halushka, P.V., Chang, E., et al. (2018) Exosomes from Endothelial Progenitor Cells Improve the Outcome of a Murine Model of Sepsis. Molecular Therapy, 26, 1375-1384.
https://doi.org/10.1016/j.ymthe.2018.02.020
[14] Choi, H., Kim, Y., Mirzaaghasi, A., Heo, J., Kim, Y.N., Shin, J.H., et al. (2020) Exosome-Based Delivery of Super-Repressor Iκbα Relieves Sepsis-Associated Organ Damage and Mortality. Science Advances, 6, eaaz6980.
https://doi.org/10.1126/sciadv.aaz6980
[15] Liu, F., Peng, W., Chen, J., Xu, Z., Jiang, R., Shao, Q., et al. (2021) Exosomes Derived from Alveolar Epithelial Cells Promote Alveolar Macrophage Activation Mediated by Mir-92a-3p in Sepsis-Induced Acute Lung Injury. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 646546.
https://doi.org/10.3389/fcimb.2021.646546
[16] Im, Y., Yoo, H., Lee, J.Y., Park, J., Suh, G.Y. and Jeon, K. (2020) Association of Plasma Exosomes with Severity of Organ Failure and Mortality in Patients with Sepsis. Journal of Cellular and Molecular Medicine, 24, 9439-9445.
https://doi.org/10.1111/jcmm.15606
[17] Cao, C., Yu, M. and Chai, Y. (2019) Pathological Alteration and Therapeutic Implications of Sepsis-Induced Immune Cell Apoptosis. Cell Death & Disease, 10, Article No. 782.
https://doi.org/10.1038/s41419-019-2015-1
[18] Nedeva, C., Menassa, J. and Puthalakath, H. (2019) Sepsis: Inflammation Is a Necessary Evil. Frontiers in Cell and Developmental Biology, 7, Article No. 108.
https://doi.org/10.3389/fcell.2019.00108
[19] Drewry, A.M., Samra, N., Skrupky, L.P., Fuller, B.M., Compton, S.M. and Hotchkiss, R.S. (2014) Persistent Lymphopenia after Diagnosis of Sepsis Predicts Mortality. Shock, 42, 383-391.
https://doi.org/10.1097/shk.0000000000000234
[20] Francois, B., Jeannet, R., Daix, T., Walton, A.H., Shotwell, M.S., Unsinger, J., et al. (2018) Interleukin-7 Restores Lymphocytes in Septic Shock: The IRIS-7 Randomized Clinical Trial. JCI Insight, 3, e98960.
https://doi.org/10.1172/jci.insight.98960
[21] Keir, M.E., Butte, M.J., Freeman, G.J. and Sharpe, A.H. (2008) PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 26, 677-704.
https://doi.org/10.1146/annurev.immunol.26.021607.090331
[22] Hassan, S.S., Akram, M., King, E.C., Dockrell, H.M. and Cliff, J.M. (2015) PD-1, PD-L1 and PD-L2 Gene Expression on T-Cells and Natural Killer Cells Declines in Conjunction with a Reduction in PD-1 Protein during the Intensive Phase of Tuberculosis Treatment. PLOS ONE, 10, e0137646.
https://doi.org/10.1371/journal.pone.0137646
[23] Li, C., Wang, W., Xie, S., Ma, W., Fan, Q., Chen, Y., et al. (2021) The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Frontiers in Medicine, 8, Article ID: 796724.
https://doi.org/10.3389/fmed.2021.796724
[24] Liu, J., Chen, Z., Li, Y., Zhao, W., Wu, J. and Zhang, Z. (2021) PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology, 12, Article ID: 731798.
https://doi.org/10.3389/fphar.2021.731798
[25] Nakamori, Y., Park, E.J. and Shimaoka, M. (2021) Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. Frontiers in Immunology, 11, Article ID: 624279.
https://doi.org/10.3389/fimmu.2020.624279
[26] Derigs, M., Heers, H., Lingelbach, S., Hofmann, R. and Hänze, J. (2022) Soluble PD-L1 in Blood Correlates Positively with Neutrophil and Negatively with Lymphocyte mRNA Markers and Implies Adverse Sepsis Outcome. Immunologic Research, 70, 698-707.
https://doi.org/10.1007/s12026-022-09302-y
[27] Loacker, L., Egger, A., Fux, V., Bellmann-Weiler, R., Weiss, G., Griesmacher, A., et al. (2023) Serum Spd-L1 Levels Are Elevated in Patients with Viral Diseases, Bacterial Sepsis or in Patients with Impaired Renal Function Compared to Healthy Blood Donors. Clinical Chemistry and Laboratory Medicine (CCLM), 61, 2248-2255.
https://doi.org/10.1515/cclm-2023-0232
[28] Jia, L., Liu, K., Fei, T., Liu, Q., Zhao, X., Hou, L., et al. (2021) Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Inhibitors Exert Antiapoptosis and Antiinflammatory Activity in Lipopolysaccharide Stimulated Murine Alveolar Macrophages. Experimental and Therapeutic Medicine, 21, Article No. 400.
https://doi.org/10.3892/etm.2021.9831
[29] Zhang, X., Ji, W., Deng, X. and Bo, L. (2023) High-Dose Ascorbic Acid Potentiates Immune Modulation through STAT1 Phosphorylation Inhibition and Negative Regulation of PD-L1 in Experimental Sepsis. Inflammopharmacology, 32, 537-550.
https://doi.org/10.1007/s10787-023-01319-5
[30] Yuan, L., Wang, Y., Chen, Y., Chen, X., Li, S. and Liu, X. (2023) Shikonin Inhibits Immune Checkpoint PD-L1 Expression on Macrophage in Sepsis by Modulating Pkm2. International Immunopharmacology, 121, Article ID: 110401.
https://doi.org/10.1016/j.intimp.2023.110401
[31] Monteiro, V.V.S., Reis, J.F., de Souza Gomes, R., Navegantes, K.C. and Monteiro, M.C. (2017) Dual Behavior of Exosomes in Septic Cardiomyopathy. In: Xiao, J. and Cretoiu, S., Eds., Exosomes in Cardiovascular Diseases, Springer Singapore, 101-112.
https://doi.org/10.1007/978-981-10-4397-0_7
[32] Poggio, M., Hu, T., Pai, C., Chu, B., Belair, C.D., Chang, A., et al. (2019) Suppression of Exosomal PD-L1 Induces Systemic Anti-Tumor Immunity and Memory. Cell, 177, 414-427.e13.
https://doi.org/10.1016/j.cell.2019.02.016
[33] Kawamoto, E., Masui-Ito, A., Eguchi, A., Soe, Z.Y., Prajuabjinda, O., Darkwah, S., et al. (2019) Integrin and PD-1 Ligand Expression on Circulating Extracellular Vesicles in Systemic Inflammatory Response Syndrome and Sepsis. Shock, 52, 13-22.
https://doi.org/10.1097/shk.0000000000001228
[34] Curran, C.S., Busch, L.M., Li, Y., Xizhong, C., Sun, J., Eichacker, P.Q., et al. (2021) Anti-PD-l1 Therapy Does Not Improve Survival in a Murine Model of Lethal Staphylococcus aureus Pneumonia. The Journal of Infectious Diseases, 224, 2073-2084.
https://doi.org/10.1093/infdis/jiab274
[35] Tirlangi, D.P., Kumar, M.P., et al. (2022) Programmed Cell Death-1/Programmed Death-Ligand 1 Expression and Its Association with Mortality among Patients with Sepsis and Hospital-Acquired Infections: Sepsimmune Study. Journal of Infection, 85, e49-e51.
https://doi.org/10.1016/j.jinf.2022.05.018
[36] Li, R.H.L. and Tablin, F. (2018) A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Frontiers in Veterinary Science, 5, Article No. 291.
https://doi.org/10.3389/fvets.2018.00291
[37] Kaplan, M.J. and Radic, M. (2012) Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity. The Journal of Immunology, 189, 2689-2695.
https://doi.org/10.4049/jimmunol.1201719
[38] Caudrillier, A., Kessenbrock, K., Gilliss, B.M., Nguyen, J.X., Marques, M.B., Monestier, M., et al. (2012) Platelets Induce Neutrophil Extracellular Traps in Transfusion-Related Acute Lung Injury. Journal of Clinical Investigation, 122, 2661-2671.
https://doi.org/10.1172/jci61303
[39] Jiao, Y., Li, W., Wang, W., Tong, X., Xia, R., Fan, J., et al. (2020) Platelet-Derived Exosomes Promote Neutrophil Extracellular Trap Formation during Septic Shock. Critical Care, 24, Article No. 380.
https://doi.org/10.1186/s13054-020-03082-3
[40] Gierlikowska, B., Stachura, A., Gierlikowski, W. and Demkow, U. (2022) The Impact of Cytokines on Neutrophils’ Phagocytosis and NET Formation during Sepsis—A Review. International Journal of Molecular Sciences, 23, Article No. 5076.
https://doi.org/10.3390/ijms23095076
[41] Zhang, H., Wang, Y., Onuma, A., He, J., Wang, H., Xia, Y., et al. (2021) Neutrophils Extracellular Traps Inhibition Improves PD-1 Blockade Immunotherapy in Colorectal Cancer. Cancers, 13, Article No. 5333.
https://doi.org/10.3390/cancers13215333
[42] Silva, C.M.S., Wanderley, C.W.S., Veras, F.P., Sonego, F., Nascimento, D.C., Gonçalves, A.V., et al. (2021) Gasdermin D Inhibition Prevents Multiple Organ Dysfunction during Sepsis by Blocking NET Formation. Blood, 138, 2702-2713.
https://doi.org/10.1182/blood.2021011525