[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[2]
|
Font, M.D., Thyagarajan, B. and Khanna, A.K. (2020) Sepsis and Septic Shock—Basics of Diagnosis, Pathophysiology and Clinical Decision Making. Medical Clinics of North America, 104, 573-585. https://doi.org/10.1016/j.mcna.2020.02.011
|
[3]
|
Weng, L., Zeng, X., Yin, P., Wang, L., Wang, C., Jiang, W., et al. (2018) Sepsis-Related Mortality in China: A Descriptive Analysis. Intensive Care Medicine, 44, 1071-1080. https://doi.org/10.1007/s00134-018-5203-z
|
[4]
|
Xie, J., Wang, H., Kang, Y., Zhou, L., Liu, Z., Qin, B., et al. (2020) The Epidemiology of Sepsis in Chinese Icus: A National Cross-Sectional Survey. Critical Care Medicine, 48, e209-e218. https://doi.org/10.1097/ccm.0000000000004155
|
[5]
|
翟昭, 王楠, 张宇晨, 等. 脓毒症的免疫病理机制及诊断和预后预测生物标志物研究进展[J]. 山东医药, 2022, 62(21): 108-112.
|
[6]
|
Venet, F. and Monneret, G. (2017) Advances in the Understanding and Treatment of Sepsis-Induced Immunosuppression. Nature Reviews Nephrology, 14, 121-137. https://doi.org/10.1038/nrneph.2017.165
|
[7]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
|
[8]
|
Murao, A., Brenner, M., Aziz, M. and Wang, P. (2020) Exosomes in Sepsis. Frontiers in Immunology, 11, Article No. 2140. https://doi.org/10.3389/fimmu.2020.02140
|
[9]
|
Familtseva, A., Jeremic, N. and Tyagi, S.C. (2019) Exosomes: Cell-Created Drug Delivery Systems. Molecular and Cellular Biochemistry, 459, 1-6. https://doi.org/10.1007/s11010-019-03545-4
|
[10]
|
Kimiz-Gebologlu, I. and Oncel, S.S. (2022) Exosomes: Large-Scale Production, Isolation, Drug Loading Efficiency, and Biodistribution and Uptake. Journal of Controlled Release, 347, 533-543. https://doi.org/10.1016/j.jconrel.2022.05.027
|
[11]
|
Pegtel, D.M. and Gould, S.J. (2019) Exosomes. Annual Review of Biochemistry, 88, 487-514. https://doi.org/10.1146/annurev-biochem-013118-111902
|
[12]
|
韩丹. 外泌体在脓毒症诊疗作用中的研究进展[J]. 医学信息, 2023, 36(5): 173-176.
|
[13]
|
Zhou, Y., Li, P., Goodwin, A.J., Cook, J.A., Halushka, P.V., Chang, E., et al. (2018) Exosomes from Endothelial Progenitor Cells Improve the Outcome of a Murine Model of Sepsis. Molecular Therapy, 26, 1375-1384. https://doi.org/10.1016/j.ymthe.2018.02.020
|
[14]
|
Choi, H., Kim, Y., Mirzaaghasi, A., Heo, J., Kim, Y.N., Shin, J.H., et al. (2020) Exosome-Based Delivery of Super-Repressor Iκbα Relieves Sepsis-Associated Organ Damage and Mortality. Science Advances, 6, eaaz6980. https://doi.org/10.1126/sciadv.aaz6980
|
[15]
|
Liu, F., Peng, W., Chen, J., Xu, Z., Jiang, R., Shao, Q., et al. (2021) Exosomes Derived from Alveolar Epithelial Cells Promote Alveolar Macrophage Activation Mediated by Mir-92a-3p in Sepsis-Induced Acute Lung Injury. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 646546. https://doi.org/10.3389/fcimb.2021.646546
|
[16]
|
Im, Y., Yoo, H., Lee, J.Y., Park, J., Suh, G.Y. and Jeon, K. (2020) Association of Plasma Exosomes with Severity of Organ Failure and Mortality in Patients with Sepsis. Journal of Cellular and Molecular Medicine, 24, 9439-9445. https://doi.org/10.1111/jcmm.15606
|
[17]
|
Cao, C., Yu, M. and Chai, Y. (2019) Pathological Alteration and Therapeutic Implications of Sepsis-Induced Immune Cell Apoptosis. Cell Death & Disease, 10, Article No. 782. https://doi.org/10.1038/s41419-019-2015-1
|
[18]
|
Nedeva, C., Menassa, J. and Puthalakath, H. (2019) Sepsis: Inflammation Is a Necessary Evil. Frontiers in Cell and Developmental Biology, 7, Article No. 108. https://doi.org/10.3389/fcell.2019.00108
|
[19]
|
Drewry, A.M., Samra, N., Skrupky, L.P., Fuller, B.M., Compton, S.M. and Hotchkiss, R.S. (2014) Persistent Lymphopenia after Diagnosis of Sepsis Predicts Mortality. Shock, 42, 383-391. https://doi.org/10.1097/shk.0000000000000234
|
[20]
|
Francois, B., Jeannet, R., Daix, T., Walton, A.H., Shotwell, M.S., Unsinger, J., et al. (2018) Interleukin-7 Restores Lymphocytes in Septic Shock: The IRIS-7 Randomized Clinical Trial. JCI Insight, 3, e98960. https://doi.org/10.1172/jci.insight.98960
|
[21]
|
Keir, M.E., Butte, M.J., Freeman, G.J. and Sharpe, A.H. (2008) PD-1 and Its Ligands in Tolerance and Immunity. Annual Review of Immunology, 26, 677-704. https://doi.org/10.1146/annurev.immunol.26.021607.090331
|
[22]
|
Hassan, S.S., Akram, M., King, E.C., Dockrell, H.M. and Cliff, J.M. (2015) PD-1, PD-L1 and PD-L2 Gene Expression on T-Cells and Natural Killer Cells Declines in Conjunction with a Reduction in PD-1 Protein during the Intensive Phase of Tuberculosis Treatment. PLOS ONE, 10, e0137646. https://doi.org/10.1371/journal.pone.0137646
|
[23]
|
Li, C., Wang, W., Xie, S., Ma, W., Fan, Q., Chen, Y., et al. (2021) The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Frontiers in Medicine, 8, Article ID: 796724. https://doi.org/10.3389/fmed.2021.796724
|
[24]
|
Liu, J., Chen, Z., Li, Y., Zhao, W., Wu, J. and Zhang, Z. (2021) PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology, 12, Article ID: 731798. https://doi.org/10.3389/fphar.2021.731798
|
[25]
|
Nakamori, Y., Park, E.J. and Shimaoka, M. (2021) Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. Frontiers in Immunology, 11, Article ID: 624279. https://doi.org/10.3389/fimmu.2020.624279
|
[26]
|
Derigs, M., Heers, H., Lingelbach, S., Hofmann, R. and Hänze, J. (2022) Soluble PD-L1 in Blood Correlates Positively with Neutrophil and Negatively with Lymphocyte mRNA Markers and Implies Adverse Sepsis Outcome. Immunologic Research, 70, 698-707. https://doi.org/10.1007/s12026-022-09302-y
|
[27]
|
Loacker, L., Egger, A., Fux, V., Bellmann-Weiler, R., Weiss, G., Griesmacher, A., et al. (2023) Serum Spd-L1 Levels Are Elevated in Patients with Viral Diseases, Bacterial Sepsis or in Patients with Impaired Renal Function Compared to Healthy Blood Donors. Clinical Chemistry and Laboratory Medicine (CCLM), 61, 2248-2255. https://doi.org/10.1515/cclm-2023-0232
|
[28]
|
Jia, L., Liu, K., Fei, T., Liu, Q., Zhao, X., Hou, L., et al. (2021) Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Inhibitors Exert Antiapoptosis and Antiinflammatory Activity in Lipopolysaccharide Stimulated Murine Alveolar Macrophages. Experimental and Therapeutic Medicine, 21, Article No. 400. https://doi.org/10.3892/etm.2021.9831
|
[29]
|
Zhang, X., Ji, W., Deng, X. and Bo, L. (2023) High-Dose Ascorbic Acid Potentiates Immune Modulation through STAT1 Phosphorylation Inhibition and Negative Regulation of PD-L1 in Experimental Sepsis. Inflammopharmacology, 32, 537-550. https://doi.org/10.1007/s10787-023-01319-5
|
[30]
|
Yuan, L., Wang, Y., Chen, Y., Chen, X., Li, S. and Liu, X. (2023) Shikonin Inhibits Immune Checkpoint PD-L1 Expression on Macrophage in Sepsis by Modulating Pkm2. International Immunopharmacology, 121, Article ID: 110401. https://doi.org/10.1016/j.intimp.2023.110401
|
[31]
|
Monteiro, V.V.S., Reis, J.F., de Souza Gomes, R., Navegantes, K.C. and Monteiro, M.C. (2017) Dual Behavior of Exosomes in Septic Cardiomyopathy. In: Xiao, J. and Cretoiu, S., Eds., Exosomes in Cardiovascular Diseases, Springer Singapore, 101-112. https://doi.org/10.1007/978-981-10-4397-0_7
|
[32]
|
Poggio, M., Hu, T., Pai, C., Chu, B., Belair, C.D., Chang, A., et al. (2019) Suppression of Exosomal PD-L1 Induces Systemic Anti-Tumor Immunity and Memory. Cell, 177, 414-427.e13. https://doi.org/10.1016/j.cell.2019.02.016
|
[33]
|
Kawamoto, E., Masui-Ito, A., Eguchi, A., Soe, Z.Y., Prajuabjinda, O., Darkwah, S., et al. (2019) Integrin and PD-1 Ligand Expression on Circulating Extracellular Vesicles in Systemic Inflammatory Response Syndrome and Sepsis. Shock, 52, 13-22. https://doi.org/10.1097/shk.0000000000001228
|
[34]
|
Curran, C.S., Busch, L.M., Li, Y., Xizhong, C., Sun, J., Eichacker, P.Q., et al. (2021) Anti-PD-l1 Therapy Does Not Improve Survival in a Murine Model of Lethal Staphylococcus aureus Pneumonia. The Journal of Infectious Diseases, 224, 2073-2084. https://doi.org/10.1093/infdis/jiab274
|
[35]
|
Tirlangi, D.P., Kumar, M.P., et al. (2022) Programmed Cell Death-1/Programmed Death-Ligand 1 Expression and Its Association with Mortality among Patients with Sepsis and Hospital-Acquired Infections: Sepsimmune Study. Journal of Infection, 85, e49-e51. https://doi.org/10.1016/j.jinf.2022.05.018
|
[36]
|
Li, R.H.L. and Tablin, F. (2018) A Comparative Review of Neutrophil Extracellular Traps in Sepsis. Frontiers in Veterinary Science, 5, Article No. 291. https://doi.org/10.3389/fvets.2018.00291
|
[37]
|
Kaplan, M.J. and Radic, M. (2012) Neutrophil Extracellular Traps: Double-Edged Swords of Innate Immunity. The Journal of Immunology, 189, 2689-2695. https://doi.org/10.4049/jimmunol.1201719
|
[38]
|
Caudrillier, A., Kessenbrock, K., Gilliss, B.M., Nguyen, J.X., Marques, M.B., Monestier, M., et al. (2012) Platelets Induce Neutrophil Extracellular Traps in Transfusion-Related Acute Lung Injury. Journal of Clinical Investigation, 122, 2661-2671. https://doi.org/10.1172/jci61303
|
[39]
|
Jiao, Y., Li, W., Wang, W., Tong, X., Xia, R., Fan, J., et al. (2020) Platelet-Derived Exosomes Promote Neutrophil Extracellular Trap Formation during Septic Shock. Critical Care, 24, Article No. 380. https://doi.org/10.1186/s13054-020-03082-3
|
[40]
|
Gierlikowska, B., Stachura, A., Gierlikowski, W. and Demkow, U. (2022) The Impact of Cytokines on Neutrophils’ Phagocytosis and NET Formation during Sepsis—A Review. International Journal of Molecular Sciences, 23, Article No. 5076. https://doi.org/10.3390/ijms23095076
|
[41]
|
Zhang, H., Wang, Y., Onuma, A., He, J., Wang, H., Xia, Y., et al. (2021) Neutrophils Extracellular Traps Inhibition Improves PD-1 Blockade Immunotherapy in Colorectal Cancer. Cancers, 13, Article No. 5333. https://doi.org/10.3390/cancers13215333
|
[42]
|
Silva, C.M.S., Wanderley, C.W.S., Veras, F.P., Sonego, F., Nascimento, D.C., Gonçalves, A.V., et al. (2021) Gasdermin D Inhibition Prevents Multiple Organ Dysfunction during Sepsis by Blocking NET Formation. Blood, 138, 2702-2713. https://doi.org/10.1182/blood.2021011525
|