[1]
|
Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., et al. (1997) Mutation of the Mouse Klotho Gene Leads to a Syndrome Resembling Ageing. Nature, 390, 45-51. https://doi.org/10.1038/36285
|
[2]
|
Kamemori, M., Ohyama, Y., Kurabayashi, M., Takahashi, K., Nagai, R. and Furuya, N. (2002) Expression of Klotho Protein in the Inner Ear. Hearing Research, 171, 103-110. https://doi.org/10.1016/s0378-5955(02)00483-5
|
[3]
|
Ohyama, Y., Kurabayashi, M., Masuda, H., Nakamura, T., Aihara, Y., Kaname, T., et al. (1998) Molecular Cloning of Ratklothocdna: Markedly Decreased Expression Ofklothoby Acute Inflammatory Stress. Biochemical and Biophysical Research Communications, 251, 920-925. https://doi.org/10.1006/bbrc.1998.9576
|
[4]
|
Xiao, N.M., Zhang, Y.M., Zheng, Q., et al. (2004) Klotho Is a Seruln Factor Related to Human Aging. Chinese Medical Journal, 117, 742-747.
|
[5]
|
Anderson, S., Eldadah, B., Halter, J.B., Hazzard, W.R., Himmelfarb, J., Horne, F.M., et al. (2011) Acute Kidney Injury in Older Adults. Journal of the American Society of Nephrology, 22, 28-38. https://doi.org/10.1681/asn.2010090934
|
[6]
|
Aizawa, H., Saito, Y., Nakamura, T., Inoue, M., et al. (2005) Downregulation of the Klotho Gene in the Kidney under Sustained Circulatory Stress in Rats. Nephrology Dialysis Transplantation, 101, 112-115.
|
[7]
|
Koh, N., Fujimori, T., Nishiguchi, S., Tamori, A., Shiomi, S., Nakatani, T., et al. (2001) Severely Reduced Production of Klotho in Human Chronic Renal Failure Kidney. Biochemical and Biophysical Research Communications, 280, 1015-1020. https://doi.org/10.1006/bbrc.2000.4226
|
[8]
|
Mitani, H., Ishizaka, N., Aizawa, T., Ohno, M., Usui, S., Suzuki, T., et al. (2002) In Vivo Klotho Gene Transfer Ameliorates Angiotensin II-Induced Renal Damage. Hypertension, 39, 838-843. https://doi.org/10.1161/01.hyp.0000013734.33441.ea
|
[9]
|
林书典, 詹锋, 武伟, 等. 可溶性klotho蛋白与慢性肾脏病患者体内氧化应激的关系研究[J]. 中国全科医学, 2016, 19(11): 1297-1300.
|
[10]
|
Annuk, M., Zilmer, M. and Fellström, B. (2003) Endothelium-Dependent Vasodilation and Oxidative Stress in Chronic Renal Failure: Impact on Cardiovascular Disease. Kidney International, 63, S50-S53. https://doi.org/10.1046/j.1523-1755.63.s84.2.x
|
[11]
|
Al Shahrani, M., Heales, S., Hargreaves, I. and Orford, M. (2017) Oxidative Stress: Mechanistic Insights into Inherited Mitochondrial Disorders and Parkinson’s Disease. Journal of Clinical Medicine, 6, Article 100. https://doi.org/10.3390/jcm6110100
|
[12]
|
Gosmanova, E.O. and Le, N. (2011) Cardiovascular Complications in CKD Patients: Role of Oxidative Stress. Cardiology Research and Practice, 2011, Article ID: 156326. https://doi.org/10.4061/2011/156326
|
[13]
|
Yilmaz, M.I., Siriopol, D., Saglam, M., Unal, H.U., Karaman, M., Gezer, M., et al. (2016) Osteoprotegerin in Chronic Kidney Disease: Associations with Vascular Damage and Cardiovascular Events. Calcified Tissue International, 99, 121-130. https://doi.org/10.1007/s00223-016-0136-4
|
[14]
|
Mitobe, M., Yoshida, T., Sugiura, H., Shirota, S., Tsuchiya, K. and Nihei, H. (2005) Oxidative Stress Decreases Klotho Expression in a Mouse Kidney Cell Line. Nephron Experimental Nephrology, 101, e67-e74. https://doi.org/10.1159/000086500
|
[15]
|
Yamamoto, M., Clark, J.D., Pastor, J.V., Gurnani, P., Nandi, A., Kurosu, H., et al. (2005) Regulation of Oxidative Stress by the Anti-Aging Hormone Klotho. Journal of Biological Chemistry, 280, 38029-38034. https://doi.org/10.1074/jbc.m509039200
|
[16]
|
张静, 王雁飞, 刘丽秋, 等. 他克莫司对阿霉素肾病大鼠klotho蛋白及氧化应激影响的研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2019.
|
[17]
|
李蕾芳, 李芳华. 慢性肾脏病患者血清 klotho水平、微炎症状态、氧化应激指标与肾功能的关系[J]. 山东医药, 2018, 58(34): 68-70.
|
[18]
|
Neyra, J.A. and Hu, M.C. (2017) Potential Application of Klotho in Human Chronic Kidney Disease. Bone, 100, 41-49. https://doi.org/10.1016/j.bone.2017.01.017
|
[19]
|
郑昌玲, 杨可, 余彦临, 等. 慢性肾脏病患者血清Klotho蛋白水平与炎症因子的相关性分析[J]. 第三军医大学学报, 2016, 38(24): 2606-2610.
|
[20]
|
Lv, J., Chen, J., Wang, M. and Yan, F. (2020) Klotho Alleviates Indoxyl Sulfate-Induced Heart Failure and Kidney Damage by Promoting M2 Macrophage Polarization. Aging, 12, 9139-9150. https://doi.org/10.18632/aging.103183
|
[21]
|
He, T., Xiong, J., Huang, Y., Zheng, C., Liu, Y., Bi, X., et al. (2019) Klotho Restrain RIG-1/NF-κB Signaling Activation and Monocyte Inflammatory Factor Release under Uremic Condition. Life Sciences, 231, Article ID: 116570. https://doi.org/10.1016/j.lfs.2019.116570
|
[22]
|
高波, 陈香美, 蔡广研, 等. 基质金属蛋白酶/组织金属蛋白酶抑制物表达失衡在大鼠肾脏衰老过程中的意义[J]. 中华老年医学杂志, 2003, 22(4): 228-232.
|
[23]
|
Souza, M.K., Neves, R.V.P., Rosa, T.S., Cenedeze, M.A., Arias, S.C.A., Fujihara, C.K., et al. (2018) Resistance Training Attenuates Inflammation and the Progression of Renal Fibrosis in Chronic Renal Disease. Life Sciences, 206, 93-97. https://doi.org/10.1016/j.lfs.2018.05.034
|
[24]
|
杨坪臻, 韩鸿玲. 慢性肾脏病患者血清人附睾分泌蛋白4的变化及与肾脏纤维化的关系[J]. 临床肾脏病杂, 2016, 16(2): 92-95.
|
[25]
|
Gagliardini, E. and Benigni, A. (2006) Role of Anti-TGF-β Antibodies in the Treatment of Renal Injury. Cytokine & Growth Factor Reviews, 17, 89-96. https://doi.org/10.1016/j.cytogfr.2005.09.005
|
[26]
|
Doi, S., Zou, Y., Togao, O., Pastor, J.V., John, G.B., Wang, L., et al. (2011) Klotho Inhibits Transforming Growth Factor-β1 (TGF-β1) Signaling and Suppresses Renal Fibrosis and Cancer Metastasis in Mice. Journal of Biological Chemistry, 286, 8655-8665. https://doi.org/10.1074/jbc.m110.174037
|
[27]
|
梁彦军, 石理华, 李辉, 等. klotho基因在慢性肾脏病中作用的研究进展[J]. 武警后勤学院学报, 2013, 22(11): 1030-1042.
|
[28]
|
邹鑫, 徐丽红, 刘秀娟. 慢性肾脏病患者血清klotho蛋白水平与肾纤维化的关系[J]. 南昌大学学报(医学版), 2019, 59(5): 24-26, 83.
|
[29]
|
Lu, X. and Hu, M.C. (2016) Klotho/fgf23 Axis in Chronic Kidney Disease and Cardiovascular Disease. Kidney Diseases, 3, 15-23. https://doi.org/10.1159/000452880
|
[30]
|
Nakatani, T., Ohnishi, M. and Shawkat Razzaque, M. (2009) Inactivation of Klotho Function Induces Hyperphosphatemia Even in Presence of High Serum Fibroblast Growth Factor 23 Levels in a Genetically Engineered Hypophosphatemic (Hyp) Mouse Model. The FASEB Journal, 23, 3702-3711. https://doi.org/10.1096/fj.08-123992
|
[31]
|
Himkazu, S., Kimihiko, N., Osamu, A., et al. (2014) Reduced Renal α-Klotho ExDression in CKD Patients and Its Effect on Renal Phosphate Handling and Vitamin D Metabolism. PLOS ONE, 9, e86301.
|
[32]
|
Smith, R.C., O’Bryan, L.M., Farrow, E.G., Summers, L.J., Clinkenbeard, E.L., Roberts, J.L., et al. (2012) Circulating Αklotho Influences Phosphate Handling by Controlling FGF23 Production. Journal of Clinical Investigation, 122, 4710-4715. https://doi.org/10.1172/jci64986
|
[33]
|
Dai, L., Schurgers, L.J., Shiels, P.G. and Stenvinkel, P. (2020) Early Vascular Ageing in Chronic Kidney Disease: Impact of Inflammation, Vitamin K, Senescence and Genomic Damage. Nephrology Dialysis Transplantation, 35, II31-II37. https://doi.org/10.1093/ndt/gfaa006
|
[34]
|
Hruska, K.A., Seifert, M. and Sugatani, T. (2015) Pathophysiology of the Chronic Kidney Disease—Mineral Bone Disorder. Current Opinion in Nephrology and Hypertension, 24, 303. https://doi.org/10.1097/mnh.0000000000000132
|
[35]
|
Hu, M.C., Shi, M., Zhang, J., Pastor, J., Nakatani, T., Lanske, B., et al. (2010) Klotho: A Novel Phosphaturic Substance Acting as an Autocrine Enzyme in the Renal Proximal Tubule. The FASEB Journal, 24, 3438-3450. https://doi.org/10.1096/fj.10-154765
|
[36]
|
Segawa, H., Yamanaka, S., Ohno, Y., Onitsuka, A., Shiozawa, K., Aranami, F., et al. (2007) Correlation between Hyperphosphatemia and Type II Na-Pi Cotransporter Activity in Klotho Mice. American Journal of Physiology-Renal Physiology, 292, F769-F779. https://doi.org/10.1152/ajprenal.00248.2006
|
[37]
|
Dërmaku-Sopjani, M., Sopjani, M., Saxena, A., Shojaiefard, M., Bogatikov, E., Alesutan, I., et al. (2011) Downregulation of NaPi-IIa and NaPi-IIb Na+-Coupled Phosphate Transporters by Coexpression of Klotho. Cellular Physiology and Biochemistry, 28, 251-258. https://doi.org/10.1159/000331737
|
[38]
|
Cha, S., Ortega, B., Kurosu, H., Rosenblatt, K.P., Kuro-O, M. and Huang, C. (2008) Removal of Sialic Acid Involving Klotho Causes Cell-Surface Retention of TRPV5 Channel via Binding to Galectin-1. Proceedings of the National Academy of Sciences of the United States of America, 105, 9805-9810. https://doi.org/10.1073/pnas.0803223105
|
[39]
|
Chang, Q., Hoefs, S., van der Kemp, A.W., Topala, C.N., Bindels, R.J. and Hoenderop, J.G. (2005) The Ss-Glucuronidase Klotho Hydrolyzes and Activates the TRPV5 Channel. Science, 310, 490-493. https://doi.org/10.1126/science.1114245
|
[40]
|
Hu, M.C., Shi, M., Zhang, J., Quiñones, H., Griffith, C., Kuro-O, M., et al. (2011) Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. Journal of the American Society of Nephrology, 22, 124-136. https://doi.org/10.1681/asn.2009121311
|
[41]
|
Lacroix, J.S. and Urena-Torres, P. (2020) Potentielle application de l’axe fibroblast growth factor 23-Klotho dans la maladie rénale chronique. Néphrologie & Thérapeutique, 16, 83-92. https://doi.org/10.1016/j.nephro.2019.05.003
|