GBP2、CASP1基因在溃疡性结肠炎和克罗恩病及其护理中的作用
The Role of GBP2 and CASP1 Genes in Ulcerative Colitis and Crohn’s Disease and the Nursing
DOI: 10.12677/acm.2024.1492576, PDF, HTML, XML,   
作者: 杜文秀*:中国航天科工集团七三一医院肛肠外科,北京;杜 泓:华北理工大学冀唐学院,河北 唐山
关键词: GBP2CASP1溃疡性结肠炎克罗恩病差异表达基因护理GBP2 CASP1 Ulcerative Colitis Crohn’s Disease Differentially Expressed Genes Nursing
摘要: 背景:溃疡性结肠炎是一种以结肠黏膜的慢性炎症为特征的疾病。克罗恩病是一种炎症性肠道疾病。GBP2、CASP1基因在溃疡性结肠炎和克罗恩病及其护理中的作用尚不清楚。方法:溃疡性结肠炎数据集GSE11223和克罗恩病数据集GSE186582配置文件是从GPL1708、GPL570生成的基因表达综合数据库(GEO)中下载的。进行差异表达基因(DEGs)的筛选,加权基因共表达网络分析(WGCNA),蛋白质–蛋白质相互作用(PPI)网络的构建与分析,功能富集分析,基因集合富集分析(GSEA),免疫浸润分析。绘制基因表达量热图。结果:鉴定出474个DEGs。根据基因本体论(GO)分析,它们主要富集在细胞因子介导的信号通路、细胞内囊泡、细胞表面、信号受体结合。京都基因和基因组百科全书(KEGG)分析结果显示,靶细胞主要富集在趋化因子信号通路、TNF信号通路、IL-17信号通路。WGCNA中的软阈值功率设置为5。获得了7个核心基因(GBP2, GBP1, GBP5, SAMD9L, CASP1, IFITM3, IFITM2)。基因表达量热图发现3个核心基因(GBP5, GBP2, CASP1)在溃疡性结肠炎样本中高表达,在正常组织样本中低表达。对于克罗恩病,GBP5基因在疾病和正常样本中都是低表达,GBP2、CASP1基因高表达。结论:GBP2和CASP1在溃疡性结肠炎和克罗恩病中高表达,可能通过细胞调节等途径在溃疡性结肠炎和克罗恩病的护理中发挥重要作用。
Abstract: Background: Ulcerative colitis is characterized by chronic inflammation of the colon mucosa. Crohn’s disease is an inflammatory bowel disease. The role of GBP2 and CASP1 genes in ulcerative colitis and Crohn’s disease and their care remains unclear. Methods: Ulcerative colitis dataset GSE11223 and Crohn’s disease dataset GSE186582 profiles were downloaded from the Gene Expression Omnibus (GEO) generated from GPL1708, GPL570. Differentially expressed genes (DEGs) were screened, followed by weighted gene co-expression network analysis (WGCNA), construction and analysis of protein-protein interaction (PPI) networks, functional enrichment analysis, gene set enrichment analysis (GSEA), and immune infiltration analysis. Heatmaps of gene expression were plotted. Results: 474 DEGs were identified. According to Gene Ontology (GO) analysis, they were mainly enriched in cytokine-mediated signaling pathways, intracellular vesicles, cell surface, and signal receptor binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the target cells were primarily enriched in chemokine signaling pathways, TNF signaling pathway, and IL-17 signaling pathway. The soft-thresholding power in WGCNA was set to 5. Seven core genes (GBP2, GBP1, GBP5, SAMD9L, CASP1, IFITM3, IFITM2) were obtained. The heatmap of gene expression revealed that three core genes (GBP5, GBP2, CASP1) were highly expressed in ulcerative colitis samples and lowly expressed in normal tissue samples. For Crohn’s disease, the GBP5 gene was lowly expressed in both disease and normal samples, while GBP2 and CASP1 genes were highly expressed. Conclusion: GBP2 and CASP1 are highly expressed in ulcerative colitis and Crohn’s disease, and may play an important role in the care of ulcerative colitis and Crohn’s disease through cellular regulation and other pathways.
文章引用:杜文秀, 杜泓. GBP2、CASP1基因在溃疡性结肠炎和克罗恩病及其护理中的作用[J]. 临床医学进展, 2024, 14(9): 1127-1141. https://doi.org/10.12677/acm.2024.1492576

1. 引言

溃疡性结肠炎是一种慢性、反复发作的结肠黏膜炎症性疾病。溃疡性结肠炎通常首次发病年龄在20~30岁之间的青少年和年轻成人,男女发病率相似[1] [2]。溃疡性结肠炎主要影响结肠。炎症通常从直肠开始,逐渐向上扩散至整个结肠。溃疡性结肠炎的临床表现因人而异,严重程度也可能不同。常见的临床表现包括腹痛和不适、腹泻、便血、粘液排泄、排便频繁、贫血和疲劳[3] [4]。炎症导致结肠黏膜层充血、水肿和糜烂,黏膜炎症和溃疡形成,还可能涉及黏膜下层和肌肉层。溃疡性结肠炎还可能导致肠腺的结构和功能损害[5]

克罗恩病是一种慢性炎症性肠道疾病,可以影响消化道的任何部位,但最常见的是末端回肠和结肠。克罗恩病的发病最常见于20至30岁之间[6] [7]。克罗恩病的临床表现因患者和损害部位而异,可能包括腹痛、腹泻、便血、厌食、体重减轻、疲劳、肛门症状和全身症状[8] [9]。克罗恩病的病理特征主要涉及肠道组织的炎症和组织损伤,往往伴随着肠道黏膜溃疡。克罗恩病导致肠壁的慢性炎症和纤维化引起局部增厚和扩张[10]。溃疡性结肠炎和克罗恩病的发病机制尚不清楚,可能与遗传因素、染色体异常、基因融合等因素有关。因此,研究溃疡性结肠炎和克罗恩病的分子机制尤为重要。

生物信息学是涉及计算机科学、数学、生物学和统计学的跨学科领域,其发展极大地促进了生物学研究,加速了对基因组、蛋白质和代谢物等生物分子的解释和理解[11]。随着高通量测序技术的发展和成本的降低,大量生物信息被存储在公共数据库中[12]。生物信息学技术不断发展进步,使生物信息的解释更加高效和准确[13]

GBP2和CASP1基因与溃疡性结肠炎和克罗恩病及其护理之间的关系仍不清楚。因此,本文旨在利用生物信息学技术挖掘溃疡性结肠炎、克罗恩病和正常组织之间的核心基因,并进行富集分析和通路分析。利用公共数据集验证GBP2和CASP1基因在溃疡性结肠炎和克罗恩病护理中的重要作用。

2. 方法

2.1. 溃疡性结肠炎和克罗恩病数据集

溃疡性结肠炎数据集GSE11223和克罗恩病数据集GSE186582配置文件是从GPL1708、GPL570生成的基因表达综合数据库(GEO)中下载的。GSE11223包括63个溃疡性结肠炎和62个正常组织样本,GSE186582包括75个克罗恩病和25个正常组织样本。用于识别溃疡性结肠炎和克罗恩病的差异表达基因(DEGs)。

2.2. 差异表达基因(DEGs)的筛选

R包“limma”用于GSE11223和GSE186582的探针汇总和背景校正。Benjamini-Hochberg方法用于调整原始P值。使用错误发现率(FDR)计算倍数变化(FC)。DEG的截断值是P < 0.05,FC > 1.2。并作出火山图可视化表示。

2.3. 加权基因共表达网络分析(WGCNA)

利用基因表达谱,分别计算了每个基因的绝对偏差中位数(MAD),剔除了MAD最小的前50%的基因。利用R软件包WGCNA的goodSamplesGenes方法去除了离群的基因和样本,进一步的使用WGCNA构建scale-free co-expression network。为了将具有相似表达谱的基因分类到基因模块中,根据基于TOM的相异度量,对基因树状图进行平均连锁等级聚类,最小基因组为30。设置敏感度为3。为了进一步分析模块,计算模块特征基因之间的差异,选择了一条切线作为模块树状图,并合并了部分模块。合并了距离小于0.25的模块,grey模块被认为是无法被分配给任何模块的基因集合。

2.4. 蛋白质–蛋白质相互作用(PPI)网络的构建与分析

检索相互作用基因的搜索工具(STRING)数据库(http://string‑db.org/)旨在收集、评分和整合所有公开可用的蛋白质–蛋白质相互作用信息来源,并通过计算预测来补充这些来源。将差异基因列表输入到STRING数据库中,构建预测核心基因的PPI网络(置信度 > 0.4)。Cytoscape软件可以为生物学家提供生物网络分析和二维可视化。通过Cytoscape软件对STRING数据库形成的PPI网络进行可视化和预测核心基因。将PPI网络导入到Cytoscape软件中,通过四种算法(MCC, MNC, DMNC, Epc)分别计算相关性最好的基因并取交集,可视化后导出核心基因列表。

2.5. 功能富集分析

基因本体分析(GO)和京都基因和基因组百科全书(KEGG)分析是评估基因功能和生物学途径的计算方法。将筛选出的差异基因列表输入KEGG API (https://www.kegg.jp/kegg/rest/keggapi.html),获取最新的KEGG Pathway的基因注释。以此作为背景,将基因映射到背景集合中,使用R软件包clusterProfiler进行富集分析,以获得基因集富集的结果。使用R软件包org.Hs.eg.db中的基因的GO注释,以此作为背景,将基因映射到背景集合中,设定最小基因集为5,最大基因集为5000,P < 0.05,FDR < 0.25被认为有统计学意义。

Metascape数据库可以提供全面的基因列表注释和分析资源,并可视化导出。使用Metascape数据库对上述差异基因列表进行功能富集分析并导出。

2.6. 基因集富集分析(GSEA)

从GSEA (DOI: 10.1073/pnas.0506580102, http://software.broadinstitute.org/gsea/index.jsp)网站获得GSEA。分别根据溃疡性结肠炎和正常组织样本,克罗恩病和正常组织样本分组,并从Molecular Signatures Database (DOI: 10.1093/bioinformatics/btr260, http://www.gsea-msigdb.org/gsea/downloads.jsp)下载了c2.cp.kegg.v7.4.symbols.gmt子集合,用以评估相关途径和分子机制。基于基因表达谱和表型分组,设定最小基因集为5,最大基因集为5000,一千次重抽样,P < 0.05,FDR < 0.25被认为具有统计学意义。对全基因组进行了GO和KEGG分析,由GSEA制定。

2.7. 基因表达量热图

使用R包heatmap对PPI网络中四种算法寻找到的核心基因在GSE11223和GSE186582中的表达量作出热图,可视化核心基因在溃疡性结肠炎和正常组织样本,克罗恩病和正常组织样本间的表达差异。

3. 结果

3.1. 差异表达基因分析

在本研究中,按照设定好的截断值,根据GSE11223和GSE186582矩阵中鉴定差异表达基因(图1(A)为GSE11223结果,图1(B)为GSE186582结果),共鉴定出474个DEGs (图1(C))。

3.2. 功能富集分析

3.2.1. DEGs功能富集分析

对差异表达基因进行GO和KEGG分析。根据GO分析,它们主要富集在细胞因子介导的信号通路、细胞内囊泡、细胞表面、信号受体结合(图2(A)~(C))。KEGG分析结果显示,靶细胞主要富集在趋化因子信号通路、TNF信号通路、IL-17信号通路(图2(D))。

3.2.2. GSEA

对全基因组进行GSEA富集分析,旨在寻找非差异表达基因中可能存在的富集项目,并验证差异表达基因的结果。富集项与差异表达基因的GO KEGG富集项的交集如图所示,主要富集在趋化因子信号通路、i型糖尿病、先天免疫反应(图3(A)~(D)为GSE11223结果,图3(E)~(H)为GSE186582结果)。

3.2.3. Metascape富集分析

在metascape的富集项目中,GO富集项目中可见细胞对细胞因子刺激的反应、有机羟基化合物的代谢过程、水解酶活性的正向调节、对白细胞趋化性的调节作用(图4(A))。输出了以富集项着色和p值着色的富集网络(图4(B)~(E)),可视化表示各富集项目的关联和置信度。

3.3. WGCNA

软阈值功率的选择是WGCNA分析中的重要一步。WGCNA分析中的软阈值功率设置为5 (图5(A)图5(B))。构建了所有基因的层次聚类树,并生成了重要模块,分析这些模块之间的交互(图5(C)图5(D))。生成了模块与表型相关性热图(图6(A))和相关核心基因的GS与MM相关性散点图(图6(B)~(E)图7(A)~(C))。

计算了模块特征向量与基因的表达相关性以获得MM,根据截止标准(|MM| > 0.8),1625个在临床显著性模块中具有高连接性的基因被鉴定为中心基因。将筛选出的核心基因与DEGs筛选出的差异基因取交集,绘制了韦恩图,后续用于蛋白质相互作用网络的创建和分析(图7(D))。

3.4. 蛋白质–蛋白质相互作用(PPI)网络的构建与分析

DEGs的PPI网络是由STRING在线数据库构建并由Cytoscape软件分析(图8(A))。采用四种不同的算法识别中枢基因(图8(B)~(E)),用韦恩图取交集(图8(F)),获得了7个核心基因(GBP2, GBP1, GBP5, SAMD9L, CASP1, IFITM3, IFITM2)。

Figure 1. Analysis of differentially expressed genes. (A) GSE11223; (B) GSE186582; (C) A total of 474 DEGs were identified

1. 差异表达基因分析。(A) GSE11223;(B) GSE186582;(C) 共鉴定出474个DEGs

Figure 2. Functional enrichment analysis of DEGs. (A)~(C) GO analysis; (D) KEGG analysis

2. DEGs功能富集分析。(A)~(C) GO分析;(D) KEGG分析

Figure 3. GSEA. (A)~(D) GSE11223; (E)~(H) GSE186582

3. GSEA。(A)~(D) GSE11223;(E)~(H) GSE186582

Figure 4. Metascape enrichment analysis. (A) In the enrichment projects of metascape, the response of cells to cytokine stimulation, the metabolic process of organic hydroxyl compounds, the positive regulation of hydrolase activity, and the regulation of leukocyte chemotaxis were observed in the enrichment projects of GO. (B)~(E) Enrichment networks colored by enrichment terms and p-values, and visualized to represent the association and confidence of each enrichment item

4. Metascape富集分析。(A) 在metascape的富集项目中,GO富集项目中可见细胞对细胞因子刺激的反应、有机羟基化合物的代谢过程、水解酶活性的正向调节、对白细胞趋化性的调节作用。(B)~(E) 以富集项着色和p值着色的富集网络,可视化表示各富集项目的关联和置信度

Figure 5. WGCNA. (A) (B) The soft threshold power in WGCNA was set to 5. (C) Hierarchical clustering trees of all genes were constructed and significant modules were generated. (D) The interactions between modules

5. WGCNA。(A) (B) WGCNA分析中的软阈值功率设置为5。(C) 构建了所有基因的层次聚类树,并生成了重要模块。(D) 分析模块之间的交互

Figure 6. (A) The heatmap of correlation between modules and phenotypes. (B)~(E) Scatter plot of correlation between GS and MM for related core genes

6. (A) 模块与表型相关性热图。(B)~(E) 相关核心基因的GS与MM相关性散点图

Figure 7. (A)~(C) Scatter plot of correlation between GS and MM for related core genes. (D) The intersection of the selected core genes and the differential genes screened by DEGs was used to draw a Venn diagram

7. (A)~(C) 相关核心基因的GS与MM相关性散点图。(D) 将筛选出的核心基因与DEGs筛选出的差异基因取交集,绘制了韦恩图

Figure 8. Construction and analysis of the protein-protein interaction (PPI) network. (A) PPI network. (B)~(E) Four different algorithms were used to identify hub genes. (F) Take the intersection using Venn diagram

8. 蛋白质–蛋白质相互作用(PPI)网络的构建与分析。(A) PPI网络。(B)~(E) 采用四种不同的算法识别中枢基因。(F) 用韦恩图取交集

利用metascape网站输出了蛋白质互作网络,并识别了核心模块,验证STRING中的PPI网络结果。其中GBP2、IFITM3、IFITM2、CXCL3、CXCL2基因被识别为核心基因。

3.5. 基因表达量热图

可视化了核心基因在样本中的表达量热图,发现3个核心基因(GBP5, GBP2, CASP1)在溃疡性结肠炎样本中高表达,在正常组织样本中低表达。对于克罗恩病,GBP5基因在疾病和正常样本中都是低表达,GBP2、CASP1基因高表达。

4. 讨论

溃疡性结肠炎是一种慢性炎症性肠道疾病,患者常常经历持续或间歇性的炎症攻击,导致腹痛、腹泻和便血等症状。长期的炎症和溃疡形成可能导致结肠黏膜瘢痕形成和纤维化,引起肠道狭窄和结肠扩张。溃疡性结肠炎的炎症反应中,T细胞和巨噬细胞被激活并释放各种炎症介质,如肿瘤坏死因子α (TNF-α)、白细胞介素-1 (IL-1)、白细胞介素-6 (IL-6)等,这些炎症介质导致结肠黏膜的炎症反应和组织损伤[14]-[17]。多种炎症信号通路的异常激活,包括核因子kappa B (NF-κB)信号通路、信号转导和转录激活因子信号通路等,与溃疡性结肠炎相关,促进炎症介质的产生和炎症反应的维持[18]-[20]。粘附分子的异常表达导致白细胞粘附到血管内皮细胞上,进一步促进炎症细胞的迁移和组织损伤。肠道菌群失衡可能导致炎症反应和组织损伤增加。

克罗恩病是一种慢性炎症性疾病,可能干扰肠道正常吸收功能。克罗恩病被认为是一种由异常免疫系统引起的疾病。免疫系统对正常肠道细菌和微生物群产生异常的免疫反应,导致肠道炎症的发生。多种基因,如NOD2/CARD15、ATG16L1和IRGM等,与免疫应答、肠道屏障功能和自噬等生物过程相关[21]-[24]。肠道上皮细胞缺陷可能导致病原微生物和毒素易于通过肠壁,引发免疫反应和炎症。肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)、过量分泌白细胞介素-6 (IL-6)等炎症介质可能导致肠道炎症的加剧和持续[25]-[27]。自噬相关基因的突变可能导致自噬功能受损,导致炎症和肠道损伤。探索溃疡性结肠炎和克罗恩病的分子机制对于靶向药物的研究非常重要。本研究的主要结果是GBP2和CASP1基因在溃疡性结肠炎和克罗恩病中高表达。

鸟苷酸结合蛋白2 (GBP2)是一种人类蛋白质,属于细胞质中的鸟苷酸结合蛋白(GBPs)家族。GBP2在对抗病原体的免疫应答中起着重要作用。在感染病原体或免疫刺激时,GBP2的表达水平显著上调。通过调节细胞内GTP酶的活性和细胞骨架的重组,它参与调节病原体的识别、吞噬和杀伤。此外,GBP2还可以激活自然免疫应答并促进炎症介质的产生[28] [29]

半胱氨酸蛋白酶1 (CASP1)是一种重要的半胱氨酸蛋白酶,在炎症和免疫应答中起着重要作用。CASP1的激活导致这些细胞因子的成熟和释放,从而引发炎症反应。CASP1是NLRP3 (NOD样受体家族,含有螺旋桨结构域3)炎症小体的关键成员。当细胞被感染、受损或受到炎症刺激时,NLRP3炎症小体被激活,CASP1被招募并激活[30] [31]。有研究表明,通过基因集富集分析、基因本体分析、单细胞测序和多重免疫组化(mIHC),GBP2的表达也在免疫中被上调[32]。其他研究显示,白细胞介素-1β (IL-1β)通过一种称为IL-1β的蛋白酶(ICE)的裂解不活跃前体产生,介导广泛的免疫和炎症反应[33]。因此,推测GBP2和CASP1基因可能在溃疡性结肠炎和克罗恩病的免疫响应、炎症调节和肠道损伤过程中发挥重要作用。

尽管本文进行了严格的生物信息学分析,但仍存在一些不足。本研究未进行基因过表达或敲除的动物实验来进一步验证其功能。因此,在未来的研究中,应在这一领域进行深入探索。

5. 结论

GBP2和CASP1在溃疡性结肠炎和克罗恩病中高表达,可能通过细胞调节等途径在溃疡性结肠炎和克罗恩病及其护理中发挥重要作用。GBP2和CASP1可能成为溃疡性结肠炎和克罗恩病精确治疗的分子靶标,为溃疡性结肠炎和克罗恩病的护理提供一定的方向基础。

NOTES

*通讯作者。

参考文献

[1] Feuerstein, J.D. and Cheifetz, A.S. (2014) Ulcerative Colitis: Epidemiology, Diagnosis, and Management. Mayo Clinic Proceedings, 89, 1553-1563.
https://doi.org/10.1016/j.mayocp.2014.07.002
[2] Du, L. and Ha, C. (2020) Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America, 49, 643-654.
https://doi.org/10.1016/j.gtc.2020.07.005
[3] Gordon, I.O., Abushamma, S., Kurowski, J.A., Holubar, S.D., Kou, L., Lyu, R., et al. (2021) Paediatric Ulcerative Colitis Is a Fibrotic Disease and Is Linked with Chronicity of Inflammation. Journal of Crohns and Colitis, 16, 804-821.
https://doi.org/10.1093/ecco-jcc/jjab216
[4] Zhu, M. and Ran, Z. (2021) Clinical Characteristics of Ulcerative Colitis in Elderly Patients. JGH Open, 5, 849-854.
https://doi.org/10.1002/jgh3.12612
[5] Nakase, H., Sato, N., Mizuno, N. and Ikawa, Y. (2022) The Influence of Cytokines on the Complex Pathology of Ulcerative Colitis. Autoimmunity Reviews, 21, Article 103017.
https://doi.org/10.1016/j.autrev.2021.103017
[6] Aniwan, S., Park, S.H. and Loftus, E.V. (2017) Epidemiology, Natural History, and Risk Stratification of Crohn’s Disease. Gastroenterology Clinics of North America, 46, 463-480.
https://doi.org/10.1016/j.gtc.2017.05.003
[7] Torres, J., Mehandru, S., Colombel, J. and Peyrin-Biroulet, L. (2017) Crohn’s Disease. The Lancet, 389, 1741-1755.
https://doi.org/10.1016/s0140-6736(16)31711-1
[8] Geldof, J., Iqbal, N., LeBlanc, J., Anandabaskaran, S., Sawyer, R., Buskens, C., et al. (2022) Classifying Perianal Fistulising Crohn’s Disease: An Expert Consensus to Guide Decision-Making in Daily Practice and Clinical Trials. The Lancet Gastroenterology & Hepatology, 7, 576-584.
https://doi.org/10.1016/s2468-1253(22)00007-3
[9] Rieder, F., Zimmermann, E.M., Remzi, F.H. and Sandborn, W.J. (2013) Crohn’s Disease Complicated by Strictures: A Systematic Review. Gut, 62, 1072-1084.
https://doi.org/10.1136/gutjnl-2012-304353
[10] Rangan, P., Choi, I., Wei, M., Navarrete, G., Guen, E., Brandhorst, S., et al. (2019) Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Reports, 26, 2704-2719.E6.
https://doi.org/10.1016/j.celrep.2019.02.019
[11] Gauthier, J., Vincent, A.T., Charette, S.J. and Derome, N. (2018) A Brief History of Bioinformatics. Briefings in Bioinformatics, 20, 1981-1996.
https://doi.org/10.1093/bib/bby063
[12] Azad, R.K. and Shulaev, V. (2018) Metabolomics Technology and Bioinformatics for Precision Medicine. Briefings in Bioinformatics, 20, 1957-1971.
https://doi.org/10.1093/bib/bbx170
[13] Wang, Y., Zhao, Y., Bollas, A., Wang, Y. and Au, K.F. (2021) Nanopore Sequencing Technology, Bioinformatics and Applications. Nature Biotechnology, 39, 1348-1365.
https://doi.org/10.1038/s41587-021-01108-x
[14] Pugliese, D., Felice, C., Papa, A., Gasbarrini, A., Rapaccini, G.L., Guidi, L., et al. (2016) Anti TNF-α Therapy for Ulcerative Colitis: Current Status and Prospects for the Future. Expert Review of Clinical Immunology, 13, 223-233.
https://doi.org/10.1080/1744666x.2017.1243468
[15] Wang, C., Li, W., Wang, H., Ma, Y., Zhao, X., Zhang, X., et al. (2019) Saccharomyces Boulardii Alleviates Ulcerative Colitis Carcinogenesis in Mice by Reducing TNF-α and IL-6 Levels and Functions and by Rebalancing Intestinal Microbiota. BMC Microbiology, 19, Article No. 246.
https://doi.org/10.1186/s12866-019-1610-8
[16] Anka Idrissi, D., Senhaji, N., Aouiss, A., Khalki, L., Tijani, Y., Zaid, N., et al. (2021) IL-1 and CD40/CD40L Platelet Complex: Elements of Induction of Crohn’s Disease and New Therapeutic Targets. Archives of Pharmacal Research, 44, 117-132.
https://doi.org/10.1007/s12272-020-01296-1
[17] Peters, V.A., Joesting, J.J. and Freund, G.G. (2013) IL-1 Receptor 2 (IL-1R2) and Its Role in Immune Regulation. Brain, Behavior, and Immunity, 32, 1-8.
https://doi.org/10.1016/j.bbi.2012.11.006
[18] Li, M., Luo, H., Wu, X., Liu, Y., Gan, Y., Xu, N., et al. (2020) Anti-Inflammatory Effects of Huangqin Decoction on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice through Regulation of the Gut Microbiota and Suppression of the Ras-PI3K-Akt-HIF-1α and NF-κB Pathways. Frontiers in Pharmacology, 10, Article 1552.
https://doi.org/10.3389/fphar.2019.01552
[19] Qu, Y., Li, X., Xu, F., Zhao, S., Wu, X., Wang, Y., et al. (2021) Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis. Frontiers in Immunology, 12, Article 679897.
https://doi.org/10.3389/fimmu.2021.679897
[20] Wei, Y., Fan, Y., Ga, Y., Zhang, Y., Han, J. and Hao, Z. (2021) Shaoyao Decoction Attenuates DSS-Induced Ulcerative Colitis, Macrophage and NLRP3 Inflammasome Activation through the MKP1/NF-κB Pathway. Phytomedicine, 92, Article 153743.
https://doi.org/10.1016/j.phymed.2021.153743
[21] Henckaerts, L. and Vermeire, S. (2007) NOD2/CARD15 Disease Associations Other than Crohnʼs Disease. Inflammatory Bowel Diseases, 13, 235-241.
https://doi.org/10.1002/ibd.20066
[22] Siddique, I., Mustafa, A., Khan, I., Ziyab, A., Altarrah, M., Sulaiman, R., et al. (2021) Detection of Mutations in NOD2/ CARD15 Gene in Arab Patients with Crohn’s Disease. Saudi Journal of Gastroenterology, 27, 240-248.
https://doi.org/10.4103/sjg.sjg_582_20
[23] Naser, S.A. (2012) Role of ATG16L, NOD2 and IL23R in Crohn’s Disease Pathogenesis. World Journal of Gastroenterology, 18, 412-424.
https://doi.org/10.3748/wjg.v18.i5.412
[24] Radford-Smith, G. (2006) Associations between NOD2/CARD15 Genotype and Phenotype in Crohn’s Disease-Are We There Yet. World Journal of Gastroenterology, 12, 7097.
https://doi.org/10.3748/wjg.v12.i44.7097
[25] Chiba, T., Endo, M., Miura, S., Hayashi, Y., Asakura, Y., Oyama, K., et al. (2019) Regulatory T Cells in Crohn’s Disease Following Anti‐TNF‐α Therapy. JGH Open, 4, 378-381.
https://doi.org/10.1002/jgh3.12259
[26] Yamamoto, T., Teixeira, F.V., Saad-Hossne, R., Kotze, P.G. and Danese, S. (2019) Anti-TNF and Postoperative Complications in Abdominal Crohn’s Disease Surgery. Current Drug Targets, 20, 1339-1348.
https://doi.org/10.2174/1389450120666190404144048
[27] D’Haens, G.R. and van Deventer, S. (2021) 25 Years of Anti-TNF Treatment for Inflammatory Bowel Disease: Lessons from the Past and a Look to the Future. Gut, 70, 1396-1405.
https://doi.org/10.1136/gutjnl-2019-320022
[28] Poornima, G., Srivastava, G., Roy, B., Kuttanda, I.A., Kurbah, I. and Rajyaguru, P.I. (2021) RGG-Motif Containing mRNA Export Factor Gbp2 Acts as a Translation Repressor. RNA Biology, 18, 2342-2353.
https://doi.org/10.1080/15476286.2021.1910403
[29] Windgassen, M. and Krebber, H. (2003) Identification of Gbp2 as a Novel Poly(A)+ RNA‐Binding Protein Involved in the Cytoplasmic Delivery of Messenger RNAs in Yeast. EMBO Reports, 4, 278-283.
https://doi.org/10.1038/sj.embor.embor763
[30] Kapplusch, F., Schulze, F., Rabe-Matschewsky, S., Russ, S., Herbig, M., Heymann, M.C., et al. (2019) CASP1 Variants Influence Subcellular Caspase-1 Localization, Pyroptosome Formation, Pro-Inflammatory Cell Death and Macrophage Deformability. Clinical Immunology, 208, Article 108232.
https://doi.org/10.1016/j.clim.2019.06.008
[31] (2015) The NLRP3-CASP1 Inflammasome Induces Glucocorticoid Resistance in ALL. Cancer Discovery, 5, OF18.
https://doi.org/10.1158/2159-8290.CD-RW2015-090
[32] Wang, H., Zhou, Y., Zhang, Y., Fang, S., Zhang, M., Li, H., et al. (2022) Subtyping of Microsatellite Stability Colorectal Cancer Reveals Guanylate Binding Protein 2 (GBP2) as a Potential Immunotherapeutic Target. Journal for ImmunoTherapy of Cancer, 10, e004302.
https://doi.org/10.1136/jitc-2021-004302
[33] Cerretti, D.P., Hollingsworth, L.T., Kozlosky, C.J., Valentine, M.B., Shapiro, D.N., Morris, S.W., et al. (1994) Molecular Characterization of the Gene for Human Interleukin-1β Converting Enzyme (IL1BC). Genomics, 20, 468-473.
https://doi.org/10.1006/geno.1994.1202