|
[1]
|
Feuerstein, J.D. and Cheifetz, A.S. (2014) Ulcerative Colitis: Epidemiology, Diagnosis, and Management. Mayo Clinic Proceedings, 89, 1553-1563. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Du, L. and Ha, C. (2020) Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America, 49, 643-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gordon, I.O., Abushamma, S., Kurowski, J.A., Holubar, S.D., Kou, L., Lyu, R., et al. (2021) Paediatric Ulcerative Colitis Is a Fibrotic Disease and Is Linked with Chronicity of Inflammation. Journal of Crohn’s and Colitis, 16, 804-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhu, M. and Ran, Z. (2021) Clinical Characteristics of Ulcerative Colitis in Elderly Patients. JGH Open, 5, 849-854. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nakase, H., Sato, N., Mizuno, N. and Ikawa, Y. (2022) The Influence of Cytokines on the Complex Pathology of Ulcerative Colitis. Autoimmunity Reviews, 21, Article 103017. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Aniwan, S., Park, S.H. and Loftus, E.V. (2017) Epidemiology, Natural History, and Risk Stratification of Crohn’s Disease. Gastroenterology Clinics of North America, 46, 463-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Torres, J., Mehandru, S., Colombel, J. and Peyrin-Biroulet, L. (2017) Crohn’s Disease. The Lancet, 389, 1741-1755. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Geldof, J., Iqbal, N., LeBlanc, J., Anandabaskaran, S., Sawyer, R., Buskens, C., et al. (2022) Classifying Perianal Fistulising Crohn’s Disease: An Expert Consensus to Guide Decision-Making in Daily Practice and Clinical Trials. The Lancet Gastroenterology & Hepatology, 7, 576-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Rieder, F., Zimmermann, E.M., Remzi, F.H. and Sandborn, W.J. (2013) Crohn’s Disease Complicated by Strictures: A Systematic Review. Gut, 62, 1072-1084. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rangan, P., Choi, I., Wei, M., Navarrete, G., Guen, E., Brandhorst, S., et al. (2019) Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Reports, 26, 2704-2719.E6. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gauthier, J., Vincent, A.T., Charette, S.J. and Derome, N. (2018) A Brief History of Bioinformatics. Briefings in Bioinformatics, 20, 1981-1996. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Azad, R.K. and Shulaev, V. (2018) Metabolomics Technology and Bioinformatics for Precision Medicine. Briefings in Bioinformatics, 20, 1957-1971. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, Y., Zhao, Y., Bollas, A., Wang, Y. and Au, K.F. (2021) Nanopore Sequencing Technology, Bioinformatics and Applications. Nature Biotechnology, 39, 1348-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Pugliese, D., Felice, C., Papa, A., Gasbarrini, A., Rapaccini, G.L., Guidi, L., et al. (2016) Anti TNF-α Therapy for Ulcerative Colitis: Current Status and Prospects for the Future. Expert Review of Clinical Immunology, 13, 223-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, C., Li, W., Wang, H., Ma, Y., Zhao, X., Zhang, X., et al. (2019) Saccharomyces Boulardii Alleviates Ulcerative Colitis Carcinogenesis in Mice by Reducing TNF-α and IL-6 Levels and Functions and by Rebalancing Intestinal Microbiota. BMC Microbiology, 19, Article No. 246. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Anka Idrissi, D., Senhaji, N., Aouiss, A., Khalki, L., Tijani, Y., Zaid, N., et al. (2021) IL-1 and CD40/CD40L Platelet Complex: Elements of Induction of Crohn’s Disease and New Therapeutic Targets. Archives of Pharmacal Research, 44, 117-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Peters, V.A., Joesting, J.J. and Freund, G.G. (2013) IL-1 Receptor 2 (IL-1R2) and Its Role in Immune Regulation. Brain, Behavior, and Immunity, 32, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, M., Luo, H., Wu, X., Liu, Y., Gan, Y., Xu, N., et al. (2020) Anti-Inflammatory Effects of Huangqin Decoction on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice through Regulation of the Gut Microbiota and Suppression of the Ras-PI3K-Akt-HIF-1α and NF-κB Pathways. Frontiers in Pharmacology, 10, Article 1552. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Qu, Y., Li, X., Xu, F., Zhao, S., Wu, X., Wang, Y., et al. (2021) Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis. Frontiers in Immunology, 12, Article 679897. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wei, Y., Fan, Y., Ga, Y., Zhang, Y., Han, J. and Hao, Z. (2021) Shaoyao Decoction Attenuates DSS-Induced Ulcerative Colitis, Macrophage and NLRP3 Inflammasome Activation through the MKP1/NF-κB Pathway. Phytomedicine, 92, Article 153743. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Henckaerts, L. and Vermeire, S. (2007) NOD2/CARD15 Disease Associations Other than Crohnʼs Disease. Inflammatory Bowel Diseases, 13, 235-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Siddique, I., Mustafa, A., Khan, I., Ziyab, A., Altarrah, M., Sulaiman, R., et al. (2021) Detection of Mutations in NOD2/ CARD15 Gene in Arab Patients with Crohn’s Disease. Saudi Journal of Gastroenterology, 27, 240-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Naser, S.A. (2012) Role of ATG16L, NOD2 and IL23R in Crohn’s Disease Pathogenesis. World Journal of Gastroenterology, 18, 412-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Radford-Smith, G. (2006) Associations between NOD2/CARD15 Genotype and Phenotype in Crohn’s Disease-Are We There Yet. World Journal of Gastroenterology, 12, 7097. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chiba, T., Endo, M., Miura, S., Hayashi, Y., Asakura, Y., Oyama, K., et al. (2019) Regulatory T Cells in Crohn’s Disease Following Anti‐TNF‐α Therapy. JGH Open, 4, 378-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yamamoto, T., Teixeira, F.V., Saad-Hossne, R., Kotze, P.G. and Danese, S. (2019) Anti-TNF and Postoperative Complications in Abdominal Crohn’s Disease Surgery. Current Drug Targets, 20, 1339-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
D’Haens, G.R. and van Deventer, S. (2021) 25 Years of Anti-TNF Treatment for Inflammatory Bowel Disease: Lessons from the Past and a Look to the Future. Gut, 70, 1396-1405. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Poornima, G., Srivastava, G., Roy, B., Kuttanda, I.A., Kurbah, I. and Rajyaguru, P.I. (2021) RGG-Motif Containing mRNA Export Factor Gbp2 Acts as a Translation Repressor. RNA Biology, 18, 2342-2353. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Windgassen, M. and Krebber, H. (2003) Identification of Gbp2 as a Novel Poly(A)+ RNA‐Binding Protein Involved in the Cytoplasmic Delivery of Messenger RNAs in Yeast. EMBO Reports, 4, 278-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kapplusch, F., Schulze, F., Rabe-Matschewsky, S., Russ, S., Herbig, M., Heymann, M.C., et al. (2019) CASP1 Variants Influence Subcellular Caspase-1 Localization, Pyroptosome Formation, Pro-Inflammatory Cell Death and Macrophage Deformability. Clinical Immunology, 208, Article 108232. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
(2015) The NLRP3-CASP1 Inflammasome Induces Glucocorticoid Resistance in ALL. Cancer Discovery, 5, OF18. [Google Scholar] [CrossRef]
|
|
[32]
|
Wang, H., Zhou, Y., Zhang, Y., Fang, S., Zhang, M., Li, H., et al. (2022) Subtyping of Microsatellite Stability Colorectal Cancer Reveals Guanylate Binding Protein 2 (GBP2) as a Potential Immunotherapeutic Target. Journal for ImmunoTherapy of Cancer, 10, e004302. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cerretti, D.P., Hollingsworth, L.T., Kozlosky, C.J., Valentine, M.B., Shapiro, D.N., Morris, S.W., et al. (1994) Molecular Characterization of the Gene for Human Interleukin-1β Converting Enzyme (IL1BC). Genomics, 20, 468-473. [Google Scholar] [CrossRef] [PubMed]
|