藏红花素通过MTOR信号通路诱导卵巢癌HO-8910细胞自噬
Crocin Induced Autophagy through MTOR Signaling in Ovarian Cancer HO-8910 Cells
DOI: 10.12677/acm.2024.1492598, PDF, HTML, XML,    国家自然科学基金支持
作者: 夏 丹*:山东医学高等专科学校病理教研室,山东 临沂;临沂市人民医院病理科,山东 临沂;韦志永, 刘文静, 訾 臣:临沂市人民医院病理科,山东 临沂
关键词: 藏红花素卵巢癌HO-8910细胞自噬MTORCrocin Ovarian Cancer HO-8910 Cell Autophagy MTOR
摘要: 目的:探讨藏红花素对卵巢癌HO-8910细胞自噬的影响及其分子机制。方法:用Western印迹法测定内源性LC3B-II蛋白的稳态水平以及MTOR及其下游底物的磷酸化水平。用荧光和共聚焦显微镜检测GFP-LC3B斑点的分布。结果:与对照细胞相比,用不同浓度的藏红花素处理的HO-8910细胞中内源性LC3B-II蛋白的稳态水平和GFP-LC3B斑点的分布以剂量依赖的方式增强。用藏红花素处理HO-8910细胞后,MTOR及其下游底物的磷酸化水平显著降低。结论:藏红花素通过抑制MTOR信号通路促进卵巢癌HO-8910细胞自噬体的形成。
Abstract: Aims: To investigate the mechanism through which crocin influences the autophagy of ovarian cancer HO-8910 cells. Methods: Western blotting assay was used to determine the steady-state levels of endogenous LC3B-II protein and the phosphorylation level of MTOR and its downstream substrates. Fluorescence and confocal microscopy was used to detect the distribution of GFP-LC3B puncta. Results: Compared to the control cells, the steady-state levels of endogenous LC3B-II protein and the distribution of GFP-LC3B puncta were enhanced in the HO-8910 cells treated with various concentration of crocin in a dose-dependent manner. Following treatment of HO-8910 cells with crocin, the phosphorylation level of MTOR and its downstream substrates decreased significantly. Conclusions: Crocin promotes the formation of autophagosome in ovarian cancer HO-8910 cells by inhibiting the MTOR signaling pathway.
文章引用:夏丹, 韦志永, 刘文静, 訾臣. 藏红花素通过MTOR信号通路诱导卵巢癌HO-8910细胞自噬[J]. 临床医学进展, 2024, 14(9): 1297-1306. https://doi.org/10.12677/acm.2024.1492598

1. 引言

卵巢癌是世界上最致命的妇科恶性肿瘤,复发率高,预后差[1]。目前,卵巢癌患者的治疗主要通过手术和化疗药物,如5-FU和奥沙利铂。然而,接受这些传统治疗方式的女性必须面对严重的副作用和创伤。因此,科学家们正试图开发低毒高效的新型药物疗法。

藏红花素是从鸢尾科番红花(一种草本植物)的鳞茎中提取出来的。藏红花素对乳腺癌[2] [3]、肝癌[4] [5]、白血病[6]、胃癌[7]、结肠癌[8]、皮肤鳞状细胞癌[9] [10]、肾细胞癌[11]、甲状腺癌[12]、宫颈癌[13]具有较强的抑制作用,而且与常规化疗药物相比,该草本提取物的毒性较小(癌细胞的半致死量为0.8~2 muM)。因此,藏红花素被认为是治疗恶性肿瘤最有效的天然药物。

许多研究阐明了藏红花素抑制恶性肿瘤的机制[14] [15]。有报道称藏红花素通过抑制自噬,在P53阴性结肠癌中诱导更高的细胞凋亡。此外,藏红花素通过AMPK/MTOR和AKT/MTOR通路调节自噬,对心肌缺血再灌注损伤提供保护。

自噬在肿瘤生物学中具有促进和拮抗的双重作用[16] [17]。自噬与卵巢癌的发展、预后[18]和治疗有关[19]-[21],是卵巢癌潜在的治疗靶点[22],有可能通过以下两种机制控制卵巢癌的进展:i) 促进自噬诱导的细胞凋亡;ii) 抑制具有细胞保护作用的自噬反应。

在我们之前的研究[23]中,结果表明,藏红花素可以显著抑制HO-8910细胞的生长,并将其阻滞在G0/G1期。藏红花素还可诱导卵巢癌HO-8910细胞凋亡。在这个过程中,藏红花素增加了p53和Fas/APO-1的表达,然后激活了Caspase-3调节的凋亡途径。

在这项研究中,我们探讨了自噬在卵巢癌细胞系HO-8910中的调节机制以明确藏红花素是否可以用于治疗卵巢癌。

2. 材料和方法

2.1. 抗体和试剂

p62/SQSTM1抗体购自香港MBL公司;LC3B抗体购自Sigma Aldrich公司;ACTB/b-actin抗体购自天津Sungene公司;MTOR、phospho-MTOR、PS6KB1、phospho-RPS6KB1、RPS6、phospho-RPS6、PIK3R1/p85、phospho-PIK3R1/p85、AKT、phospho-AKT、phospho-EIF4EBP1、phospho-TSC2购自美国CST公司;二抗购自美国Rockland公司;bafilomycin A1 (BafA1)、Rapamycin购自美国Sigma Aldrich公司。

2.2. 质粒

GFP-LC3B质粒由美国西奈山医学院岳振宇教授惠赠。

2.3. 细胞培养及转染

HO-8910细胞培养于含10%胎牛血清的DMEM培养基中,常规传代。使用MegaTran 1.0进行GFP-LC3转染,并用G418筛选,以建立稳定转染GFP-LC3B的HO-8910细胞。

2.4. Western Blotting法

HO-8910细胞总蛋白的提取,蛋白定量,10%牛奶(TBST液配制)室温封闭1 h;加入相应的一抗,4℃过夜;然后加入相应的DyLight 680/800标记的二抗(1:10,000),室温避光反应1 h;用Odyssey Infrared Imager检测荧光信号分析灰度值。

2.5. 激光共聚焦显微镜观察

HO-8910细胞铺入共聚焦小皿中大约长至60%~80%密度,使用Megatran1.0转染带荧光蛋白标签或不带标签的相应蛋白表达质粒,转染24小时后,细胞用4%多聚甲醛固定或进一步进行免疫荧光染色,Hoechst33342染核,PBS冲洗三次,置于激光共聚焦显微镜下观察并拍照。在50个细胞中评估每个细胞的GFP-LC3B数量,并从三次独立的实验中获得统计数据。

2.6. 统计分析

数据以平均值 ± 标准差表示。使用Student t检验对连续变量进行组间差异分析。本研究中的统计学意义设定为p < 0.05。所有报告的p值都是双侧的。所有分析均使用GraphPad Prism 5进行。

3. 结果

3.1. 藏红花素对卵巢癌HO-8910细胞自噬的影响

用不同浓度的藏红花素处理HO-8910细胞,蛋白质印迹法检测内源性LC3B-II蛋白的稳态水平。因LC3B-II总是存在于自噬体的膜中,已被广泛用于检测自噬水平。与对照组相比,用藏红花素处理的HO-8910细胞中内源性LC3B-II蛋白的稳态水平以剂量依赖的方式增加(图1,lane 2~5 vs lane 1)。LC3B-II蛋白水平可能由于自噬体形成的增加或自噬体降解的减少而增加。为了区分这两种可能性,我们在实验研究中使用了自噬体晚期抑制剂巴弗洛霉素A1 (BafA1)。BafA1通过抑制囊泡型H+-ATP酶使溶酶体酸化受抑,从而阻碍自噬体与溶酶体的融合。与对照组细胞相比,在BafA1存在的情况下,用藏红花素处理的细胞中LC3B-II蛋白水平较低(图1,lane 7~10 vs lane 6)。这表明,由藏红花素驱动的LC3B脂质化减少(与LC3B-II水平相关)是由自噬体形成增加引起的。这是在正常情况下,那么在应激条件下是什么情况?接下来,我们使用了雷帕霉素,这是自噬最常见的诱导剂。我们发现,用BafA-1和雷帕霉素协同处理后,藏红花素提高了HO-8910细胞的LC3B脂质化水平。这表明,无论是在正常条件,还是在应激条件下,藏红花素都可以促进自噬体的形成(图1,lane 12~15 vs lane 11)。

在获得蛋白质印迹的结果后,我们又监测了用GFP-LC3B质粒稳定转染的HO-8910细胞中GFP-LC3B-斑点的情况。结果显示,与对照组相比,在单独使用BafA1或不使用BafA1,亦或BafA1和RAPA联合使用的条件下,藏红花素都会以剂量依赖的方式使其处理的HO-8910细胞中的GFP-LC3B斑点分布显著增强,进一步证实了藏红花素在正常和应激条件下增强了自噬体的形成(图2)。

Figure 1. Crocin promotes the formation of autophagosomes. HO-8910 cells were treated with different concentrations of crocin (0, 0.2, 0.4, 0.8, 1.0 mmol/l) for 48 h, and treated with or without BafA1 (10 nM) alone or BafA1 (10 nM) and rapamycin (RAPA, 5 mM) combined treatment for the last 6 h, the steady-state levels of endogenous LC3B-II were measured by western blotting

1. 藏红花素促进自噬体的形成。用不同浓度的藏红花素(0, 0.2, 0.4, 0.8, 1.0 mmol/l)处理HO-8910细胞48小时,并在最后6小时单独用/不用BafA1 (10 nM)或BafA1 (10 nM)和雷帕霉素(RAPA, 5 mM)联合处理,通过蛋白质印迹法检测内源性LC3B-II的稳态水平

Figure 2. Crocin increased the distribution of GFP-LC3B puncta per cell. (A) HO-8910 cells were treated with different concentrations of crocin (0, 0.2, 0.4, 0.8, 1.0 mmol/l) for 48 h, and treated with/without BafA1 (10 nM) alone or BafA1 (10 nM) and rapamycin (RAPA, 5 mM) combined treatment for the last 6 h, the distribution of GFP-LC3B puncta per cell was detected by confocol microscopy. (B) Quantification of number of GFP-LC3B puncta per cell. Data are means ± SD of at least 50 cells scored. Scale bar: 25 μm

2. 藏红花素增加了细胞中GFP-LC3B斑点的分布。(A) 用不同浓度的藏红花素(0, 0.2, 0.4, 0.8, 1.0 mmol/l)处理HO-8910细胞48小时,并在最后6小时单独用/不用BafA1 (10 nM)或BafA1 (10 nM)和雷帕霉素(RAPA, 5 mM)联合处理,通过激光共聚焦显微镜检测GFP-LC3B斑点的分布情况。(B) 每个细胞GFP-LC3B斑点数量的定量,数据为至少50个细胞评分的平均值±标准差。比例尺:25 μm

我们进一步用mTagRFP-mWasabi-LC3B报告子来评估藏红花素处理的HO-8910细胞中自噬体的成熟情况。数据显示(图3),与对照细胞相比,藏红花素处理的HO-8910细胞中mTagRFP阳性和mWasabi阴性LC3B斑点的转化(没有mWasabi信号,或相对于mTagRFP弱得多)显著增加,支持了藏红花素促进自噬体进入溶酶体并降解的观点。

此外,藏红花素降低了内源性自噬底物SQSTM1的表达(图4),表明藏红花素提升了自噬底物的清除率,促进了自噬流。

3-甲基腺嘌呤(3-MA)是一种PIK3C3抑制剂,将其与藏红花素一起使用,用以确定藏红花素是在III类磷脂酰肌醇3-激酶复合物的上游还是下游发挥作用。如图5所示,lane 6与lane 4相比,3-MA降低了藏红花素诱导的LC3B-II的积累,表明藏红花素是通过经典的自噬途径来促进自噬体的形成,并且藏红花素可能是在PIK3C3-BECN1复合物的上游发挥作用。

Figure 3. Crocin promoted autophagosome entry into lysosomes and degradation. Representative confocal microscopy images of mTagRFP-mWasabi-LC3B distribution in HO-8910 cells cotransfected with mTagRFP-mWasabi-LC3B with or without crocin treatment, and cultured for 48 h. Scale bar: 25 μm

3. 藏红花素促进自噬体进入溶酶体并降解。将mTagRFP-mWasabi-LiC3B转染入HO-8910细胞,用/不用藏红花素处理HO-8910细胞并培养48小时,激光共聚焦显微镜观察mTagRFP-mWasabi-LC3B的分布情况。比例尺:25 μm

Figure 4. Crocin promotes the endogenous autophagic substrates clearance. HO-8910 cells were treated with different concentrations of crocin (0, 0.2, 0.4, 0.8, 1.0 mmol/l) for 48 h, the levels of endogenous SQSTM1 were measured by western blotting

4. 藏红花素促进内源性自噬底物的清除。用不同浓度的藏红花素(0, 0.2, 0.4, 0.8, 1.0 mmol/l)处理HO-8910细胞48小时,通过蛋白质印迹法检测内源性SQSTM1的水平

Figure 5. PIK3C3 inhibitors partially decrease autophagy induced by crocin. HO-8910 cells were treated with crocin for 48 h, with or without BafA1 (10 nM) alone or together with 3-Methyladenine (3-MA, 10 mM) for the last 6 h. The levels of endogenous LC3B-II were determined by western blotting

5. PIK3C3抑制剂部分降低了藏红花素诱导的自噬。用藏红花素处理HO-8910细胞48小时,在最后6小时单独用/不用BafA1(10 nM)或与3-甲基腺嘌呤(3-MA, 10 mM)联合使用,蛋白质印迹法检测内源性LC3B-II的水平

3.2. 藏红花素通过MTOR信号通路诱导卵巢癌HO-8910细胞自噬

Figure 6. Crocin stimulated autophagy by inhibiting MTOR signaling pathway. (A) HO-8910 cells were treated with crocin (0, 1.0 mmol/l) for 48 h, the phosphorylation level of MTOR and its downstream substrates (RPS6KB1, RPS6, EIF4EBP1) were detected by western blotting. (B) Quantification of amounts of p-MTOR, p-RPS6KB1 or p-RPS6 protein relative to MTOR, RPS6KB1 or RPS6, respectively, p-EIF4EBP1 or LC3B-II protein relative to ACTB in cells treated as in (A). The average value in HO-8910 cells treated with crocin (0 mmol/l) was normalized to 1. Data are mean ± SD of three independent experiments. **P < 0.01, ***P < 0.001

6. 藏红花素通过抑制MTOR信号通路刺激自噬。(A) 用藏红花素(0, 1.0 mmol/l)处理HO-8910细胞48小时,通过蛋白质印迹法检测MTOR及其下游底物(RPS6KB1, RPS6, EIF4EBP1)的磷酸化水平。(B) 如(A)所述处理的细胞中p-MTOR、p-RPS6KB1或p-RPS6蛋白相对于MTOR、RPS6KBl或RPS6的定量,p-EIF4EBP1或LC3B-II蛋白相对于ACTB的定量。用藏红花素(0 mmol/l)处理的HO-8910细胞的平均值标准化为1。数据为三个独立实验的平均值 ± 标准差**P < 0.01,***P < 0.001

Figure 7. MTOR signaling is involved with crocin-triggered autophagy. (A) HO-8910 cells were first treated with crocin (0, 1.0 mmol/l) for 24 h, then transfected with vectors expressing constitutively active (Q64L) or inactive (D60K) RHEB mutants for 24 h. Cell extracts were analyzed by western blotting as indicated. (B) Quantification of amounts of LC3B-II relative to ACTB in cells treated as in (A). Average value in crocin-treated (0 mmol/l) cells was normalized as 1. Data are means ± SD of results from 3 experiments

7. MTOR信号传导与藏红花素触发的自噬有关。(A) 用藏红花素(0, 1.0 mmol/l)处理HO-8910细胞24小时,然后用激活型(Q64L)或无活性(D60K) RHEB突变体的载体转染24小时,蛋白质印迹法分析细胞提取物。(B) 如(A)所述处理的细胞中LC3B-II相对于ACTB的定量。藏红花素处理(0 mmol/l)细胞的平均值标准化为1。数据为3次实验结果的平均值 ± 标准差

自噬是一个动态的过程,受多种信号通路的调节,其中最重要的是MTOR信号通路。它是一种丝氨酸/苏氨酸蛋白激酶,接受各种上游信号,如I型PI3K、AMPK、MAPK,感知营养和能量的变化。为了明确藏红花素是否通过启动MTOR通路激活自噬,我们检测了MTOR信号通路。结果显示,藏红花素降低了MTOR及其下游底物RPS6KB1、RPS6、EIF4EBP1的磷酸化水平,从而减弱了MTOR信号(图6)。与此同时,LC3B-II水平升高,表明藏红花素诱导的自噬可能是通过抑制MTOR信号通路实现的。

为了证实MTOR信号的抑制在藏红花素诱导的自噬中是否为必要的步骤,我们进行了复活MTOR的实验。将激活形式的RHEBQ64L转染到HO-8910细胞中以恢复MTOR活性。如图7所示,RHEBQ64L过表达细胞中RPS6KB1的磷酸化水平上调,表明藏红花素处理的细胞中MTOR的活性得到恢复。同时,RHEBQ64L的过表达消除了藏红花素诱导的LC3B脂质化(图7,lane 4 vs lane 2)。相反,过表达无活性的RHEBD60K则不会复活MTOR,对自噬水平也没有影响(图7,lane 6 vs lane 2),证实MTOR信号确实参与了藏红花素调节的自噬。

综上所述,藏红花素通过MTOR信号通路调节卵巢癌HO-8910细胞自噬。

3.3. 藏红花素抑制裸鼠移植瘤的生长

为了证实藏红花素介导的自噬与卵巢癌生长的关系,我们进行了BALB/c裸鼠体内卵巢癌移植瘤的实验。将HO-8910细胞皮下注射到BALB/c裸鼠的右腋窝。接种后用0或1.0 mmol/l的藏红花素处理21天,处死小鼠,剥离出肿瘤、拍照。如图8(A)所示,1.0 mmol/l藏红花素组的肿瘤体积明显减小,提示藏红花素处理HO-8910细胞导致肿瘤生长抑制。Western blot结果显示,与对照组相比,1.0 mmol/l藏红花素组的肿瘤内源性SQSTM1的水平减低,LC3B-II的水平升高(图8(B)),表明发生了自噬。提示藏红花素诱导的自噬对体外卵巢癌HO-8910细胞有抗肿瘤活性。

Figure 8. Crocin-treated HO-8910 cells results in an inhibition of tumorigenicity. (A) HO-8910 cells were subcutaneously injected in the right axilla of BALB/c nude mice. Treated with crocin 0 or 1.0 mmol/l for 21 d after inoculation, mice were sacrificed and the tumor of each mouse was separated and photographed. (B) Western blotting analysis of endogenous LC3B-II and SQSTM1 levels of tumor tissues

8. 藏红花素处理的HO-8910细胞抑制了致瘤性。(A) 将HO-8910细胞皮下注射到BALB/c裸鼠的右腋窝。接种后用0或1.0 mmol/l的藏红花素处理21天,处死小鼠,分离每只小鼠的肿瘤并拍照。(B) 肿瘤组织内源性LC3B-II和SQSTM1水平的蛋白质印迹分析

4. 讨论

自噬是真核细胞中溶酶体介导的细胞质成分降解的重要途径。这一过程不仅对应激和致病性攻击条件下维持细胞稳态至关重要,还与生物个体的生长、发育和衰老过程有关。一些研究表明,自噬会导致许多人类疾病,包括癌症[24] [25]

自噬在肿瘤生物学中有促进和拮抗双重效应[16] [17]。目前已有确切的证据表明:在卵巢癌、宫颈癌、子宫内膜癌等肿瘤形成过程中自噬基因BECN1表达水平下降[26]。BECN1敲除小鼠虽能存活,但发生淋巴瘤、肝癌、肺癌的概率明显增多,且自噬活性明显下降。但在胃癌等肿瘤中,BECN1呈高表达水平。此外,自噬在不同的环境、不同的癌症发展阶段起着动态的肿瘤抑制或肿瘤促进作用。在肿瘤发生早期,自噬作为一种生存途径和质量控制机制,防止肿瘤发生和抑制癌症进展,一旦肿瘤发展到晚期并在环境压力下建立起自噬,作为一种动态降解循环系统,有助于肿瘤的生存、生长和转移从而增强肿瘤的侵袭性。这表明调节自噬是有效的癌症治疗的介入策略[16]

自噬与卵巢癌的发生发展、治疗和预后密切相关。近来,Wu课题组研究显示[27]自噬相关基因PXN作为预后标志物:通过抑制p110β/Vps34/Beclin1通路促进卵巢癌进展。Bildik等人报道[28] DIRAS3诱导自噬并增强KRAS驱动的胰腺癌和卵巢癌中抗自噬治疗的敏感性。Xiong课题组报道[29]茴香霉素有可能通过影响谷胱甘肽代谢和自噬信号转导途径诱导人卵巢癌干细胞铁死亡。Jin等人研究报道[30] C-MYC通过NCOA4介导的铁蛋白自噬抑制卵巢癌细胞铁凋亡并促进免疫逃逸。Meng团队研究结果显示[31]靶向CRL4通过诱导线粒体自噬抑制化疗耐药卵巢癌的生长。

藏红花自古是活血化瘀的良药,藏红花素是其最主要的色素。研究证实,藏红花素对多种癌细胞均有明显抑制作用[2] [3] [32]-[34],且在与其他常用抗癌药物配合治疗过程中,可降低抗癌药顺铂等的毒副反应,改善疗效[6] [35] [36]。目前对于藏红花素抑癌机制的研究表明,其有多种可能的作用通路,其中细胞自噬和凋亡路径得到了较多的研究支持[37]。近来,Hosseini等人研究报道[38]姜黄素和藏红花素对人大肠癌细胞有协同抗癌作用。Bi课题组研究显示[10]藏红花素通过miR-320a/ATG2B对皮肤鳞状细胞癌发挥抗增殖和凋亡作用。Zhang团队研究结果显示[13]藏红花素通过激活PI3K/AKT诱导宫颈癌SiHa细胞自噬死亡,抑制细胞侵袭。

在本研究中,与对照细胞相比,HO-8910细胞中内源性LC3B-II蛋白的稳态水平在不同浓度的藏红花素作用下以剂量依赖的方式增加。此外,在含有藏红花素的HO-8910细胞中,GFP-LC3B斑点的分布也以剂量依赖的方式增加了。在对mTagRFP-mWasabi-LC3B报告子和内源性自噬底物SQSTM1水平进行检测的结果表明,藏红花素可以促进自噬体进入溶酶体并降解。此外,PIK3C3抑制剂3-MA的使用表明,藏红花素通过经典的自噬途径促进自噬体的形成,并且藏红花素可能在PIK3C3-BECN1复合物的上游起作用。在用藏红花素处理的HO-8910细胞中,mTOR及其下游底物的磷酸化水平显著降低。这些结果表明藏红花素通过激活mTOR信号通路而促进卵巢癌HO-8910细胞自噬体的形成。为了提供藏红花素在自噬中作用的功能性证据,我们进行了裸鼠成瘤实验。数据表明,藏红花素诱导的自噬可以在体内对HO-8910细胞发挥抗肿瘤活性,依据是藏红花素处理后,肿瘤体积变小、LC3水平升高和SQSTM1水平降低。在我们之前题为“藏红花素体外诱导的卵巢癌HO-8910细胞凋亡”的研究工作[23]中,我们发现藏红花素可以显著抑制HO-8910的生长并将其阻滞在G0/G1期。藏红花素还可以促进卵巢癌HO-8910细胞的凋亡。在这个过程中,藏红花素增加了p53和Fas/APO-1的表达,并激活了由Caspase-3调节的凋亡途径。藏红花素、自噬、细胞凋亡与卵巢癌的相关性有待进一步研究证实。

基金项目

本研究由国家自然科学基金项目(81702776);山东省医药卫生科技项目(202304010866);临沂市重点研发计划(医学类) (2023YX0096);山东省自然科学基金项目(ZR2020QH041);山东省医药卫生科技项目(20230206735);徐州医科大学附属医院发展基金项目(XYFM202348)资助。

NOTES

*通讯作者。

参考文献

[1] Yang, J., Wang, C., Zhang, Y., Cheng, S., Wu, M., Gu, S., et al. (2023) A Novel Autophagy-Related Gene Signature Associated with Prognosis and Immune Microenvironment in Ovarian Cancer. Journal of Ovarian Research, 16, Article No. 86.
https://doi.org/10.1186/s13048-023-01167-5
[2] Jia, Y., Yang, H., Yu, J., Li, Z., Jia, G., Ding, B., et al. (2023) Crocin Suppresses Breast Cancer Cell Proliferation by Down‐Regulating Tumor Promoter miR‐122‐5p and up‐Regulating Tumor Suppressors FOXP2 and SPRY2. Environmental Toxicology, 38, 1597-1608.
https://doi.org/10.1002/tox.23789
[3] Ghorbanzadeh, V., Hassan ALJAF, K.A., Wasman, H.M. and Dariushnejad, H. (2024) Crocin Inhibit the Metastasis of MDA-MB-231 Cell Line by Suppressing Epithelial to Mesenchymal Transition through Wnt/β-Catenin Signalling Pathway. Annals of Medicine & Surgery, 86, 1401-1407.
https://doi.org/10.1097/ms9.0000000000001691
[4] Awad, B., Hamza, A.A., Al-Maktoum, A., Al-Salam, S. and Amin, A. (2023) Combining Crocin and Sorafenib Improves Their Tumor-Inhibiting Effects in a Rat Model of Diethylnitrosamine-Induced Cirrhotic-Hepatocellular Carcinoma. Cancers, 15, Article 4063.
https://doi.org/10.3390/cancers15164063
[5] Abdu, S., Juaid, N., Amin, A., Moulay, M. and Miled, N. (2022) Therapeutic Effects of Crocin Alone or in Combination with Sorafenib against Hepatocellular Carcinoma: In vivo & in vitro Insights. Antioxidants, 11, Article 1645.
https://doi.org/10.3390/antiox11091645
[6] Golestani, A., Rahimi, A., Najafzadeh, M., Sayadi, M. and Sajjadi, S.M. (2024) “Combination Treatments of Imatinib with Astaxanthin and Crocin Efficiently Ameliorate Antioxidant Status, Inflammation and Cell Death Progression in Imatinib-Resistant Chronic Myeloid Leukemia Cells”. Molecular Biology Reports, 51, Article No. 108.
https://doi.org/10.1007/s11033-023-09135-4
[7] Li, Y., Guo, Q., Chen, R., Zhao, L., Cui, X., Deng, Y., et al. (2024) Crocin Combined with Cisplatin Regulates Proliferation, Apoptosis, and EMT of Gastric Cancer Cells via the FGFR3/MAPK/ERK Pathway in vitro and in vivo. Current Cancer Drug Targets, 24, 835-845.
https://doi.org/10.2174/1568009624666230915111239
[8] Yang, H., Zhang, Y., Zhang, D., Qian, L., Yang, T. and Wu, X. (2023) Crocin Exerts Anti-Tumor Effect in Colon Cancer Cells via Repressing the JAK Pathway. European Journal of Histochemistry, 67, Article 3697.
https://doi.org/10.4081/ejh.2023.3697
[9] Alyoussef, A. (2023) Investigation of the Ability of Crocin to Treat Skin Cancer Chemically Induced in Mice via the Inhibition of the Wnt/β-Catenin and Fibrotic Pathway. Cureus, 15, e38596.
https://doi.org/10.7759/cureus.38596
[10] Bi, X., Jiang, Z., Luan, Z. and Qiu, D. (2021) Crocin Exerts Anti-Proliferative and Apoptotic Effects on Cutaneous Squamous Cell Carcinoma via miR-320a/ATG2B. Bioengineered, 12, 4569-4580.
https://doi.org/10.1080/21655979.2021.1955175
[11] Niu, L., Wang, X.F. and Wang, X.R. (2020) Crocin Suppresses Cell Proliferation and Migration by Regulating miR-577/NFIB in Renal Cell Carcinoma. Journal of Biological Regulators and Homeostatic Agents, 34, 1523-1527.
[12] Zhang, Y., Zhu, M., Krishna Mohan, S. and Hao, Z. (2020) Crocin Treatment Promotes the Oxidative Stress and Apoptosis in Human Thyroid Cancer Cells FTC‐133 through the Inhibition of STAT/JAK Signaling Pathway. Journal of Biochemical and Molecular Toxicology, 35, e22608.
https://doi.org/10.1002/jbt.22608
[13] Zhang, J., Yang, S., Wang, K., Huang, Y., Yang, N., Yang, Z., et al. (2020) Crocin Induces Autophagic Cell Death and Inhibits Cell Invasion of Cervical Cancer SiHa Cells through Activation of PI3K/AKT. Annals of Translational Medicine, 8, Article 1180.
https://doi.org/10.21037/atm-20-5882
[14] Bao, X., Hu, J., Zhao, Y., Jia, R., Zhang, H. and Xia, L. (2023) Advances on the Anti-Tumor Mechanisms of the Carotenoid Crocin. PeerJ, 11, e15535.
https://doi.org/10.7717/peerj.15535
[15] Wang, C., Ma, Q., Kim, S., Wang, D.H., Shoyama, Y. and Yuan, C. (2022) Effects of Saffron and Its Active Constituent Crocin on Cancer Management: A Narrative Review. Longhua Chinese Medicine, 5, Article 35.
https://doi.org/10.21037/lcm-21-72
[16] Li, X., He, S. and Ma, B. (2020) Autophagy and Autophagy-Related Proteins in Cancer. Molecular Cancer, 19, Article No. 12.
https://doi.org/10.1186/s12943-020-1138-4
[17] Rakesh, R., PriyaDharshini, L.C., Sakthivel, K.M. and Rasmi, R.R. (2022) Role and Regulation of Autophagy in Cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1868, Article 166400.
https://doi.org/10.1016/j.bbadis.2022.166400
[18] Jovanović, L., Nikolić, A., Dragičević, S., Jović, M. and Janković, R. (2022) Prognostic Relevance of Autophagy-Related Markers P62, LC3, and Beclin1 in Ovarian Cancer. Croatian Medical Journal, 63, 453-460.
https://doi.org/10.3325/cmj.2022.63.453
[19] Nokhostin, F., Azadehrah, M. and Azadehrah, M. (2022) The Multifaced Role and Therapeutic Regulation of Autophagy in Ovarian Cancer. Clinical and Translational Oncology, 25, 1207-1217.
https://doi.org/10.1007/s12094-022-03045-w
[20] Feng, C. and Yuan, X. (2023) Role of Autophagy and Its Regulation by Noncoding RNAs in Ovarian Cancer. Experimental Biology and Medicine, 248, 1001-1012.
https://doi.org/10.1177/15353702231151958
[21] Mirabdali, S., Ghafouri, K., Farahmand, Y., Gholizadeh, N., Yazdani, O., Esbati, R., et al. (2024) The Role and Function of Autophagy through Signaling and Pathogenetic Pathways and LncRNAs in Ovarian Cancer. Pathology-Research and Practice, 253, Article 154899.
https://doi.org/10.1016/j.prp.2023.154899
[22] Park, M., Choe, S., Shin, M., Kim, A., Mo, K., Kwon, H., et al. (2023) Potential Therapeutic Targets in Ovarian Cancer: Autophagy and Metabolism. Frontiers in Bioscience-Landmark, 28, Article 47.
https://doi.org/10.31083/j.fbl2803047
[23] Xia, D. (2015) Ovarian Cancer HO-8910 Cell Apoptosis Induced by Crocin in Vitro. Natural Product Communications, 10.
https://doi.org/10.1177/1934578x1501000208
[24] Debnath, J., Gammoh, N. and Ryan, K.M. (2023) Autophagy and Autophagy-Related Pathways in Cancer. Nature Reviews Molecular Cell Biology, 24, 560-575.
https://doi.org/10.1038/s41580-023-00585-z
[25] Klionsky, D.J., Petroni, G., Amaravadi, R.K., Baehrecke, E.H., Ballabio, A., Boya, P., et al. (2021) Autophagy in Major Human Diseases. The EMBO Journal, 40, e108863.
https://doi.org/10.15252/embj.2021108863
[26] Orfanelli, T., Jeong, J.M., Doulaveris, G., Holcomb, K. and Witkin, S.S. (2013) Involvement of Autophagy in Cervical, Endometrial and Ovarian Cancer. International Journal of Cancer, 135, 519-528.
https://doi.org/10.1002/ijc.28524
[27] Wu, Q., Cui, Z., Jiang, S., Xia, H., Liu, L., You, Y., et al. (2023) Autophagy‐Related Gene PXN as a Prognostic Marker: Promotion of Ovarian Cancer Progression by Suppressing the P110β/Vps34/Beclin1 Pathway. Cell Biochemistry and Function, 41, 599-608.
https://doi.org/10.1002/cbf.3815
[28] Bildik, G., Gray, J.P., Mao, W., Yang, H., Ozyurt, R., Orellana, V.R., et al. (2024) DIRAS3 Induces Autophagy and Enhances Sensitivity to Anti-Autophagic Therapy in KRAS-Driven Pancreatic and Ovarian Carcinomas. Autophagy, 20, 675-691.
https://doi.org/10.1080/15548627.2023.2299516
[29] Xiong, Y., Liu, T. and Chen, J. (2023) Anisomycin Has the Potential to Induce Human Ovarian Cancer Stem Cell Ferroptosis by Influencing Glutathione Metabolism and Autophagy Signal Transduction Pathways. Journal of Cancer, 14, 1202-1215.
https://doi.org/10.7150/jca.83355
[30] Jin, Y., Qiu, J., Lu, X. and Li, G. (2022) C-MYC Inhibited Ferroptosis and Promoted Immune Evasion in Ovarian Cancer Cells through NCOA4 Mediated Ferritin Autophagy. Cells, 11, Article 4127.
https://doi.org/10.3390/cells11244127
[31] Meng, Y., Qiu, L., Zeng, X., Hu, X., Zhang, Y., Wan, X., et al. (2022) Targeting CRL4 Suppresses Chemoresistant Ovarian Cancer Growth by Inducing Mitophagy. Signal Transduction and Targeted Therapy, 7, Article No. 388.
https://doi.org/10.1038/s41392-022-01253-y
[32] Shi, X., Yu, Q., Wang, K., Fu, Y., Zhang, S., Liao, Z., et al. (2023) Active Ingredients Isorhamnetin of Croci Srigma Inhibit Stomach Adenocarcinomas Progression by MAPK/mTOR Signaling Pathway. Scientific Reports, 13, Article No. 12607.
https://doi.org/10.1038/s41598-023-39627-z
[33] Haseli, R., Honarvar, M., Yavari, K. and Ghavami, M. (2023) Synergistic Anticancer Effects of Crocin Combined with Deuterium-Depleted Water on HT-29 Cells. Anti-Cancer Drugs, 34, 1162-1170.
https://doi.org/10.1097/cad.0000000000001512
[34] 林珊, 屈思萌, 张荣, 等. 藏红花素诱导视网膜母细胞瘤自噬性死亡并抑制细胞侵袭和PI3K/AKT的活化[J]. 解剖学杂志, 2022, 45(6): 542-546.
[35] Ebrahimi, N., Javadinia, S.A., Salek, R., Fanipakdel, A., Sepahi, S., Dehghani, M., et al. (2024) Randomized, Double-Blind, Placebo-Controlled Clinical Trial of Concurrent Use of Crocin during Chemoradiation for Esophageal Squamous Cell Carcinoma. Cancer Investigation, 42, 155-164.
https://doi.org/10.1080/07357907.2024.2319754
[36] 许存庚, 骆玉霜. 藏红花素联合顺铂通过抑制ERK信号通路调控胃癌细胞的增殖和凋亡[J]. 山西医科大学学报, 2019, 50(7): 922-927.
[37] Kim, B. and Park, B. (2024) [Corrigendum] Saffron Carotenoids Inhibit STAT3 Activation and Promote Apoptotic Progression in Il-6-Stimulated Liver Cancer Cells. Oncology Reports, 51, Article No. 68.
https://doi.org/10.3892/or.2024.8727
[38] Hosseini, S.S., Reihani, R.Z., Doustvandi, M.A., Amini, M., Zargari, F., Baradaran, B., et al. (2022) Synergistic Anticancer Effects of Curcumin and Crocin on Human Colorectal Cancer Cells. Molecular Biology Reports, 49, 8741-8752.
https://doi.org/10.1007/s11033-022-07719-0