[1]
|
王艳艳, 孙雪, 裴晓蕾, 等. 中药寒热药性与线粒体能量代谢关系研究[J]. 中医药信息, 2013, 30(4): 48-50.
|
[2]
|
章顺荣, 高越. 细胞线粒体动力学与心血管疾病[J]. 中国慢性病预防与控制, 2014, 22(5): 607-610.
|
[3]
|
阿力木江·买买提江, 高秀芳, 金波, 等. 线粒体动力学与心肌细胞能量代谢的研究进展[J]. 复旦学报(医学版), 2013, 40(5): 625-628.
|
[4]
|
文建霞, 王建, 张璐. 附子配伍干姜治疗心力衰竭的药理作用及机制研究进展[J]. 中国医院用药评价与分析, 2019, 19(10): 1167-1170.
|
[5]
|
程少均, 罗建锋. 大剂量山莨菪碱对比多巴胺治疗冷休克中心排血量的影响[J]. 吉林医学, 2018, 39(1): 6-7.
|
[6]
|
郑玲, 赵挺, 孙立新. 香豆素类化合物的药理活性和药代动力学研究进展[J]. 时珍国医国药, 2013, 24(3): 714-717.
|
[7]
|
Dongmo, A.B., Azebaze, A.G.B., Nguelefack, T.B., Ouahouo, B.M., Sontia, B., Meyer, M., et al. (2007) Vasodilator Effect of the Extracts and Some Coumarins from the Stem Bark of Mammea africana (guttiferae). Journal of Ethnopharmacology, 111, 329-334. https://doi.org/10.1016/j.jep.2006.11.026
|
[8]
|
Bahadır, Ö., Saltan Çitoğlu, G., Özbek, H., Dall’Acqua, S., Hošek, J. and Šmejkal, K. (2011) Hepatoprotective and TNF-α Inhibitory Activity of Zosima absinthifolia Extracts and Coumarins. Fitoterapia, 82, 454-459. https://doi.org/10.1016/j.fitote.2010.12.007
|
[9]
|
王璐, 丁家昱, 刘秀秀, 等. 附子中胺醇型二萜生物碱的鉴定及其强心活性研究[J]. 药学学报, 2014, 49(12): 1699-1704.
|
[10]
|
Yang, B., Han, Y., Zhang, Q., et al. (2019) Study on Absorbed Components of Aconitum kusnezoffii under Yunnan Baiyao Compatibility in Effect of Activating Blood Circulation and Removing Blood Stasis. China Journal of Chinese Materia Medica, 44, 3349-3357.
|
[11]
|
王玉红, 李聪, 江爽, 等. 去甲乌药碱对心血管药理作用的研究进展[J]. 药学学报, 2020, 55(3): 392-397.
|
[12]
|
张晓丽, 迟名锋, 张宁, 等. 去甲乌药碱的药理作用和含量测定的研究进展[J]. 现代医药卫生, 2022, 38(18): 3145-31488+3153.
|
[13]
|
Chen, Y., Guo, B., Zhang, H., Hu, L. and Wang, J. (2019) Higenamine, a Dual Agonist for Β 1-and Β 2-Adrenergic Receptors Identified by Screening a Traditional Chinese Medicine Library. Planta Medica, 85, 738-744. https://doi.org/10.1055/a-0942-4502
|
[14]
|
Zhang, N., Lian, Z., Peng, X., Li, Z. and Zhu, H. (2017) Applications of Higenamine in Pharmacology and Medicine. Journal of Ethnopharmacology, 196, 242-252. https://doi.org/10.1016/j.jep.2016.12.033
|
[15]
|
Zhang, N., Qu, K., Wang, M., Yin, Q., Wang, W., Xue, L., et al. (2019) Identification of Higenamine as a Novel α1-Adrenergic Receptor Antagonist. Phytotherapy Research, 33, 708-717. https://doi.org/10.1002/ptr.6261
|
[16]
|
Wei, X., Zhang, B., Liang, X., Liu, C., Xia, T., Xie, Y., et al. (2021) Higenamine Alleviates Allergic Rhinitis by Activating AKT1 and Suppressing the EGFR/JAK2/c-JUN Signaling. Phytomedicine, 86, Article 153565. https://doi.org/10.1016/j.phymed.2021.153565
|
[17]
|
韦震鸣, 傅强, 李志樑, 等. 去甲乌药碱对2型心肾综合征大鼠心肾的保护作用[J]. 实用医学杂志, 2018, 34(11): 1830-1833+1838.
|
[18]
|
Wu, M., Zhang, Y., Zhou, Q., Xiong, J., Dong, Y. and Yan, C. (2016) Higenamine Protects Ischemia/Reperfusion Induced Cardiac Injury and Myocyte Apoptosis through Activation of Β2-AR/PI3K/Akt Signaling Pathway. Pharmacological Research, 104, 115-123. https://doi.org/10.1016/j.phrs.2015.12.032
|
[19]
|
Chen, Y., Zhuang, X., Xu, Z., Lu, L., Guo, H., Wu, W., et al. (2013) Higenamine Combined with [6]-Gingerol Suppresses Doxorubicin-Triggered Oxidative Stress and Apoptosis in Cardiomyocytes via Upregulation of PI3K/Akt Pathway. Evidence-Based Complementary and Alternative Medicine, 2013, 1-14. https://doi.org/10.1155/2013/970490
|
[20]
|
Ha, Y.M., Kim, M.Y., Park, M.K., Lee, Y.S., Kim, Y.M., Kim, H.J., et al. (2011) Higenamine Reduces HMGB1 during Hypoxia-Induced Brain Injury by Induction of Heme Oxygenase-1 through PI3K/AKT/Nrf-2 Signal Pathways. Apoptosis, 17, 463-474. https://doi.org/10.1007/s10495-011-0688-8
|
[21]
|
Zhang, Y., Zhang, J., Wu, C., Guo, S., Su, J., Zhao, W., et al. (2018) Higenamine Protects Neuronal Cells from Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury. Journal of Cellular Biochemistry, 120, 3757-3764. https://doi.org/10.1002/jcb.27656
|
[22]
|
Liu, Q., Yu, S., Zhao, W., Qin, S., Chu, Q. and Wu, K. (2018) EGFR-TKIs Resistance via EGFR-Independent Signaling Pathways. Molecular Cancer, 17, Article No. 53. https://doi.org/10.1186/s12943-018-0793-1
|
[23]
|
冯梅. 表皮生长因子受体在缺血再灌注性心律失常和肾性高血压中的作用及其机制[D]: [博士学位论文]. 武汉: 华中科技大学, 2011.
|
[24]
|
Xiao, X., Tan, Z., Jia, M., Zhou, X., Wu, K., Ding, Y., et al. (2021) Long Noncoding RNA SNHG1 Knockdown Ameliorates Apoptosis, Oxidative Stress and Inflammation in Models of Parkinson’s Disease by Inhibiting the miR-125b-5p/MAPK1 Axis. Neuropsychiatric Disease and Treatment, 17, 1153-1163. https://doi.org/10.2147/ndt.s286778
|
[25]
|
Chang, J., Zhang, Y., Shen, N., Zhou, J. and Zhang, H. (2021) miR-129-5p Prevents Depressive-Like Behaviors by Targeting MAPK1 to Suppress Inflammation. Experimental Brain Research, 239, 3359-3370. https://doi.org/10.1007/s00221-021-06203-8
|
[26]
|
Hao, Y., Yuan, H. and Yu, H. (2020) Retracted Article: Downregulation of miR-483-5p Decreases Hypoxia-Induced Injury in Human Cardiomyocytes by Targeting MAPK3. Cellular & Molecular Biology Letters, 25, Article No. 20. https://doi.org/10.1186/s11658-020-00213-0
|
[27]
|
Ma, Y., Zhao, L., Gao, M. and Loor, J.J. (2018) Tea Polyphenols Protect Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Damage in Vitro. Journal of Animal Science, 96, 4159-4172. https://doi.org/10.1093/jas/sky278
|
[28]
|
Hao, Y., Fang, H., Zhao, H., Li, X., Luo, Y., Wu, B., et al. (2018) The Role of Microrna-1 Targeting of MAPK3 in Myocardial Ischemia-Reperfusion Injury in Rats Undergoing Sevoflurane Preconditioning via the PI3K/Akt Pathway. American Journal of Physiology-Cell Physiology, 315, C380-C388. https://doi.org/10.1152/ajpcell.00310.2017
|
[29]
|
Lin, B., Feng, D. and Xu, J. (2019) Microrna-665 Silencing Improves Cardiac Function in Rats with Heart Failure through Activation of the Camp Signaling Pathway. Journal of Cellular Physiology, 234, 13169-13181. https://doi.org/10.1002/jcp.27987
|
[30]
|
Yue, J. and López, J.M. (2020) Understanding MAPK Signaling Pathways in Apoptosis. International Journal of Molecular Sciences, 21, Article 2346. https://doi.org/10.3390/ijms21072346
|
[31]
|
Gong, T., Si, K., Liu, H., et al. (2022) Research Advances in the Role of MAPK Cascade in Regulation of Cell Growth, Immunity, Inflammation, and Cancer. Journal of Central South University, Medical Sciences, 47, 1721-1728.
|
[32]
|
郝珍. 弓形虫MAPK1核酸疫苗对小鼠的免疫保护作用研究 [D]. 山东大学, 2018.
|
[33]
|
O’Dea, K.P., Dokpesi, J.O., Tatham, K.C., Wilson, M.R. and Takata, M. (2011) Regulation of Monocyte Subset Proinflammatory Responses within the Lung Microvasculature by the P38 MAPK/MK2 Pathway. American Journal of Physiology-Lung Cellular and Molecular Physiology, 301, L812-L821. https://doi.org/10.1152/ajplung.00092.2011
|
[34]
|
罗丽珊, 孙嘉. 微循环障碍相关细胞信号通路的研究进展[J]. 微循环学杂志, 2013, 23(1): 67-70.
|
[35]
|
张静云. EGFR/MAPK信号通路在介导外阴阴道念珠菌病固有免疫反应中的作用研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2022.
|
[36]
|
甘家丽, 曾妙, 黄洋, 等. 中药基于PI3K/Akt信号通路防治心肌缺血/再灌注损伤的研究进展[J]. 中华中医药杂志, 2020, 35(7): 3527-3529.
|
[37]
|
Zhou, Y., Han, Q., Gao, L., Sun, Y., Tang, Z., Wang, M., et al. (2020) HMGB1 Protects the Heart against Ischemia-Reperfusion Injury via PI3K/Akt Pathway-Mediated Upregulation of VEGF Expression. Frontiers in Physiology, 10, Article 1595. https://doi.org/10.3389/fphys.2019.01595
|
[38]
|
Xu, T., Qin, G., Jiang, W., Zhao, Y., Xu, Y. and Lv, X. (2018) 6-Gingerol Protects Heart by Suppressing Myocardial Ischemia/Reperfusion Induced Inflammation via the PI3K/Akt-Dependent Mechanism in Rats. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID: 6209679. https://doi.org/10.1155/2018/6209679
|