关节腔内注射富血小板血浆联合微骨折介导关节软骨修复的动物实验研究
An Animal Experimental Study on Articular Cartilage Repair Mediated by Serial Platelet-Rich Plasma Intra-Articular Injection Combined with Microfracture
DOI: 10.12677/acm.2024.1492605, PDF, HTML, XML,    科研立项经费支持
作者: 卓鸿武, 李 坚*:福建中医药大学附属第二人民医院运动医学科,福建 福州;曹正誉, 陈福武, 江冶建, 余斌龙:福建中医药大学附属第二人民医院运动医学科,福建 福州;福建中医药大学第二临床医学院,福建 福州
关键词: 软骨损伤富血小板血浆微骨折Articular Cartilage Defect Platelet-Rich Plasma Microfracture
摘要: 目的:探讨关节腔内注射富血小板血浆联合微骨折处理,对新西兰大白兔膝关节全层透明软骨损伤修复的影响。方法:27只成年雄性新西兰大白兔,体重2.5~3.0 kg,建立右膝关节全层透明软骨缺损模型,平均分为3组,分别为:对照组(CTL组,n = 9)、微骨折组(MF组,n = 9)及关节腔内注射富血小板血浆联合微骨折组(MF@PRP组,n = 9)。术后观察动物一般情况,分别于术后4周、8周及12周取兔右膝关节标本,行大体观察、国际软骨修复协会(International Cartilage Repair Society, ICRS)软骨修复评分、Wakitani评分、苏木精–伊红(Hematoxylin-eosin, HE)染色、过碘酸雪夫(Periodic acid Schiff, PAS)染色等检测。结果:所有实验用兔术后均存活。取材后大体观察及组织学检测可见CTL组、MF组及MF@PRP组中兔膝关节全层软骨缺损得到不同程度的修复,组织学检测可见MF@PRP组中全层软骨缺损处再生组织中可见软骨样细胞及软骨基质,CTL组全层软骨缺损处再生组织主要为纤维软骨。造模后8、12周,MF@PRP组中新西兰大白兔ICRS评分均明显优于CTL组、MF组(P < 0.05)。造模后4、8、12周,MF@PRP组中新西兰大白兔Wakitani评分均明显优于CTL组、MF组(P < 0.05)。结论:与单纯微骨折技术相比,关节腔内注射富血小板血浆联合微骨折有利于新西兰大白兔膝关节透明软骨全层缺损修复再生。
Abstract: Purpose: To investigate the effect of intra-articular injection of platelet-rich plasma combined with microfracture treatment on the repair of full-thickness articular cartilage defects of knee joint in New Zealand white rabbits. Methods: A total of 27 New Zealand White rabbits (2.5~3.0 kilograms) were used to establish animal model and randomly divided into 3 groups: a control group (n = 9), a microfracture group (n = 9) and a microfracture combined with platelet-rich plasma group (n = 9). To evaluate the repair of articular cartilage defects, macroscopic and histological assessments were performed at 4, 8 and 12 weeks after surgery via macroscopic evaluation, the International Cartilage Repair Society (ICRS) macroscopic scoring system, Wakitani scoring system, hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining, respectively. Results: All rabbits survived after operation. The results of macroscopic and histological examination showed that the full-thickness articular cartilage defects of the knee joint of rabbits in CTL group, MF group and MF@PRP group were repaired to varying degrees. The histological examination showed that chondroid cells and cartilage matrix were visible in the regenerated tissue of the full-thickness articular cartilage defect in MF@PRP group, while fibrocartilage was the main regenerated tissue of the full-thickness cartilage defect in CTL group. At 8 and 12 weeks after surgery, ICRS scores of New Zealand white rabbits in MF@PRP group were significantly better than those in CTL group and MF group (P < 0.05). At 4, 8 and 12 weeks after surgery, the Wakitani score of New Zealand white rabbits in MF@PRP group was significantly better than that in CTL group and MF group (P < 0.05). Conclusion: Macroscopic and histological evaluation revealed that microfracture combined with serial platelet-rich plasma injection yields better outcomes for the repair of full-thickness articular cartilage defects than microfracture alone.
文章引用:卓鸿武, 曹正誉, 陈福武, 江冶建, 余斌龙, 李坚. 关节腔内注射富血小板血浆联合微骨折介导关节软骨修复的动物实验研究[J]. 临床医学进展, 2024, 14(9): 1356-1365. https://doi.org/10.12677/acm.2024.1492605

1. 前言

膝关节骨软骨损伤是膝关节骨性关节炎(Knee osteoarthritis, KOA)的危险因素之一[1]。由于关节透明软骨缺乏血供,且透明软骨细胞增殖能力差,因此,关节透明软骨损伤后,尤其是全层损伤,通常难以完成自我修复[2],随着关节透明软骨损伤程度的进一步加剧,进而出现软骨下骨暴露、硬化,软骨下骨失去对关节软骨的支撑及滋养作用,上述病理改变形成恶性循环并伴随着膝关节结构进行性破坏[1]。因此,如何促进关节透明软骨损伤后修复是临床工作中困扰骨科医师的重难点问题之一。

目前,临床中已有多种手术策略可供选择,用于治疗局灶关节透明软骨损伤,包括:自体软骨移植、间充质干细胞(Mesenchymal stem cells, MSCs)移植、自体软骨细胞移植等,然而,上述治疗方案均存在一定程度的局限性,从而限制了其在临床工作中的广泛应用[3]。例如:自体软骨移植被认为是治疗局灶软骨缺损的有效手术方法之一,然而,关节非负重区所能提供的、可用于移植的关节软骨量十分有限[4]。此外,微骨折被认为是一种可用于关节软骨缺损的微创治疗方案,然而,相关报道发现:微骨折治疗关节软骨缺损的临床疗效不确切,尤其对于临界大小的关节软骨缺损而言[5],相关研究认为微骨折处理后,关节软骨缺损处缺乏足够的细胞因子和生长因子是导致该方案临床疗效不确切的可能原因之一[6]

富血小板血浆(Platelet-rich plasma, PRP)是一种不含红细胞的、安全的自体血液制品,其中含有高浓度的细胞因子、生长因子和生物活性物质,PRP已被证实可在组织愈合和免疫调节过程中发挥重要作用[7]。PRP于20世纪50年代开始使用至今,已被广泛应用治疗骨骼肌肉相关疾病,一项为期5年的双盲临床随机对照实验结果提示:关节腔内注射PRP可有效改善KOA患者的膝关节功能、缓解疼痛等症状[8]。不仅如此,多项动物实验结果表明:关节腔内注射PRP可有效促进KOA动物模型的关节透明软骨修复,缓解疼痛,并抑制异常新生血管形成[9]-[12]

目前,针对关节腔内连续注射PRP联合微骨折,促进关节软骨损伤修复的相关研究仍较少,缺乏足够的实验证据。因此,我们开展了一项体内动物实验,在新西兰大白兔膝关节透明软骨全层缺损的动物模型中,我们使用微骨折联合连续关节内注射PRP进行处理,并对比不同处理方式对新西兰大白兔膝关节全层透明软骨损伤修复的影响。本研究旨在探讨关节腔内连续注射PRP联合微骨折,对动物模型关节软骨缺损修复的影响,并为临床关节透明软骨全层缺损的治疗提供相应实验证据。报告如下。

2. 材料与方法

2.1. 动物伦理

本研究所有动物实验均经福建中医药大学动物伦理委员会批准(FJTCM IACUC2022248),并按照美国国立卫生研究院《实验动物护理和使用指南》进行。

2.2. 实验动物

采用27只成年雄性新西兰大白兔(体重2.5~3.0 kg),由福建中医药大学动物实验中心提供,用于建立膝关节全层透明软骨损伤动物模型。将实验动物随机分为3组,包括:对照组(CTL组,n = 9)、微骨折组(MF组,n = 9)和微骨折联合PRP组(MF@PRP组,n = 9),所有动物均提供干净的水和饲料,供其自由摄取。

2.3. 兔来源的富血小板血浆的制备

PRP的制备方法如下:从兔耳缘静脉采集10 mL静脉血并加入适量肝素钠抗凝。取得的静脉血后以3000 rpm转数,常温离心10分钟,并在生物安全柜中,使用移液枪吸取上清液,即可获得兔来源的PRP。

2.4. 具体手术及干预过程

各组新西兰大白兔经由耳缘静脉,注射2% (w/v)戊巴比妥钠(40 mg/kg)麻醉后,取仰卧位并妥善固定。每只兔右膝关节区域,常规备皮并使用碘酒消毒3遍。CTL组新西兰大白兔通过内侧髌旁切口,髌骨外侧脱位后,暴露股骨滑车。用刮匙制作长约0.6 cm、宽约0.6 cm的关节透明软骨全层缺损,直至软骨下骨暴露,无菌生理盐水冲洗术野后,妥善逐层缝合切口。待麻醉恢复后,将兔放回笼内,术后1周开始,CTL组新西兰大白兔右膝关节注射磷酸盐缓冲液2~3 mL,每周1次。

MF组中新西兰大白兔在上述操作的基础上,在关节软骨缺损处,用无菌钻头钻取4个直径2 mm的微骨折孔,可见微骨折孔中渗血,之后妥善逐层缝合切口。麻醉恢复后,将兔放回笼内,术后1周开始,右膝关节注射磷酸盐缓冲液2~3 mL,每周1次。

MF@PRP组中新西兰大白兔,在全层透明关节软骨缺损区域钻取微骨折孔后,妥善逐层缝合切口,麻醉恢复后,将兔放回笼内,术后1周开始,行关节腔内注射PRP 2~3 mL,每周1次。分别于术后4、8、12周处死各组兔。取股骨远端进行ICRS评分[13]、Wakitani评分和组织学检测,包括HE染色和PAS染色。

2.5. 标本大体评估和组织学检测方法

本研究中,各组标本的大体评价和ICRS评分由2名研究者独立完成[14]

安乐死各组新西兰大白兔后,收集其右侧股骨远端。各组标本经4%多聚甲醛固定后,浸泡于10%四钠–乙二胺四乙酸中脱钙4周。

完成脱钙后,各组股骨标本包埋于石蜡中,并通过显微切片机将其制备成5 μm厚的切片。采用HE染色和PAS染色对关节软骨缺损区重建组织的结构进行染色,包括软骨区(表面区、中间区、深层区和钙化区)和骨性区(软骨下骨区)。此外,在此基础上,由2名研究者独立采用Wakitani评分系统对各组切片进行组织学评分[15]

2.6. 统计学分析

本项目中所有实验均重复3次。使用GraphPad Prism软件进行统计学分析。组间比较采用单因素方差分析和Tukey事后检验。多时间点组内比较采用单因素重复测量方差分析。P < 0.05被认为差异有统计学意义。

3. 结果

3.1. 一般情况

术后各组新西兰大白兔均存活至相应取材时间点,膝关节切口均妥善愈合,未观察到膝关节感染发生。

3.2. 标本大体观察结果

定期监测CTL组、MF组和MF@PRP组新西兰大白兔体重,各个时间点时3组新西兰兔体质量差异无统计学意义(P > 0.05)。获取右侧股骨标本后,均未观察到兔膝关节出现与炎症相符的大体改变。术后4、8、12周,可见CTL组中新西兰大白兔软骨缺损区均未完全修复,可见不同程度的凹陷及软骨下骨暴露。MF组中新西兰大白兔缺损区至术后第12周时,可见缺损区被修复组织填充,但仍可观察到修复组织中存在明显裂隙。术后8周时,可见MF@PRP组新西兰大白兔软骨缺损处凹陷区域变平,中央凹陷残留,至术后12周时,缺损区域以基本被新生修复组织填充,表面较平整、光滑。

术后8周和12周时,3组间ICRS评分存在显著差异,且具有统计学意义(P < 0.05,图1)。术后4周时,CTL组、MF组和MF@PRP组中标本ICRS评分分别为(3.00 ± 1.00)分、(5.33 ± 0.58)分和(5.67 ± 0.58)分,其中MF组和MF@PRP组中标本ICRS评分差异无统计学意义。术后8周时,CTL组、MF组和MF@PRP组中标本ICRS评分分别为(5.67 ± 0.58)、(8.67 ± 0.58)、(9.67 ± 1.15)分,MF@PRP组中标本ICRS评分显著高于其余2组(P < 0.05)。术后12周时,CTL组、MF组和MF@PRP组中标本ICRS评分分别为(7.67 ± 0.58)、(11.33 ± 2.08)、(14.00 ± 1.73)分,MF@PRP组中标本ICRS评分显著高于其余2组(P < 0.05) (表1)。

Table 1. Scoring results based on ICRS scoring system

1. 基于ICRS评分系统的评分结果

分组

取材时间点

缺损填充

缺损边缘

修复软骨颜色

表面大体外观

总分

P值

CTL组

4周

1.33 ± 0.58

0.67 ± 0.58

0.33 ± 0.58

0.67 ± 0.58

3.00 ± 1.00

0.0008

8周

2.00 ± 1.00

1.33 ± 0.58

1.33 ± 0.58

1.00 ± 0.00

5.67 ± 0.58

12周

2.67 ± 0.58

2.00 ± 0.00

1.68 ± 0.58

1.33 ± 0.58

7.67 ± 0.58

MF组

4周

1.67 ± 0.58

1.33 ± 0.58

1.00 ± 1.00

1.33 ± 0.58

5.33 ± 0.58

0.0038

8周

3.00 ± 0.00

2.00 ± 0.00

1.67 ± 0.58

2.00 ± 0.00

8.67 ± 0.58

12周

3.67 ± 0.58

2.67 ± 0.58

2.33 ± 0.58

2.68 ± 0.58

11.33 ± 2.08

MF@PRP组

4周

2.00 ± 0.00

1.33 ± 0.58

1.00 ± 0.00

1.33 ± 0.58

5.67 ± 0.58

0.0006

8周

3.33 ± 0.58

2.33 ± 0.58

2.00 ± 1.00

2.00 ± 0.00

9.67 ± 1.15

12周

4.00 ± 0.00

3.67 ± 0.58

3.00 ± 0.00

3.33 ± 1.15

14.00 ± 1.73

Figure 1. At 4, 8, and 12 weeks after operation, the ICRS scoring system was used to quantitatively analyze the repair of articular cartilage defects in animal models. The results were presented as mean ± standard deviation (SD). *p < 0.05; ***p < 0.005; ****p < 0.001; ns, not significant

1. 术后4周、8周、12周,分别采用ICRS评分系统对各组动物模型的关节软骨缺损修复情况进行定量分析。数据以均数 ± 标准差表示。*p < 0.05;***p < 0.005;****p < 0.001;ns:无显著性差异

3.3. 组织学评估结果

术后4、8周,CTL组中新西兰大白兔关节透明软骨缺损区域,可见少量重建组织,且以纤维组织为主。直至术后12周仍可见软骨下骨外露(图2图3)。

Figure 2. The results of histological evaluation of specimens: at 4, 8 and 12 weeks after surgery, the results of HE staining on sagittal surface of knee joint specimens of New Zealand white rabbits in each group (scale is 100 μm)

2. 各组标本组织学评估结果:术后4周、8周、12周,各组新西兰大白兔膝关节标本矢状面HE染色结果(标尺为100 μm)

Figure 3. The results of histological evaluation of specimens: at 4, 8 and 12 weeks after surgery, the results of PAS staining on sagittal surface of knee joint specimens of New Zealand white rabbits in each group (scale is 100 μm)

3. 各组标本组织学评估结果:术后4周、8周、12周,各组新西兰大白兔膝关节标本矢状面PAS染色结果(标尺为100 μm)

术后4周,MF组中新西兰大白兔关节透明软骨缺损区可见少量软骨样细胞和软骨基质形成。术后8周,MF组中新西兰大白兔关节透明软骨缺损区中新生修复组织内可见透明软骨样细胞和纤维软骨样细胞同时存在,软骨下骨出现部分骨小梁,但结构紊乱。术后12周,缺损未被透明软骨样细胞和软骨基质完全填充,新生修复组织仍可见明显裂隙(图2图3)。

术后8周,MF@PRP组中新西兰大白兔关节透明软骨缺损区可见部分透明软骨样细胞和软骨基质形成,软骨下骨处可见较多骨小梁,并可见“潮线”形成。术后12周,MF@PRP组中新西兰大白兔缺损区域软骨层、软骨下骨层进一步修复,分界清晰、可见典型“潮线”形成(图2图3)。此外,术后8周和12周时,MF@PRP组Wakitani评分分别为(5.33 ± 0.58)、(2.67 ± 0.58)分,显著低于CTL组和MF组(P < 0.05,图4) (表2)。

Figure 4. At 4, 8, and 12 weeks after operation, the Wakitani score was used to quantitatively analyze the repair of articular cartilage defects in animal models. The results were presented as mean ± standard deviation (SD). *P < 0.05; ***P < 0.005; ****P < 0.001; ns, not significant

4. 术后4周、8周、12周,分别采用Wakitani评分对各组动物模型的关节软骨缺损修复情况进行定量分析。数据以均数 ± 标准差表示。*P < 0.05;***P < 0.005;****P < 0.001

Table 2. Histological examination scoring results based on Wakitani scoring system

2. Wakitani分级系统的组织学检查评分结果

分组

取材时间点

细胞形态

细胞
基质染色

表面规整度

软骨厚度

与正常软骨整合情况

总分

P值

CTL组

4周

3.67 ± 0.58

3.00 ± 0.00

3.00 ± 0.00

2.00 ± 0.00

2.00 ± 0.00

13.67 ± 0.58

<0.0001

8周

2.67 ± 0.58

2.33 ± 0.58

2.33 ± 0.58

1.67 ± 0.58

2.00 ± 0.00

11.00 ± 0.00

12周

2.00 ± 0.00

2.67 ± 0.58

2.33 ± 0.58

1.33 ± 0.58

1.00 ± 0.00

9.33 ± 0.58

MF组

4周

3.33 ± 0.58

3.00 ± 0.00

2.33 ± 0.58

1.67 ± 0.58

2.00 ± 0.00

12.33 ± 1.15

0.001

8周

2.33 ± 0.58

2.00 ± 0.00

2.00 ± 0.00

1.33 ± 0.58

1.00 ± 0.00

8.67 ± 0.58

12周

1.67 ± 0.58

1.67 ± 0.58

1.67 ± 0.58

1.00 ± 0.00

0.33 ± 0.58

6.33 ± 1.15

MF@PRP组

4周

3.00 ± 0.00

2.67 ± 0.58

2.00 ± 0.00

1.33 ± 0.58

2.00 ± 0.00

11.00 ± 1.00

<0.0001

8周

1.33 ± 0.58

1.67 ± 0.58

1.00 ± 0.00

1.00 ± 0.00

0.33 ± 0.58

5.33 ± 0.58

12周

1.00 ± 0.00

1.00 ± 0.00

0.33 ± 0.57

0.33 ± 0.57

0.00 ± 0.00

2.67 ± 0.58

4. 讨论

关节软骨损伤与损伤后关节应力异常形成恶性循环,可进一步加重关节软骨损伤,增加KOA发生风险[2]。在本研究动物模型实验中,我们发现:相较于单纯微骨折处理,关节腔内PRP注射联合微骨折,可显著促进新西兰大白兔动物模型的膝关节软骨损伤的修复。

本项目组织学检测结果发现:CTL组中新西兰大白兔膝关节软骨缺损处存在大量纤维组织,其力学特性与透明软骨存在显著差异,无法承受长期应力负荷[16],CTL组中新西兰大白兔的Wakitani评分亦揭示了:该组中兔膝关节软骨损伤无法完成有效的自我修复。相关研究得到了与我们相类似的结果,既往研发现:造模后14周,对照组中兔膝关节软骨缺损处仍可见软骨下骨暴露[17]。另外一项相关研究通过小动物核磁共振检查发现:造模后12周,对照组中兔膝关节软骨缺损处修复组织表面不规则、信号不均匀,且修复组织中以纤维软骨为主要成分[2]。不仅如此,Hernández等学者使用绵羊这类大型实验动物构建了全层关节软骨缺损动物模型,对照组中仅使用乳酸林格溶液进行干预,直至术后18个月,全层缺损处的修复组织仍无法与周围正常关节透明软骨形成理想的整合[11]。相似的,Orhan Balta等学者的体内动物实验结果发现:对照组中兔软骨缺损处的修复组织中以纤维软骨样细胞为主[18],Mónica Rubio等学者则发现:即便将观察时间延迟到术后第84天,对照组中的动物全层关节软骨缺损处仍无法形成典型的“潮线”[19]。上述研究均得到了与本项目相一致的结果。

此外,既往研究已经报道了微骨折是一种可用于促进关节软骨损伤修复的微创治疗方式,通过在关节镜下进行微骨折处理,可将MSCs募集至关节软骨缺损处,而MSCs具备分化为透明软骨细胞的潜能[20],然而,部分文章报道:绵羊动物模型接受微骨折处理13个月后,其关节软骨缺损处修复组织中同时存在透明软骨与纤维软骨,这可能与绵羊关节软骨缺损处缺乏足够的细胞因子和生长因子有关[20]。我们的研究结果发现:MF组中的新西兰大白兔在接受微骨折处理8周后,关节软骨缺损处被修复组织填充,然而,将观察时间延长至12周时,我们发现关节软骨缺损处修复组织中仍存在裂隙,导致该现象的可能原因是:微骨折处理后,被募集至关节软骨缺损处的MSCs更容易附着至关节软骨缺损的边缘处,因此,关节软骨损伤的修复往往是从损伤边缘开始的[21],且MSCs迁移至关节软骨缺损中心的距离较远,故关节软骨缺损中心往往被纤维组织所填充。相关研究已报道:PRP因其可在损伤病灶处,为组织再生提供有利条件,故PRP可被用于膝关节软骨损伤、膝出血性关节炎和KOA等关节疾病的临床治疗[22] [23]。在本研究中,修复组织中的软骨细胞形态、软骨厚度等组织学检测指标、ICRS评分以及Wakitani评分结果提示:相比于CTL组、MF组中新西兰大白兔,关节腔内注射PRP联合微骨折处理,可使得MF@PRP组中新西兰大白兔膝关节软骨损伤获得更好的修复效果。既往相关文献报道PRP中细胞外囊泡、生长因子和细胞因子可阻止核因子-κB (Nuclear factor kappa-B, NF-κB)信号通路的激活,例如:干细胞生长因子(Hepatocyte growth factor, HGF) [24]和血小板源性生长因子(Platelet derived growth factor, PDGF) [25]。NF-κB可显著下调软骨细胞中与合成代谢通路相关的蛋白聚糖、II型胶原等基因的表达[26],此外,PRP还可以显著促进软骨细胞中的II型胶原和蛋白聚糖的表达[27]。不仅如此,Weili Fu等学者报道:在体外,PRP可以增强骨髓间充质干细胞(Bone marrow mesenchymal stem cells, BMSCs)的细胞增殖、迁移和黏附能力,这可能是促进关节软骨缺损修复的重要原因之一[12]。JENEL等学者则通过共聚焦显微镜和三维重建检测关节软骨缺损动物模型术后膝关节退变程度,他们认为PRP可以提高软骨缺损修复过程中修复组织与周围正常软骨的整合,以此获得更好的关节软骨修复效果[28]

我们的研究中存在若干个不可忽视的局限性。首先,本项目并未开展相应的体外细胞实验,我们计划在未来通过体外细胞实验以确定上述现象的潜在的分子生物学机制。其次,在我们的研究中并未提供相应的力学数据,我们不知道再生组织的力学性能是否与正常关节软骨存在显著差异。第三,我们没有收集每组新西兰大白兔的关节液,因此,我们无法进一步比较组间关节液的差异。最后,人类与新西兰大白兔在关节软骨损伤修复能力、关节软骨结构和行走方式等方面存在明显差异,未来可能需要利用实验用羊或猪等大型动物加以验证。

5. 结论

关节腔内连续注射PRP联合微骨折对兔膝关节骨软骨全层缺损的修复效果优于单纯微骨折,因此,上述治疗方案可能是一种潜在的促进膝关节骨软骨损伤后软骨修复的有效方法。

基金项目

福建省卫健委科技计划项目青年科研课题(2021QNA057)。

NOTES

*通讯作者。

参考文献

[1] Adam, M.S., Zhuang, H., Ren, X., Zhang, Y. and Zhou, P. (2024) The Metabolic Characteristics and Changes of Chondrocytes in vivo and in vitro in Osteoarthritis. Frontiers in Endocrinology, 15, Article 1393550.
https://doi.org/10.3389/fendo.2024.1393550
[2] Slimi, F., Zribi, W., Trigui, M., Amri, R., Gouiaa, N., Abid, C., et al. (2021) The Effectiveness of Platelet-Rich Plasma Gel on Full-Thickness Cartilage Defect Repair in a Rabbit Model. Bone & Joint Research, 10, 192-202.
https://doi.org/10.1302/2046-3758.103.bjr-2020-0087.r2
[3] Iseki, T., Rothrauff, B.B., Kihara, S., Overholt, K.J., Taha, T., Lin, H., et al. (2024) Enhanced Osteochondral Repair by Leukocyte-Depleted Platelet-Rich Plasma in Combination with Adipose-Derived Mesenchymal Stromal Cells Encapsulated in a Three-Dimensional Photocrosslinked Injectable Hydrogel in a Rabbit Model. Stem Cell Research & Therapy, 15, Article No. 159.
https://doi.org/10.1186/s13287-024-03750-z
[4] Sun, Y., You, Y., Wu, Q., Hu, R. and Dai, K. (2024) Senescence-Targeted MicroRNA/Organoid Composite Hydrogel Repair Cartilage Defect and Prevention Joint Degeneration via Improved Chondrocyte Homeostasis. Bioactive Materials, 39, 427-442.
https://doi.org/10.1016/j.bioactmat.2024.05.036
[5] Moon, H., Jung, M., Choi, C., Yoo, J., Nam, B., Lee, S., et al. (2023) Marrow Stimulation Procedures for High‐Grade Cartilage Lesions during Surgical Repair of Medial Meniscus Root Tear Yielded Suboptimal Outcomes, Whilst Small Lesions Showed Surgical Eligibility. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 5812-5822.
https://doi.org/10.1007/s00167-023-07642-2
[6] Truong, M.-D., Choi, B.H., Kim, Y.J., Kim, M.S. and Min, B.-H. (2017) Granulocyte Macrophage—Colony Stimulating Factor (GM-CSF) Significantly Enhances Articular Cartilage Repair Potential by Microfracture. Osteoarthritis and Cartilage, 25, 1345-1352.
https://doi.org/10.1016/j.joca.2017.03.002
[7] Boffa, A., Salerno, M., Merli, G., De Girolamo, L., Laver, L., Magalon, J., et al. (2021) Platelet-Rich Plasma Injections Induce Disease-Modifying Effects in the Treatment of Osteoarthritis in Animal Models. Knee Surgery, Sports Traumatology, Arthroscopy, 29, 4100-4121.
https://doi.org/10.1007/s00167-021-06659-9
[8] Di Martino, A., Di Matteo, B., Papio, T., Tentoni, F., Selleri, F., Cenacchi, A., et al. (2018) Platelet-Rich Plasma versus Hyaluronic Acid Injections for the Treatment of Knee Osteoarthritis: Results at 5 Years of a Double-Blind, Randomized Controlled Trial. The American Journal of Sports Medicine, 47, 347-354.
https://doi.org/10.1177/0363546518814532
[9] Zhang, K., Yu, J., Li, J. and Fu, W. (2024) The Combined Intraosseous Administration of Orthobiologics Outperformed Isolated Intra-Articular Injections in Alleviating Pain and Cartilage Degeneration in a Rat Model of Mia-Induced Knee Osteoarthritis. The American Journal of Sports Medicine, 52, 140-154.
https://doi.org/10.1177/03635465231212668
[10] Wang, L., Zhao, L., Shen, L., Fang, Q., Yang, Z., Wang, R., et al. (2022) Comparison of the Effects of Autologous and Allogeneic Purified Platelet-Rich Plasma on Cartilage Damage in a Rabbit Model of Knee Osteoarthritis. Frontiers in Surgery, 9, Article 911468.
https://doi.org/10.3389/fsurg.2022.911468
[11] Alcaide-Ruggiero, L., Molina-Hernández, V., Morgaz, J., Fernández-Sarmiento, J.A., Granados, M.M., Navarrete-Calvo, R., et al. (2023) Particulate Cartilage and Platelet-Rich Plasma Treatment for Knee Chondral Defects in Sheep. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 2944-2955.
https://doi.org/10.1007/s00167-022-07295-7
[12] Zhang, K., Xu, T., Xie, H., Li, J. and Fu, W. (2023) Donor-Matched Peripheral Blood-Derived Mesenchymal Stem Cells Combined with Platelet-Rich Plasma Synergistically Ameliorate Surgery-Induced Osteoarthritis in Rabbits: An in Vitro and in vivo Study. The American Journal of Sports Medicine, 51, 3008-3024.
https://doi.org/10.1177/03635465231187042
[13] Torres-Torrillas, M., Damia, E., del Romero, A., Pelaez, P., Miguel-Pastor, L., Chicharro, D., et al. (2023) Intra-Osseous Plasma Rich in Growth Factors Enhances Cartilage and Subchondral Bone Regeneration in Rabbits with Acute Full Thickness Chondral Defects: Histological Assessment. Frontiers in Veterinary Science, 10, Article 1131666.
https://doi.org/10.3389/fvets.2023.1131666
[14] van den Borne, M.P.J., Raijmakers, N.J.H., Vanlauwe, J., Victor, J., de Jong, S.N., Bellemans, J., et al. (2007) International Cartilage Repair Society (ICRS) and Oswestry Macroscopic Cartilage Evaluation Scores Validated for Use in Autologous Chondrocyte Implantation (ACI) and Microfracture. Osteoarthritis and Cartilage, 15, 1397-1402.
https://doi.org/10.1016/j.joca.2007.05.005
[15] Cao, L., Tong, Y., Wang, X., Zhang, Q., Qi, Y., Zhou, C., et al. (2021) Effect of Amniotic Membrane/Collagen-Based Scaffolds on the Chondrogenic Differentiation of Adipose-Derived Stem Cells and Cartilage Repair. Frontiers in Cell and Developmental Biology, 9, Article 647166.
https://doi.org/10.3389/fcell.2021.647166
[16] Lee, K., Chung, K., Nam, D., Jung, M., Kim, S. and Kim, H. (2023) Decellularized Allogeneic Cartilage Paste with Human Costal Cartilage and Crosslinked Hyaluronic Acid-Carboxymethyl Cellulose Carrier Augments Microfracture for Improved Articular Cartilage Repair. Acta Biomaterialia, 172, 297-308.
https://doi.org/10.1016/j.actbio.2023.10.008
[17] Wu, C., Sheu, S., Hsu, L., Yang, K., Tseng, C. and Kuo, T. (2016) Intra‐Articular Injection of Platelet‐Rich Fibrin Releasates in Combination with Bone Marrow‐Derived Mesenchymal Stem Cells in the Treatment of Articular Cartilage Defects: An in vivo Study in Rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 105, 1536-1543.
https://doi.org/10.1002/jbm.b.33688
[18] Balta, O. and Kurnaz, R. (2023) Applying Additional Autologous Platelet‐Rich Fibrin Matrix or Serial Platelet‐Rich Plasma to Microfracture Technique Increases the Quality of the Repaired Cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 6113-6124.
https://doi.org/10.1007/s00167-023-07639-x
[19] Torres-Torrillas, M., Damia, E., del Romero, A., Pelaez, P., Miguel-Pastor, L., Chicharro, D., et al. (2023) Intra-Osseous Plasma Rich in Growth Factors Enhances Cartilage and Subchondral Bone Regeneration in Rabbits with Acute Full Thickness Chondral Defects: Histological Assessment. Frontiers in Veterinary Science, 10, Article 1131666.
https://doi.org/10.3389/fvets.2023.1131666
[20] Dickerson, D.A., Fortier, L.A., Nauman, E.A., Potter, H.G. and Quinlan, C. (2023) Novel Osteochondral Biotemplate Improves Long-Term Cartilage Repair Compared with Microfracture in an Ovine Model. The American Journal of Sports Medicine, 51, 3288-3303.
https://doi.org/10.1177/03635465231189808
[21] Kilic, A.I., Hapa, O., Ozmanevra, R., Pak, T., Akokay, P., Ergur, B.U., et al. (2023) Histomorphological Investigation of Microfracture Location in a Rabbit Osteochondral Defect Model. The American Journal of Sports Medicine, 51, 3025-3034.
https://doi.org/10.1177/03635465231188446
[22] Xue, Y., Su, X., Jiang, M., Yu, Z., Yang, H., Qin, L., et al. (2020) Pure Platelet-Rich Plasma Facilitates the Repair of Damaged Cartilage and Synovium in a Rabbit Hemorrhagic Arthritis Knee Model. Arthritis Research & Therapy, 22, Article No. 68.
https://doi.org/10.1186/s13075-020-02155-6
[23] Szwedowski, D., Szczepanek, J., Paczesny, Ł., Zabrzyński, J., Gagat, M., Mobasheri, A., et al. (2021) The Effect of Platelet-Rich Plasma on the Intra-Articular Microenvironment in Knee Osteoarthritis. International Journal of Molecular Sciences, 22, Article 5492.
https://doi.org/10.3390/ijms22115492
[24] Bendinelli, P., Matteucci, E., Dogliotti, G., Corsi, M.M., Banfi, G., Maroni, P., et al. (2010) Molecular Basis of Anti‐inflammatory Action of Platelet‐Rich Plasma on Human Chondrocytes: Mechanisms of NF‐κB Inhibition via HGF. Journal of Cellular Physiology, 225, 757-766.
https://doi.org/10.1002/jcp.22274
[25] Tao, X., Xue, F., Xu, J. and Wang, W. (2024) Platelet-Rich Plasma-Derived Extracellular Vesicles Inhibit NF-κB/NLRP3 Pathway-Mediated Pyroptosis in Intervertebral Disc Degeneration via the MALAT1/MicroRNA-217/SIRT1 Axis. Cellular Signalling, 117, Article 111106.
https://doi.org/10.1016/j.cellsig.2024.111106
[26] Fotouhi, A., Maleki, A., Dolati, S., Aghebati-Maleki, A. and Aghebati-Maleki, L. (2018) Platelet Rich Plasma, Stromal Vascular Fraction and Autologous Conditioned Serum in Treatment of Knee Osteoarthritis. Biomedicine & Pharmacotherapy, 104, 652-660.
https://doi.org/10.1016/j.biopha.2018.05.019
[27] Mata, M., Salvador-Clavell, R., Ródenas-Rochina, J., Sancho-Tello, M., Gallego Ferrer, G. and Gómez Ribelles, J.L. (2024) Mesenchymal Stem Cells Cultured in a 3D Microgel Environment Containing Platelet-Rich Plasma Significantly Modify Their Chondrogenesis-Related miRNA Expression. International Journal of Molecular Sciences, 25, Article 937.
https://doi.org/10.3390/ijms25020937
[28] Lăzărescu, A.E., Văduva, A.O., Hogea, G.B., Croicu, C., Pătraşcu Jr, J.M., Petrescu, P.H., et al. (2021) Comparing PRP and Bone Marrow Aspirate Effects on Cartilage Defects Associated with Partial Meniscectomy: A Confocal Microscopy Study on Animal Model. Romanian Journal of Morphology and Embryology, 62, 263-268.
https://doi.org/10.47162/rjme.62.1.27