[1]
|
Takashima, A. (2010) TAU Aggregation Is a Therapeutic Target for Alzheimers Disease. Current Alzheimer Research, 7, 665-669. https://doi.org/10.2174/156720510793611600
|
[2]
|
De-Paula, V.J., Radanovic, M., Diniz, B.S. and Forlenza, O.V. (2012) Alzheimer’s Disease. In: Harris, J.R., Ed., Protein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease, Springer, 329-352. https://doi.org/10.1007/978-94-007-5416-4_14
|
[3]
|
Borrego-Ruiz, A. and Borrego, J.J. (2024) Influence of Human Gut Microbiome on the Healthy and the Neurodegenerative Aging. Experimental Gerontology, 194, Article 112497. https://doi.org/10.1016/j.exger.2024.112497
|
[4]
|
Karakan, T., Ozkul, C., Küpeli Akkol, E., Bilici, S., Sobarzo-Sánchez, E. and Capasso, R. (2021) Gut-Brain-Microbiota Axis: Antibiotics and Functional Gastrointestinal Disorders. Nutrients, 13, Article 389. https://doi.org/10.3390/nu13020389
|
[5]
|
Cho, I. and Blaser, M.J. (2012) The Human Microbiome: At the Interface of Health and Disease. Nature Reviews Genetics, 13, 260-270. https://doi.org/10.1038/nrg3182
|
[6]
|
Mayer, E.A., Knight, R., Mazmanian, S.K., Cryan, J.F. and Tillisch, K. (2014) Gut Microbes and the Brain: Paradigm Shift in Neuroscience. The Journal of Neuroscience, 34, 15490-15496. https://doi.org/10.1523/jneurosci.3299-14.2014
|
[7]
|
Cryan, J.F., O’Riordan, K.J., Sandhu, K., Peterson, V. and Dinan, T.G. (2020) The Gut Microbiome in Neurological Disorders. The Lancet Neurology, 19, 179-194. https://doi.org/10.1016/s1474-4422(19)30356-4
|
[8]
|
Jung, J.H., Kim, G., Byun, M.S., Lee, J.H., Yi, D., Park, H., et al. (2022) Gut Microbiome Alterations in Preclinical Alzheimer’s Disease. PLOS ONE, 17, e0278276. https://doi.org/10.1371/journal.pone.0278276
|
[9]
|
Sochocka, M., Donskow-Łysoniewska, K., Diniz, B.S., Kurpas, D., Brzozowska, E. and Leszek, J. (2018) The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Molecular Neurobiology, 56, 1841-1851. https://doi.org/10.1007/s12035-018-1188-4
|
[10]
|
Köhler, C., Maes, M., Slyepchenko, A., Berk, M., Solmi, M., Lanctôt, K., et al. (2016) The Gut-Brain Axis, Including the Microbiome, Leaky Gut and Bacterial Translocation: Mechanisms and Pathophysiological Role in Alzheimer’s Disease. Current Pharmaceutical Design, 22, 6152-6166. https://doi.org/10.2174/1381612822666160907093807
|
[11]
|
Sun, M., Ma, K., Wen, J., Wang, G., Zhang, C., Li, Q., et al. (2020) A Review of the Brain-Gut-Microbiome Axis and the Potential Role of Microbiota in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 73, 849-865. https://doi.org/10.3233/jad-190872
|
[12]
|
Haran, J.P., Bhattarai, S.K., Foley, S.E., Dutta, P., Ward, D.V., Bucci, V., et al. (2019) Alzheimer’s Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway. mBio, 10, 14. https://doi.org/10.1128/mbio.00632-19
|
[13]
|
Vaiserman, A., Koliada, A. and Lushchak, O. (2020) Neuroinflammation in Pathogenesis of Alzheimer’s Disease: Phytochemicals as Potential Therapeutics. Mechanisms of Ageing and Development, 189, Article 111259. https://doi.org/10.1016/j.mad.2020.111259
|
[14]
|
Vasantharekha, R., Priyanka, H.P., Nair, R.S., Hima, L., Pratap, U.P., Srinivasan, A.V., et al. (2023) Alterations in Immune Responses Are Associated with Dysfunctional Intracellular Signaling in Peripheral Blood Mononuclear Cells of Men and Women with Mild Cognitive Impairment and Alzheimer’s Disease. Molecular Neurobiology, 61, 2964-2977. https://doi.org/10.1007/s12035-023-03764-3
|
[15]
|
Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R. and Macia, L. (2014) The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Immunology, 121, 91-119. https://doi.org/10.1016/b978-0-12-800100-4.00003-9
|
[16]
|
Ameen, A.O., Freude, K. and Aldana, B.I. (2022) Fats, Friends or Foes: Investigating the Role of Short-and Medium-Chain Fatty Acids in Alzheimer’s Disease. Biomedicines, 10, Article 2778. https://doi.org/10.3390/biomedicines10112778
|
[17]
|
Liu, Z., Zhang, Q., Zhang, H., Yi, Z., Ma, H., Wang, X., et al. (2024) Colorectal Cancer Microbiome Programs DNA Methylation of Host Cells by Affecting Methyl Donor Metabolism. Genome Medicine, 16, Article No. 77. https://doi.org/10.1186/s13073-024-01344-1
|
[18]
|
Erny, D., de Angelis, A.L.H., Jaitin, D., et al. (2075) Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nature Neuroscience, 18, 965-977.
|
[19]
|
Lukiw, W.J. (2016) Bacteroides Fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease. Frontiers in Microbiology, 7, Article 1544. https://doi.org/10.3389/fmicb.2016.01544
|
[20]
|
Giridharan, V.V., Barichello de Quevedo, C.E. and Petronilho, F. (2022) Microbiota-Gut-Brain Axis in the Alzheimer’s Disease Pathology—An Overview. Neuroscience Research, 181, 17-21. https://doi.org/10.1016/j.neures.2022.05.003
|
[21]
|
Round, J.L. and Mazmanian, S.K. (2009) The Gut Microbiota Shapes Intestinal Immune Responses during Health and Disease. Nature Reviews Immunology, 9, 313-323. https://doi.org/10.1038/nri2515
|
[22]
|
Block, M.L. and Hong, J. (2005) Microglia and Inflammation-Mediated Neurodegeneration: Multiple Triggers with a Common Mechanism. Progress in Neurobiology, 76, 77-98. https://doi.org/10.1016/j.pneurobio.2005.06.004
|
[23]
|
Megur, A., Baltriukienė, D., Bukelskienė, V. and Burokas, A. (2020) The Microbiota-Gut-Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame? Nutrients, 13, Article 37. https://doi.org/10.3390/nu13010037
|
[24]
|
Bou Zerdan, M., Hebbo, E., Hijazi, A., El Gemayel, M., Nasr, J., Nasr, D., et al. (2022) The Gut Microbiome and Alzheimer’s Disease: A Growing Relationship. Current Alzheimer Research, 19, 808-818. https://doi.org/10.2174/1567205020666221227090125
|
[25]
|
Peddinti, V., Avaghade, M.M., Suthar, S.U., Rout, B., Gomte, S.S., Agnihotri, T.G., et al. (2024) Gut Instincts: Unveiling the Connection between Gut Microbiota and Alzheimer’s Disease. Clinical Nutrition Espen, 60, 266-280. https://doi.org/10.1016/j.clnesp.2024.02.019
|
[26]
|
Liu, X., Liu, Y., Liu, J., Zhang, H., Shan, C., Guo, Y., et al. (2023) Correlation between the Gut Microbiome and Neurodegenerative Diseases: A Review of Metagenomics Evidence. Neural Regeneration Research, 19, 833-845. https://doi.org/10.4103/1673-5374.382223
|
[27]
|
Dinan, T.G. and Cryan, J.F. (2015) The Impact of Gut Microbiota on Brain and Behaviour. Current Opinion in Clinical Nutrition and Metabolic Care, 18, 552-558. https://doi.org/10.1097/mco.0000000000000221
|
[28]
|
Roeselers, G., Ponomarenko, M., Lukovac, S. and Wortelboer, H.M. (2013) Ex Vivo Systems to Study Host-Microbiota Interactions in the Gastrointestinal Tract. Best Practice & Research Clinical Gastroenterology, 27, 101-113. https://doi.org/10.1016/j.bpg.2013.03.018
|
[29]
|
Wu, D., Chen, Q., Chen, X., Han, F., Chen, Z. and Wang, Y. (2023) The Blood-Brain Barrier: Structure, Regulation, and Drug Delivery. Signal Transduction and Targeted Therapy, 8, Article No. 217. https://doi.org/10.1038/s41392-023-01481-w
|
[30]
|
Cai, Z., Qiao, P.F., Wan, C.Q., et al. (2018) Role of Blood-Brain Barrier in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 63, 1223-1234.
|
[31]
|
Logsdon, A.F., Erickson, M.A., Rhea, E.M., Salameh, T.S. and Banks, W.A. (2017) Gut Reactions: How the Blood-Brain Barrier Connects the Microbiome and the Brain. Experimental Biology and Medicine, 243, 159-165. https://doi.org/10.1177/1535370217743766
|
[32]
|
Silva, Y.P., Bernardi, A. and Frozza, R.L. (2020) The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 11, Article 25. https://doi.org/10.3389/fendo.2020.00025
|
[33]
|
Hoyles, L., Pontifex, M.G., Rodriguez-Ramiro, I., Anis-Alavi, M.A., Jelane, K.S., Snelling, T., et al. (2021) Regulation of Blood-Brain Barrier Integrity by Microbiome-Associated Methylamines and Cognition by Trimethylamine N-Oxide. Microbiome, 9, Article No. 235. https://doi.org/10.1186/s40168-021-01181-z
|
[34]
|
Bonfili, L., Cecarini, V., Cuccioloni, M., Angeletti, M., Berardi, S., Scarpona, S., et al. (2018) SLAB51 Probiotic Formulation Activates SIRT1 Pathway Promoting Antioxidant and Neuroprotective Effects in an AD Mouse Model. Molecular Neurobiology, 55, 7987-8000. https://doi.org/10.1007/s12035-018-0973-4
|
[35]
|
Singh, T.P. and Natraj, B.H. (2021) Next-Generation Probiotics: A Promising Approach towards Designing Personalized Medicine. Critical Reviews in Microbiology, 47, 479-498. https://doi.org/10.1080/1040841x.2021.1902940
|
[36]
|
Kim, C., Jung, S., Hwang, G. and Shin, D. (2023) Gut Microbiota Indole-3-Propionic Acid Mediates Neuroprotective Effect of Probiotic Consumption in Healthy Elderly: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial and in Vitro Study. Clinical Nutrition, 42, 1025-1033. https://doi.org/10.1016/j.clnu.2023.04.001
|
[37]
|
Minton, K. (2023) Orally Delivered Lactate-Producing Bacteria Limit CNS Autoimmunity. Nature Reviews Immunology, 23, 615-615. https://doi.org/10.1038/s41577-023-00938-x
|
[38]
|
Salehi, B., Dimitrijevi, M., Aleksi, A., et al. (2023) Human Microbiome and Homeostasis: Insights into the Key Role of Prebiotics, Probiotics, and Symbiotics. Critical Reviews in Food Science and Nutrition, 63, Article 4817.
|
[39]
|
Kang, J.W. and Zivkovic, A.M. (2021) The Potential Utility of Prebiotics to Modulate Alzheimer’s Disease: A Review of the Evidence. Microorganisms, 9, Article 2310. https://doi.org/10.3390/microorganisms9112310
|
[40]
|
Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E.M.M., et al. (2022) Author Correction: The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nature Reviews Gastroenterology & Hepatology, 19, 551-551.
|
[41]
|
https://doi.org/10.1038/s41575-022-00628-4
|
[42]
|
D’Argenio, V. and Sarnataro, D. (2021) Probiotics, Prebiotics and Their Role in Alzheimer’s Disease. Neural Regeneration Research, 16, 1768-1769. https://doi.org/10.4103/1673-5374.306072
|
[43]
|
van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E.G., de Vos, W.M., et al. (2013) Duodenal Infusion of Donor Feces for Recurrentclostridium Difficile. New England Journal of Medicine, 368, 407-415. https://doi.org/10.1056/nejmoa1205037
|
[44]
|
Burrello, C., Giuffrè, M.R., Macandog, A.D., Diaz-Basabe, A., Cribiù, F.M., Lopez, G., et al. (2019) Fecal Microbiota Transplantation Controls Murine Chronic Intestinal Inflammation by Modulating Immune Cell Functions and Gut Microbiota Composition. Cells, 8, Article 517. https://doi.org/10.3390/cells8060517
|
[45]
|
Allegretti, J.R., Mullish, B.H., Kelly, C. and Fischer, M. (2019) The Evolution of the Use of Faecal Microbiota Transplantation and Emerging Therapeutic Indications. The Lancet, 394, 420-431.
|
[46]
|
https://doi.org/10.1016/s0140-6736(19)31266-8
|
[47]
|
Zhang, T., Zhang, W., Feng, C., Kwok, L., He, Q. and Sun, Z. (2023) Author Correction: Stronger Gut Microbiome Modulatory Effects by Postbiotics than Probiotics in a Mouse Colitis Model. NPJ Science of Food, 7, Article No. 4. https://doi.org/10.1038/s41538-023-00179-1
|
[48]
|
Smillie, C.S., Sauk, J., Gevers, D., Friedman, J., Sung, J., Youngster, I., et al. (2018) Strain Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation. Cell Host & Microbe, 23, 229-240.e5. https://doi.org/10.1016/j.chom.2018.01.003
|
[49]
|
Bonaz, B., Bazin, T. and Pellissier, S. (2018) The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Frontiers in Neuroscience, 12, Article 49. https://doi.org/10.3389/fnins.2018.00049
|