[1]
|
中国医师协会中西医结合分会心血管专业委员会, 中华中医药学会心血管病分会. 动脉粥样硬化中西医防治专家共识(2021年) [J]. 中国中西医结合杂志, 2022, 42(3): 287-293.
|
[2]
|
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578.
|
[3]
|
Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533. https://doi.org/10.1038/s41586-021-03392-8
|
[4]
|
Diamante, G., Ha, S.M., Wijaya, D. and Yang, X. (2024) Single Cell Multiomics Systems Biology for Molecular Toxicity. Current Opinion in Toxicology, 39, Article ID: 100477. https://doi.org/10.1016/j.cotox.2024.100477
|
[5]
|
Leong, X. (2021) Lipid Oxidation Products on Inflammation-Mediated Hypertension and Atherosclerosis: A Mini Review. Frontiers in Nutrition, 8, Article 717740. https://doi.org/10.3389/fnut.2021.717740
|
[6]
|
Gianazza, E., Brioschi, M., Martinez Fernandez, A., Casalnuovo, F., Altomare, A., Aldini, G., et al. (2021) Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxidants & Redox Signaling, 34, 49-98. https://doi.org/10.1089/ars.2019.7955
|
[7]
|
Zhang, J., Wang, Y., Wang, X., Xu, L., Yang, X. and Zhao, W. (2019) PKC-Mediated Endothelin-1 Expression in Endothelial Cell Promotes Macrophage Activation in Atherogenesis. American Journal of Hypertension, 32, 880-889. https://doi.org/10.1093/ajh/hpz069
|
[8]
|
Akhmedov, A., Sawamura, T., Chen, C., Kraler, S., Vdovenko, D. and Lüscher, T.F. (2020) Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 (LOX-1): A Crucial Driver of Atherosclerotic Cardiovascular Disease. European Heart Journal, 42, 1797-1807. https://doi.org/10.1093/eurheartj/ehaa770
|
[9]
|
Liu, X., Guo, J., Lin, X., Tuo, Y., Peng, W., He, S., et al. (2021) Macrophage NFATc3 Prevents Foam Cell Formation and Atherosclerosis: Evidence and Mechanisms. European Heart Journal, 42, 4847-4861. https://doi.org/10.1093/eurheartj/ehab660
|
[10]
|
Björkegren, J.L.M. and Lusis, A.J. (2022) Atherosclerosis: Recent Developments. Cell, 185, 1630-1645. https://doi.org/10.1016/j.cell.2022.04.004
|
[11]
|
Kojima, Y., Ye, J., Nanda, V., Wang, Y., Flores, A.M., Jarr, K., et al. (2020) Knockout of the Murine Ortholog to the Human 9p21 Coronary Artery Disease Locus Leads to Smooth Muscle Cell Proliferation, Vascular Calcification, and Advanced Atherosclerosis. Circulation, 141, 1274-1276. https://doi.org/10.1161/circulationaha.119.043413
|
[12]
|
Vacante, F., Rodor, J., Lalwani, M.K., Mahmoud, A.D., Bennett, M., De Pace, A.L., et al. (2021) CARMN Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circulation Research, 128, 1258-1275. https://doi.org/10.1161/circresaha.120.318688
|
[13]
|
Nurmohamed, N.S., Belo Pereira, J.P., Hoogeveen, R.M., Kroon, J., Kraaijenhof, J.M., Waissi, F., et al. (2022) Targeted Proteomics Improves Cardiovascular Risk Prediction in Secondary Prevention. European Heart Journal, 43, 1569-1577. https://doi.org/10.1093/eurheartj/ehac055
|
[14]
|
Kato, E.T., Morrow, D.A., Guo, J., Berg, D.D., Blazing, M.A., Bohula, E.A., et al. (2022) Growth Differentiation Factor 15 and Cardiovascular Risk: Individual Patient Meta-Analysis. European Heart Journal, 44, 293-300. https://doi.org/10.1093/eurheartj/ehac577
|
[15]
|
Rox, K., Rath, S., Pieper, D.H., Vital, M. and Brönstrup, M. (2021) A Simplified LC-MS/MS Method for the Quantification of the Cardiovascular Disease Biomarker Trimethylamine-N-Oxide and Its Precursors. Journal of Pharmaceutical Analysis, 11, 523-528. https://doi.org/10.1016/j.jpha.2021.03.007
|
[16]
|
Bossone, E., Czerny, M., Lerakis, S., Rodríguez-Palomares, J., Kukar, N., Ranieri, B., et al. (2021) Imaging and Biomarkers in Acute Aortic Syndromes: Diagnostic and Prognostic Implications. Current Problems in Cardiology, 46, Article ID: 100654. https://doi.org/10.1016/j.cpcardiol.2020.100654
|
[17]
|
Adamstein, N.H., Cornel, J.H., Davidson, M., Libby, P., de Remigis, A., Jensen, C., et al. (2023) Association of Interleukin 6 Inhibition with Ziltivekimab and the Neutrophil-Lymphocyte Ratio: A Secondary Analysis of the RESCUE Clinical Trial. JAMA Cardiology, 8, 177-181. https://doi.org/10.1001/jamacardio.2022.4277
|
[18]
|
Ong, K.L., McClelland, R.L., Allison, M.A., Cushman, M., Garg, P.K., Tsai, M.Y., et al. (2021) Lipoprotein (a) and Coronary Artery Calcification: Prospective Study Assessing Interactions with Other Risk Factors. Metabolism, 116, Article ID: 154706. https://doi.org/10.1016/j.metabol.2021.154706
|
[19]
|
Saaoud, F., Drummer I.V., C., Shao, Y., Sun, Y., Lu, Y., Xu, K., et al. (2021) Circular RNAs Are a Novel Type of Non-Coding RNAs in ROS Regulation, Cardiovascular Metabolic Inflammations and Cancers. Pharmacology & Therapeutics, 220, Article ID: 107715. https://doi.org/10.1016/j.pharmthera.2020.107715
|
[20]
|
Détriché, G., Gendron, N., Philippe, A., Gruest, M., Billoir, P., Rossi, E., et al. (2022) Gonadotropins as Novel Active Partners in Vascular Diseases: Insight from Angiogenic Properties and Thrombotic Potential of Endothelial Colony‐forming Cells. Journal of Thrombosis and Haemostasis, 20, 230-237. https://doi.org/10.1111/jth.15549
|
[21]
|
Qi, G., Diao, X., Hou, S., Kong, J. and Jin, Y. (2022) Label-Free SERS Detection of Protein Damage in Organelles under Electrostimulation with 2D AuNPs-Based Nanomembranes as Substrates. Analytical Chemistry, 94, 14931-14937. https://doi.org/10.1021/acs.analchem.2c02401
|
[22]
|
Müller, J.B., Geyer, P.E., Colaço, A.R., Treit, P.V., Strauss, M.T., Oroshi, M., et al. (2020) The Proteome Landscape of the Kingdoms of Life. Nature, 582, 592-596. https://doi.org/10.1038/s41586-020-2402-x
|
[23]
|
Kustatscher, G., Collins, T., Gingras, A., Guo, T., Hermjakob, H., Ideker, T., et al. (2022) Understudied Proteins: Opportunities and Challenges for Functional Proteomics. Nature Methods, 19, 774-779. https://doi.org/10.1038/s41592-022-01454-x
|
[24]
|
Iacobucci, I., Monaco, V., Cozzolino, F. and Monti, M. (2021) From Classical to New Generation Approaches: An Excursus of-Omics Methods for Investigation of Protein-Protein Interaction Networks. Journal of Proteomics, 230, Article ID: 103990. https://doi.org/10.1016/j.jprot.2020.103990
|
[25]
|
Cooper, H.J. and Leney, A.C. (2021) Structural Proteomics and Protein Complexes—Special Issue. Proteomics, 21, e2000286. https://doi.org/10.1002/pmic.202000286
|
[26]
|
Mitra, G. (2020) Emerging Role of Mass Spectrometry‐based Structural Proteomics in Elucidating Intrinsic Disorder in Proteins. Proteomics, 21, e2000011. https://doi.org/10.1002/pmic.202000011
|
[27]
|
Suhre, K., McCarthy, M.I. and Schwenk, J.M. (2020) Genetics Meets Proteomics: Perspectives for Large Population-Based Studies. Nature Reviews Genetics, 22, 19-37. https://doi.org/10.1038/s41576-020-0268-2
|
[28]
|
Ferkingstad, E., Sulem, P., Atlason, B.A., Sveinbjornsson, G., Magnusson, M.I., Styrmisdottir, E.L., et al. (2021) Large-scale Integration of the Plasma Proteome with Genetics and Disease. Nature Genetics, 53, 1712-1721. https://doi.org/10.1038/s41588-021-00978-w
|
[29]
|
Stakhneva, E.M., Meshcheryakova, I.A., Demidov, E.A., et al. (2020) Changes in the Proteomic Profile of Blood Serum in Coronary Atherosclerosis. Journal of Medical Biochemistry, 39, 208-214.
|
[30]
|
Fernández-Ruiz, I. (2022) Macropinocytosis Promotes Foam Cell Formation and Atherosclerosis. Nature Reviews Cardiology, 19, 781-781. https://doi.org/10.1038/s41569-022-00798-3
|
[31]
|
Zhang, Y., Fu, Y., Jia, L., Zhang, C., Cao, W., Alam, N., et al. (2022) TMT-Based Quantitative Proteomic Profiling of Human Monocyte-Derived Macrophages and Foam Cells. Proteome Science, 20, Article No. 1. https://doi.org/10.1186/s12953-021-00183-x
|
[32]
|
Finamore, F., Nieddu, G., Rocchiccioli, S., Spirito, R., Guarino, A., Formato, M., et al. (2021) Apolipoprotein Signature of HDL and LDL from Atherosclerotic Patients in Relation with Carotid Plaque Typology: A Preliminary Report. Biomedicines, 9, Article 1156. https://doi.org/10.3390/biomedicines9091156
|
[33]
|
Kopczak, A., Schindler, A., Bayer-Karpinska, A., Koch, M.L., Sepp, D., Zeller, J., et al. (2020) Complicated Carotid Artery Plaques as a Cause of Cryptogenic Stroke. Journal of the American College of Cardiology, 76, 2212-2222. https://doi.org/10.1016/j.jacc.2020.09.532
|
[34]
|
Mura, M., Della Schiava, N., Long, A., Chirico, E.N., Pialoux, V. and Millon, A. (2020) Carotid Intraplaque Haemorrhage: Pathogenesis, Histological Classification, Imaging Methods and Clinical Value. Annals of Translational Medicine, 8, 1273-1273. https://doi.org/10.21037/atm-20-1974
|
[35]
|
Bao, M., Zhang, R., Huang, X., Zhou, J., Guo, Z., Xu, B., et al. (2021) Transcriptomic and Proteomic Profiling of Human Stable and Unstable Carotid Atherosclerotic Plaques. Frontiers in Genetics, 12, Article 755507. https://doi.org/10.3389/fgene.2021.755507
|
[36]
|
Stakhneva, E.M., Meshcheryakova, I.A., Demidov, E.A., Starostin, K.V., Sadovski, E.V., Peltek, S.E., et al. (2019) A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics, 9, Article 177. https://doi.org/10.3390/diagnostics9040177
|
[37]
|
Mallia, A., Gianazza, E., Zoanni, B., Brioschi, M., Barbieri, S.S. and Banfi, C. (2020) Proteomics of Extracellular Vesicles: Update on Their Composition, Biological Roles and Potential Use as Diagnostic Tools in Atherosclerotic Cardiovascular Diseases. Diagnostics, 10, Article 843. https://doi.org/10.3390/diagnostics10100843
|
[38]
|
Isaac, R., Reis, F.C.G., Ying, W. and Olefsky, J.M. (2021) Exosomes as Mediators of Intercellular Crosstalk in Metabolism. Cell Metabolism, 33, 1744-1762. https://doi.org/10.1016/j.cmet.2021.08.006
|
[39]
|
Qian, F., Huang, Z., Zhong, H., Lei, Q., Ai, Y., Xie, Z., et al. (2022) Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS Nano, 16, 19980-20001. https://doi.org/10.1021/acsnano.2c11298
|
[40]
|
Staubach, S., Bauer, F.N., Tertel, T., Börger, V., Stambouli, O., Salzig, D., et al. (2021) Scaled Preparation of Extracellular Vesicles from Conditioned Media. Advanced Drug Delivery Reviews, 177, Article ID: 113940. https://doi.org/10.1016/j.addr.2021.113940
|
[41]
|
Yaker, L., Tebani, A., Lesueur, C., Dias, C., Jung, V., Bekri, S., et al. (2022) Extracellular Vesicles from LPS-Treated Macrophages Aggravate Smooth Muscle Cell Calcification by Propagating Inflammation and Oxidative Stress. Frontiers in Cell and Developmental Biology, 10, Article 823450. https://doi.org/10.3389/fcell.2022.823450
|