[1]
|
李福兴, 谢可心, 张玉琳, 等. 铁死亡在炎症性疾病中的研究进展[J]. 医学研究生学报, 2020, 33(12): 1315-1319.
|
[2]
|
李福兴, 张自华, 李雪梅, 等. 中性粒细胞胞外诱捕网在炎症性疾病中的研究进展[J]. 东南国防医药, 23(4): 378-382.
|
[3]
|
龚展德, 陈昱丞, 戴钟玲, 等. Treg调控ILC2参与炎症性疾病的研究进展[J]. 中国免疫学杂志, 2022, 38(15): 1903-1906.
|
[4]
|
Wu, N., Li, C., Xu, B., Xiang, Y., Jia, X., Yuan, Z., et al. (2021) Circular RNA Mmu_circ_0005019 Inhibits Fibrosis of Cardiac Fibroblasts and Reverses Electrical Remodeling of Cardiomyocytes. BMC Cardiovascular Disorders, 21, Article No. 308. https://doi.org/10.1186/s12872-021-02128-w
|
[5]
|
Garlapati, P., Ling, J., Chiao, P.J. and Fu, J. (2021) Circular RNAs Regulate Cancer-Related Signaling Pathways and Serve as Potential Diagnostic Biomarkers for Human Cancers. Cancer Cell International, 21, Article No. 317. https://doi.org/10.1186/s12935-021-02017-4
|
[6]
|
Das, A., Sinha, T., Shyamal, S. and Panda, A.C. (2021) Emerging Role of Circular RNA-Protein Interactions. Non-Coding RNA, 7, Article 48. https://doi.org/10.3390/ncrna7030048
|
[7]
|
Peng, C., Tan, Y., Yang, P., Jin, K., Zhang, C., Peng, W., et al. (2021) Circ-GALNT16 Restrains Colorectal Cancer Progression by Enhancing the SUMOylation of HnRNPK. Journal of Experimental & Clinical Cancer Research, 40, Article No. 272. https://doi.org/10.1186/s13046-021-02074-7
|
[8]
|
Wong, R.S.Y. and Cheong, S.K. (2021) Role of Circular RNAs in Determining the Fate of Mesenchymal Stem Cells. Malaysian Journal of Pathology, 43, 241-250.
|
[9]
|
Piwecka, M., Glažar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S.A., Rybak-Wolf, A., et al. (2017) Loss of a Mammalian Circular RNA Locus Causes Mirna Deregulation and Affects Brain Function. Science, 357, eaam8526. https://doi.org/10.1126/science.aam8526
|
[10]
|
Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B. and Kjems, J. (2019) The Biogenesis, Biology and Characterization of Circular RNAs. Nature Reviews Genetics, 20, 675-691.
|
[11]
|
https://doi.org/10.1038/s41576-019-0158-7
|
[12]
|
Huang, Y. and Zhu, Q. (2021) Mechanisms Regulating Abnormal Circular RNA Biogenesis in Cancer. Cancers, 13, Article 4185. https://doi.org/10.3390/cancers13164185
|
[13]
|
Tao, M., Zheng, M., Xu, Y., Ma, S., Zhang, W. and Ju, S. (2021) Circrnas and Their Regulatory Roles in Cancers. Molecular Medicine, 27, Article No. 94. https://doi.org/10.1186/s10020-021-00359-3
|
[14]
|
Zhang, Y., Yang, L. and Chen, L. (2016) Characterization of Circular RNAs. In: Feng, Y. and Zhang, L., Eds., Long Non-Coding RNAs, Humana Press, 215-227. https://doi.org/10.1007/978-1-4939-3378-5_17
|
[15]
|
Jiang, X., Peng, M., Liu, Q., Peng, Q., Oyang, L., Li, S., et al. (2024) Circular RNA hsa_circ_0000467 Promotes Colorectal Cancer Progression by Promoting eiF4A3-Mediated c-Myc Translation. Molecular Cancer, 23, Article No. 151. https://doi.org/10.1186/s12943-024-02052-5
|
[16]
|
Wan, J., Ding, G., Zhou, M., Ling, X. and Rao, Z. (2021) Circular RNA hsa_circ_0002483 Promotes Growth and Invasion of Lung Adenocarcinoma by Sponging miR-125a-3p. Cancer Cell International, 21, Article No. 533. https://doi.org/10.1186/s12935-021-02241-y
|
[17]
|
Guarnerio, J., Zhang, Y., Cheloni, G., Panella, R., Mae Katon, J., Simpson, M., et al. (2019) Intragenic Antagonistic Roles of Protein and Circrna in Tumorigenesis. Cell Research, 29, 628-640. https://doi.org/10.1038/s41422-019-0192-1
|
[18]
|
Wang, S., Su, T.t., Tong, H., Shi, W., Ma, F. and Quan, Z. (2021) CircPVT1 Promotes Gallbladder Cancer Growth by Sponging miR-339-3p and Regulates MCL-1 Expression. Cell Death Discovery, 7, Article No. 191. https://doi.org/10.1038/s41420-021-00577-y
|
[19]
|
Zheng, X., Rui, S., Wang, X., Zou, X., Gong, Y. and Li, Z. (2021) Circpvt1 Regulates Medullary Thyroid Cancer Growth and Metastasis by Targeting miR-455-5p to Activate CXCL12/CXCR4 Signaling. Journal of Experimental & Clinical Cancer Research, 40, Article No. 157. https://doi.org/10.1186/s13046-021-01964-0
|
[20]
|
Xu, Y., Zhang, S., Liao, X., Li, M., Chen, S., Li, X., et al. (2021) Circular RNA circiKBKB Promotes Breast Cancer Bone Metastasis through Sustaining NF-κB/Bone Remodeling Factors Signaling. Molecular Cancer, 20, Article No. 98. https://doi.org/10.1186/s12943-021-01394-8
|
[21]
|
Xie, F., Li, Y., Wang, M., Huang, C., Tao, D., Zheng, F., et al. (2018) Circular RNA BCRC-3 Suppresses Bladder Cancer Proliferation through miR-182-5p/p27 axis. Molecular Cancer, 17, Article No. 144.
|
[22]
|
https://doi.org/10.1186/s12943-018-0892-z
|
[23]
|
Kong, Y., Li, Y., Luo, Y., Zhu, J., Zheng, H., Gao, B., et al. (2020) circNFIB1 Inhibits Lymphangiogenesis and Lymphatic Metastasis via the miR-486-5p/PIK3R1/VEGF-C Axis in Pancreatic Cancer. Molecular Cancer, 19, Article No. 82. https://doi.org/10.1186/s12943-020-01205-6
|
[24]
|
Philip, P.A., Mooney, M., Jaffe, D., Eckhardt, G., Moore, M., Meropol, N., et al. (2009) Consensus Report of the National Cancer Institute Clinical Trials Planning Meeting on Pancreas Cancer Treatment. Journal of Clinical Oncology, 27, 5660-5669. https://doi.org/10.1200/jco.2009.21.9022
|
[25]
|
Liu, Y., Qiu, G., Luo, Y., Li, S., Xu, Y., Zhang, Y., et al. (2022) Circular RNA ROCK1, a Novel circRNA, Suppresses Osteosarcoma Proliferation and Migration via Altering the miR-532-5p/PTEN Axis. Experimental & Molecular Medicine, 54, 1024-1037. https://doi.org/10.1038/s12276-022-00806-z
|
[26]
|
Su, J., Luo, M., Liang, N., Gong, S., Chen, W., Huang, W., et al. (2021) Interleukin-6: A Novel Target for Cardio-Cerebrovascular Diseases. Frontiers in Pharmacology, 12, Article 745061. https://doi.org/10.3389/fphar.2021.745061
|
[27]
|
Li, J., Wang, H., Shi, X., Zhao, L., Lv, T., Yuan, Q., et al. (2019) Anti-Proliferative and Anti-Migratory Effects of Scutellaria strigillosa Hemsley Extracts against Vascular Smooth Muscle Cells. Journal of Ethnopharmacology, 235, 155-163. https://doi.org/10.1016/j.jep.2019.02.016
|
[28]
|
Xu, J., Chang, N., Rong, Z., Li, T., Xiao, L., Yao, Q., et al. (2018) circdiaph3 Regulates Rat Vascular Smooth Muscle Cell Differentiation, Proliferation, and Migration. The FASEB Journal, 33, 2659-2668. https://doi.org/10.1096/fj.201800243rrr
|
[29]
|
Garikipati, V.N.S., Verma, S.K., Cheng, Z., Liang, D., Truongcao, M.M., Cimini, M., et al. (2019) Circular RNA CircFndc3b Modulates Cardiac Repair after Myocardial Infarction via FUS/VEGF-A axis. Nature Communications, 10, Article No. 4317. https://doi.org/10.1038/s41467-019-11777-7
|
[30]
|
Du, W.W., Xu, J., Yang, W., Wu, N., Li, F., Zhou, L., et al. (2021) A Neuroligin Isoform Translated by Circnlgn Contributes to Cardiac Remodeling. Circulation Research, 129, 568-582. https://doi.org/10.1161/circresaha.120.318364
|
[31]
|
都屹泓, 孙焱, 杨若愚, 等. 轻度认知障碍神经炎症机制的作用靶点[J]. 中国组织工程研究, 2021, 25(29): 4743-4749.
|
[32]
|
Li, J., Lin, H., Sun, Z., Kong, G., Yan, X., Wang, Y., et al. (2018) High-Throughput Data of Circular RNA Profiles in Human Temporal Cortex Tissue Reveals Novel Insights into Temporal Lobe Epilepsy. Cellular Physiology and Biochemistry, 45, 677-691. https://doi.org/10.1159/000487161
|
[33]
|
Dube, U., Del-Aguila, J.L., Li, Z., Budde, J.P., Jiang, S., Hsu, S., et al. (2019) An Atlas of Cortical Circular RNA Expression in Alzheimer Disease Brains Demonstrates Clinical and Pathological Associations. Nature Neuroscience, 22, 1903-1912. https://doi.org/10.1038/s41593-019-0501-5
|
[34]
|
Hanan, M., Simchovitz, A., Yayon, N., Vaknine, S., Cohen-Fultheim, R., Karmon, M., et al. (2020) A Parkinson’s Disease CircRNAs Resource Reveals a Link between circSLC8A1 and Oxidative Stress. EMBO Molecular Medicine, 12, e11942. https://doi.org/10.15252/emmm.201911942
|
[35]
|
Jiang, Q., Liu, C., Li, C., Xu, S., Yao, M., Ge, H., et al. (2020) Circular RNA-ZNF532 Regulates Diabetes-Induced Retinal Pericyte Degeneration and Vascular Dysfunction. Journal of Clinical Investigation, 130, 3833-3847. https://doi.org/10.1172/jci123353
|
[36]
|
Peng, F., Gong, W., Li, S., Yin, B., Zhao, C., Liu, W., et al. (2020) circRNA_010383 Acts as a Sponge for miR-135a, and Its Downregulated Expression Contributes to Renal Fibrosis in Diabetic Nephropathy. Diabetes, 70, 603-615. https://doi.org/10.2337/db20-0203
|
[37]
|
沈南, 杨力, 陈玲玲, 等. 环形RNA结构与降解调控PKR激活和天然免疫反应[J]. 科学新闻, 2020(2): 36.
|
[38]
|
Zhang, C., Wang, X., Chen, Y., Wu, Z., Zhang, C. and Shi, W. (2018) The Down-Regulation of hsa_circ_0012919, the Sponge for miR-125a-3p, Contributes to DNA Methylation of CD11a and CD70 in CD4 T Cells of Systemic Lupus Erythematous. Clinical Science, 132, 2285-2298. https://doi.org/10.1042/cs20180403
|
[39]
|
Yang, J., Cheng, M., Gu, B., Wang, J., Yan, S. and Xu, D. (2020) CircRNA_09505 Aggravates Inflammation and Joint Damage in Collagen-Induced Arthritis Mice via miR-6089/AKT1/NF-κB axis. Cell Death & Disease, 11, Article No. 833. https://doi.org/10.1038/s41419-020-03038-z
|
[40]
|
Zheng, F., Yu, X., Huang, J. and Dai, Y. (2017) Circular RNA Expression Profiles of Peripheral Blood Mononuclear Cells in Rheumatoid Arthritis Patients, Based on Microarray Chip Technology. Molecular Medicine Reports, 16, 8029-8036. https://doi.org/10.3892/mmr.2017.7638
|
[41]
|
Ouyang, Q., Wu, J., Jiang, Z., Zhao, J., Wang, R., Lou, A., et al. (2017) Microarray Expression Profile of Circular RNAs in Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients. Cellular Physiology and Biochemistry, 42, 651-659. https://doi.org/10.1159/000477883
|
[42]
|
Huang, Z., Yao, F., Liu, J., Xu, J., Guo, Y., Su, R., et al. (2020) Up-Regulation of circRNA-0003528 Promotes Mycobacterium tuberculosis Associated Macrophage Polarization via Down-Regulating miR-224-5p, miR-324-5p and miR-488-5p and Up-Regulating CTLA4. Aging, 12, 25658-25672. https://doi.org/10.18632/aging.104175
|
[43]
|
Luo, H., Pi, J., Zhang, J., Yang, E., Xu, H., Luo, H., et al. (2021) Circular RNA TRAPPC6B Inhibits Intracellular mycobacterium Tuberculosis Growth While Inducing Autophagy in Macrophages by Targeting microRNA-874-3p. Clinical & Translational Immunology, 10, e1254. https://doi.org/10.1002/cti2.1254
|
[44]
|
Li, X., Liu, C., Xue, W., Zhang, Y., Jiang, S., Yin, Q., et al. (2017) Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Molecular Cell, 67, 214-227.e7. https://doi.org/10.1016/j.molcel.2017.05.023
|
[45]
|
Shi, J., Hu, N., Mo, L., Zeng, Z., Sun, J. and Hu, Y. (2018) Deep RNA Sequencing Reveals a Repertoire of Human Fibroblast Circular RNAs Associated with Cellular Responses to Herpes Simplex Virus 1 Infection. Cellular Physiology and Biochemistry, 47, 2031-2045. https://doi.org/10.1159/000491471
|
[46]
|
Janssen, H.L.A., Reesink, H.W., Lawitz, E.J., Zeuzem, S., Rodriguez-Torres, M., Patel, K., et al. (2013) Treatment of HCV Infection by Targeting MicroRNA. New England Journal of Medicine, 368, 1685-1694. https://doi.org/10.1056/nejmoa1209026
|
[47]
|
Jost, I., Shalamova, L.A., Gerresheim, G.K., Niepmann, M., Bindereif, A. and Rossbach, O. (2018) Functional Sequestration of microRNA-122 from Hepatitis C Virus by Circular RNA Sponges. RNA Biology, 15, 1032-1039. https://doi.org/10.1080/15476286.2018.1435248
|
[48]
|
Cai, Z., Lu, C., He, J., Liu, L., Zou, Y., Zhang, Z., et al. (2020) Identification and Characterization of circRNAs Encoded by MERS-Cov, SARS-Cov-1 and SARS-CoV-2. Briefings in Bioinformatics, 22, 1297-1308. https://doi.org/10.1093/bib/bbaa334
|
[49]
|
Yang, S., Zhou, H., Cruz-Cosme, R., et al. (2020) Circular RNA Profiling Reveals Abundant and Diverse circRNAs of SARS-CoV-2, SARS-CoV and MERS-CoV Origin.
|