[1]
|
Siegel, R.L., Miller, K.D. and Jemal, A. (2018) Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7-30. https://doi.org/10.3322/caac.21442
|
[2]
|
王静, 于国华, 曲桂梅. 肿瘤微环境对乳腺癌的作用[J]. 临床与病理杂志, 2023, 43(11): 2008-2014.
|
[3]
|
Baron, N., Deuster, O., Noelker, C., Stüer, C., Strik, H., Schaller, C., et al. (2011) Role of Macrophage Migration Inhibitory Factor in Primary Glioblastoma Multiforme Cells. Journal of Neuroscience Research, 89, 711-717. https://doi.org/10.1002/jnr.22595
|
[4]
|
Baek, A.E. and Nelson, E.R. (2016) The Contribution of Cholesterol and Its Metabolites to the Pathophysiology of Breast Cancer. Hormones and Cancer, 7, 219-228. https://doi.org/10.1007/s12672-016-0262-5
|
[5]
|
Garcia-Estevez, L. and Moreno-Bueno, G. (2019) Updating the Role of Obesity and Cholesterol in Breast Cancer. Breast Cancer Research, 21, Article No. 35. https://doi.org/10.1186/s13058-019-1124-1
|
[6]
|
Leignadier, J., Dalenc, F., Poirot, M. and Silvente-Poirot, S. (2017) Improving the Efficacy of Hormone Therapy in Breast Cancer: The Role of Cholesterol Metabolism in SERM-Mediated Autophagy, Cell Differentiation and Death. Biochemical Pharmacology, 144, 18-28. https://doi.org/10.1016/j.bcp.2017.06.120
|
[7]
|
Tang, Z., Li, T., Peng, J., Zheng, J., Li, T., Liu, L., et al. (2018) PCSK9: A Novel Inflammation Modulator in Atherosclerosis? Journal of Cellular Physiology, 234, 2345-2355. https://doi.org/10.1002/jcp.27254
|
[8]
|
Wiciński, M., Żak, J., Malinowski, B., Popek, G. and Grześk, G. (2017) PCSK9 Signaling Pathways and Their Potential Importance in Clinical Practice. EPMA Journal, 8, 391-402. https://doi.org/10.1007/s13167-017-0106-6
|
[9]
|
Ward, E.M., DeSantis, C.E., Lin, C.C., Kramer, J.L., Jemal, A., Kohler, B., et al. (2015) Cancer Statistics: Breast Cancer in Situ. CA: A Cancer Journal for Clinicians, 65, 481-495. https://doi.org/10.3322/caac.21321
|
[10]
|
Melvin, J.C., Holmberg, L., Rohrmann, S., Loda, M. and Van Hemelrijck, M. (2013) Serum Lipid Profiles and Cancer Risk in the Context of Obesity: Four Meta-Analyses. Journal of Cancer Epidemiology, 2013, 1-12. https://doi.org/10.1155/2013/823849
|
[11]
|
Hachem, A., Hariri, E., Saoud, P., Lteif, C., Lteif, L. and Welty, F. (2017) The Role of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Cardiovascular Homeostasis: A Non-Systematic Literature Review. Current Cardiology Reviews, 13, 274-282. https://doi.org/10.2174/1573403x13666170804150954
|
[12]
|
Giugliano, R.P., Pedersen, T.R., Saver, J.L., Sever, P.S., Keech, A.C., Bohula, E.A., et al. (2020) Stroke Prevention with the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) Inhibitor Evolocumab Added to Statin in High-Risk Patients with Stable Atherosclerosis. Stroke, 51, 1546-1554. https://doi.org/10.1161/strokeaha.119.027759
|
[13]
|
Zhang, S., Zhu, X., Feng, L., Li, X., Liu, X., Sun, H., et al. (2021) PCSK9 Promotes Tumor Growth by Inhibiting Tumor Cell Apoptosis in Hepatocellular Carcinoma. Experimental Hematology & Oncology, 10, Article No. 25. https://doi.org/10.1186/s40164-021-00218-1
|
[14]
|
Liu, X., Bao, X., Hu, M., Chang, H., Jiao, M., Cheng, J., et al. (2020) Inhibition of PCSK9 Potentiates Immune Checkpoint Therapy for Cancer. Nature, 588, 693-698. https://doi.org/10.1038/s41586-020-2911-7
|
[15]
|
Lan, H., Pang, L., Smith, M.M., Levitan, D., Ding, W., Liu, L., et al. (2010) Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Affects Gene Expression Pathways Beyond Cholesterol Metabolism in Liver Cells. Journal of Cellular Physiology, 224, 273-281. https://doi.org/10.1002/jcp.22130
|
[16]
|
Lin, D., Shen, L., Luo, M., Zhang, K., Li, J., Yang, Q., et al. (2021) Circulating Tumor Cells: Biology and Clinical Significance. Signal Transduction and Targeted Therapy, 6, Article No. 404. https://doi.org/10.1038/s41392-021-00817-8
|
[17]
|
Pereira-Veiga, T., Schneegans, S., Pantel, K. and Wikman, H. (2022) Circulating Tumor Cell-Blood Cell Crosstalk: Biology and Clinical Relevance. Cell Reports, 40, Article 111298. https://doi.org/10.1016/j.celrep.2022.111298
|
[18]
|
Chen, X. and Song, E. (2022) The Theory of Tumor Ecosystem. Cancer Communications, 42, 587-608. https://doi.org/10.1002/cac2.12316
|
[19]
|
Galli, F., Aguilera, J.V., Palermo, B., Markovic, S.N., Nisticò, P. and Signore, A. (2020) Relevance of Immune Cell and Tumor Microenvironment Imaging in the New Era of Immunotherapy. Journal of Experimental & Clinical Cancer Research, 39, Article No. 89. https://doi.org/10.1186/s13046-020-01586-y
|
[20]
|
Wu, F., Fan, J., He, Y., Xiong, A., Yu, J., Li, Y., et al. (2021) Single-Cell Profiling of Tumor Heterogeneity and the Microenvironment in Advanced Non-Small Cell Lung Cancer. Nature Communications, 12, Article No. 2540. https://doi.org/10.1038/s41467-021-22801-0
|
[21]
|
Lippitz, B.E. (2013) Cytokine Patterns in Patients with Cancer: A Systematic Review. The Lancet Oncology, 14, e218-e228. https://doi.org/10.1016/s1470-2045(12)70582-x
|
[22]
|
Liu, N., Jiang, N., Guo, R., Jiang, W., He, Q., Xu, Y., et al. (2013) MiR-451 Inhibits Cell Growth and Invasion by Targeting MIF and Is Associated with Survival in Nasopharyngeal Carcinoma. Molecular Cancer, 12, Article No. 123. https://doi.org/10.1186/1476-4598-12-123
|
[23]
|
Figueiredo, C.R., Azevedo, R.A., Mousdell, S., Resende-Lara, P.T., Ireland, L., Santos, A., et al. (2018) Blockade of MIF-CD74 Signalling on Macrophages and Dendritic Cells Restores the Antitumour Immune Response against Metastatic Melanoma. Frontiers in Immunology, 9, Article 1132. https://doi.org/10.3389/fimmu.2018.01132
|
[24]
|
Kong, F., Deng, X., Kong, X., Du, Y., Li, L., Zhu, H., et al. (2018) ZFPM2-AS1, a Novel IncRNA, Attenuates the P53 Pathway and Promotes Gastric Carcinogenesis by Stabilizing MIF. Oncogene, 37, 5982-5996. https://doi.org/10.1038/s41388-018-0387-9
|
[25]
|
Castro, B.A., Flanigan, P., Jahangiri, A., Hoffman, D., Chen, W., Kuang, R., et al. (2017) Macrophage Migration Inhibitory Factor Downregulation: A Novel Mechanism of Resistance to Anti-Angiogenic Therapy. Oncogene, 36, 3749-3759. https://doi.org/10.1038/onc.2017.1
|
[26]
|
Bonaventura, A., Grossi, F. and Montecucco, F. (2020) PCSK9 Is a Promising Prognostic Marker in Patients with Advanced NSCLC. Cancer Immunology, Immunotherapy, 69, 491-492. https://doi.org/10.1007/s00262-020-02485-z
|
[27]
|
Abdelwahed, K.S., Siddique, A.B., Mohyeldin, M.M., Qusa, M.H., Goda, A.A., Singh, S.S., et al. (2020) Pseurotin a as a Novel Suppressor of Hormone Dependent Breast Cancer Progression and Recurrence by Inhibiting PCSK9 Secretion and Interaction with LDL Receptor. Pharmacological Research, 158, Article 104847. https://doi.org/10.1016/j.phrs.2020.104847
|
[28]
|
Liu, X., Bao, X., Hu, M., Chang, H., Jiao, M., Cheng, J., et al. (2020) Inhibition of PCSK9 Potentiates Immune Checkpoint Therapy for Cancer. Nature, 588, 693-698. https://doi.org/10.1038/s41586-020-2911-7
|