新型评分系统在动脉瘤性蛛网膜下腔出血并发症预测中的研究进展
Research Progress in Novel Scoring System in Predicting Complications of Aneurysmal Subarachnoid Hemorrhage
摘要: 动脉瘤性蛛网膜下腔出血是一种高致死率和致残性的出血性中风。大约33%的幸存者有严重的损伤,并依赖他人来维持日常功能,其原因主要与脑血管痉挛、迟发性脑缺血、继发脑梗死、早期脑损伤、癫痫、脑积水等并发症的发生密切相关,因此,早期预测这些并发症至关重要,本研究就早期预测蛛网膜下腔出血并发症的新型评分系统进行综述。
Abstract: Aneurysmal subarachnoid hemorrhage is a highly lethal and debilitating kind of hemorrhagic stroke. About 33% of survivors have severe injuries and rely on others to maintain daily functions, which is mainly related to the occurrence of the complications, such as cerebrovascular spasm, delayed cerebral ischemia, secondary cerebral infarction, early brain injury, epilepsy and hydrocephalus. Therefore, early prediction of these complications is crucial. In this study, a new scoring system for early prediction of subarachnoid hemorrhage complications was reviewed.
文章引用:黄天星, 钟维佳. 新型评分系统在动脉瘤性蛛网膜下腔出血并发症预测中的研究进展[J]. 临床医学进展, 2024, 14(10): 35-42. https://doi.org/10.12677/acm.2024.14102617

1. 引言

动脉瘤性蛛网膜下腔出血( aneurysm subarachnoid hemorrhage, a SAH)是脑血管疾病中较为常见的一种类型,具有起病急骤、发病凶险、进展迅速等特点。据不完全统计,大约有50%的患者在发病后1年内死亡,仅有33.3%能够不依靠他人独立地生活[1] [2],其原因主要与脑血管痉挛(cerebral vasospasm, CVS)、迟发性脑缺血(delayed cerebral ischemia, DCI)、继发脑梗死(cerebral infarction, CI)、早期脑损伤(early brain injury, EBI)、癫痫、脑积水等并发症的发生密切相关[3]-[5]。因此,早期准确预测aSAH的并发症,进而识别具有潜在不良预后风险的患者的方法至关重要。目前经典的常用于评估aSAH预后的评分系统,包括 Hunt-Hess分级系统,格拉斯哥昏迷评分(GCS)系统,世界神经外科联盟分级(WFNSS)系统和Fisher或改良Fisher评分系统[6]-[9],前三者侧重于评估aSAH后的神经功能损伤,Fisher或改良Fisher评分系统通过评估SAH的失血严重程度,进而评估其预后,但这些评分均不能对其某一并发症作出预测。随着影像学技术的发展,越来越多的新型评分系统被提出用于评估aSAH的各种并发症,本研究就早期预测蛛网膜下腔出血并发症的新型评分系统进行综述。

2. 新型评分系统预测aSAH后DCI

DCI是动脉瘤性蛛网膜下腔出血患者中最常见的并发症,约1/3的SAH患者会在初次发病后的4~30日内出现局部脑组织缺血,多表现为意识障碍程度加深或神经功能障碍[10]。DCI的发生是SAH后致死、致残的主要原因之一,其病死率高达25% [11]。DCI的发病机制主要包括脑血管功能障碍、微栓子形成、皮质扩散去极化等[12]

Yuan-Jian Fang等[13]通过收集浙江大学附属医院的702名aSAH患者创建了一个与临床和放射学因素相结合的新风险评分(EDCI评分),该评分强调SAH后早期(72小时内)的大脑变化,以预测DCI。该评分量表由WFNS、MFS、SEBES和IVH 4个项目组成,评分范围为0~7分。其中EDCI评分 ≤ 1分与低风险相关,2~4分与中度风险相关,≥5分与高危相关。EDCI评分成功地结合了临床和放射影像学风险因素,避免了单一分级系统的片面性。通过与单一评分量表,如WFNS评分、Hunt-Hess评分、SEBES评分及mFS评分等进行比较,发现EDCI评分量表可以提升预测效能,EDCI评分在这些评分系统中AUC最高(AUC WFNS = 0.724, AUC HH = 0.706, AUC SEBES = 0.660, AUC MFS = 0.627)。尽管EDCI评分在预测DCI的新风险上具有优势,但这项研究仍然存在一些局限性:比如EDCI 评分涉及评分较多,要求每个评分准确性很高,这对于临床医生来说是个不小的挑战。第二若要把新的评分推广至每一个aSAH患者,需要更多中心数据和验证支持。

血管造影成像中的CVS被认为在导致DCI的病理生理学中发挥重要作用,这可能会导致DCI和更加不利的功能结果[14]。因此J. Joep van der Harst等[15]开发CTA血管痉挛评分,以量化CVS的严重程度,并用于预测DCI发生的风险。CTA血管痉挛评分总结了17个硬膜内动脉段的血管造影脑血管痉挛程度,分数从0到34不等,具体评分构成见表2。CTA血管痉挛评分越高,反映了血管痉挛更严重,进而发生DCI风险越高,其中在第5天时的准确度最高。CTA血管痉挛评分将颅内血管细致的分为17段,并且计算其得分。且该评分是在一项前瞻性研究的基础上进行的,另外该评分的高灵敏度使其适合于早期筛选。但鉴于样本量相对较小,其稳定性需要在更大的前瞻性收集的aSAH患者样本中进行确认。

3. 新型评分系统预测aSAH后脑积水

脑积水是aSAH常见的并发症[16]。脑积水通常在动脉瘤破裂后不久发生,但脑脊液流体动力学紊乱可能会持续到aSAH后50天,这在很大程度上导致SAH患者的较差的预后[17]。在所有并发了急性脑积水的患者中,15%~87%的患者需要暂时外源性脑脊液分流[18],其中一部分患者需要永久性的脑脊液分流。许多研究认为影响aSAH后分流依赖性脑积水(SDHC)的因素包括:较高的Hunt-Hess [19]-[21]、急性脑积水[21] [22]、Fisher评分[21] [23]、IVH [18] [19] [22] [23]、破裂动脉瘤位于后循环[18]-[20]、较高的患者年龄[18] [22]、治疗方式[19] [22] [24]、脑脊液中白细胞介素-6 [25]和乳酸[26]、女性[20]、开颅减压术[24]、既往糖尿病[27]、入院时高血糖[25]、临床血管痉挛[23]、脑脊液引流时间[27]和发热频率[24]。基于这些影响因素,一些研究提出了一些评分来预测脑积水。

SDHC是动脉瘤性蛛网膜下腔出血的慢性并发症,常导致严重的神经功能障碍。Hongsheng Liang [28]等收集分析了哈尔滨医科大学第一附属医院的524aSAH例患者,并开发一种新的评分方法(MAI评分)来早期识别需要永久性分流术的患者。MAI评分:改良Fisher分级 ≥ 3 (1分),急性脑积水(1分),脑室内出血(1分)。MAI评分的AUC值为0.773,在内部验证队列中的AUC值为0.950。2~3分的患者为发生分流依赖性脑积水的高风险人群,0~1分的患者为中低风险人群。与复杂的CHESS评分[29]相比,MAI评分简单且易于预测aSAH后的SDHC。MAI评分的优点在于在预测aSAH后SDHC方面比其他评分更简单,更准确。

在以往的研究中[18],对于动脉瘤的位置是否导致aSAH术后依赖性脑积水存在争议,R. Jabbarli等[29]总结了一个新的风险评分(CHESS评分),用于建立预测aSAH后引起的具有分流依赖的慢性脑积水患者。该评分包含后循环破裂动脉瘤的位置、Hunt-Hess分级、急性脑积水、脑室内出血的存在以及随访CT出现的早期脑梗死,标准为:Hunt-Hess分级 ≥ IV (1分),后循环破裂动脉瘤的位置(1分),急性脑积水(4分),脑室内出血的存在(1分)以及随访CT出现的早期脑梗死(1分)。研究证实,75%的Chess评分 ≥ 6分的SAH患者需要分流术,而Chess评分 < 6分的SAH患者需要分流术的比例为23.5%。

4. 新型评分系统预测aSAH后早期脑损伤(EBI)

随着时间的推移,在aSAH之后通常定义了两个病理生理阶段,其中不同的过程可以在不同程度上发生[30]。第一阶段,定义为出血后的前72小时,是EBI的阶段[31]-[34]。这段时期之后是DCI阶段[30] [35] [36]。越来越多的研究表明,出血后早期的病理生理过程可以为随后的长期并发症奠定基础,从而对患者的预后产生重大影响[30] [32] [37]。简而言之,在EBI期间引发的炎症反应会导致微血管功能障碍、血脑屏障破坏和微血栓形成,通过维持炎症反应影响临床预后[30] [32] [38] [39]

Björn B. Hofmann [40]等创建了aSAH相关早期脑损伤的新型预测评分(SHELTER评分),该评分是神经内科医生识别患者不良预后和指导治疗决策的宝贵工具,反映了EBI对aSAH患者整体预后的巨大影响。该评分包括七个临床和放射学特征:年龄(0~4分)、世界神经外科学会联合会(0~2.5分)、心肺复苏术(CPR) (2分)、瞳孔模糊(1~2分)、中线移位(0.5~1分)、早期恶化(1分)、早期缺血性病变(2分)。其中SHELTER评分 ≤ 5分与低风险相关,5~6.5分与中度风险相关,≥7分与高危相关。该评分侧重于EBI期的危险因素,强调了早期脑损伤(EBI)在aSAH病理生理中的重要性,旨在预测EBI对aSAH患者神经预后的影响,而不依赖于DCI期。且其具有非常高的预测价值和准确性,反映了EBI中组织损伤对aSAH患者整体预后的巨大重要性。该评分涉及的变量简单易获取,确保了其在临床环境中的实用性和易用性。但这也导致了该评分纳入的临床和放射影像学变量有限,并且可能还有其他在评分系统开发过程中没有考虑的预后因素(例如炎症因子相关指标等) [39],而纳入这些因素可能会提高分数的表现。

Runting Li [41]等回顾性地纳入了北京天坛医院825例aSAH患者的资料,建立了一种新的基于EBI指标的评分(TAPS评分)来预测90天的预后动脉瘤性蛛网膜下腔出血(aSAH)患者的功能结局。TAPS评分的范围为0~7分,包括以下入院变量:年龄 > 55岁,WFNS分级4~5分,mFS分级3~4分,Graeb评分5~12分,白细胞计数(WBC) > 11.28 × 10^9/L,手术夹。TAPS评分 = −4.714 + 0.919 × (年龄 > 55岁) + 1.491 × (WFNS等级 = 4~5) + 1.155 × (mFS grade = 3~4) + 0.947 × (Graeb评分 = 5~12) + 1.033 × (WBC > 11.28 × 10^9 /L) + 0.664 × (手术夹)。TAPS评分还与其他五种预测评分进行了比较,发现其具有最高的预测效能:TAPS (AUC = 0.816) SAHIT (AUC = 0.802),FRESH (AUC = 0.784),Lai et al. 2020 (AUC = 0.742),HAIR (AUC = 0.727),和Mao et al. 2016 (AUC = 0.626)。因此TAPS是一种易于操作的预测aSAH患者90天不良预后的工具,可以帮助临床医生更好地理解EBI的概念并快速识别这些患者有预后不良风险,提供更积极的治疗策略。但在比较不同评分效能时,由于不同评分侧重的因素不同,其产生的影响也不能被忽略。另外值得注意的是该研究中还做了前瞻性验证,在一定程度上确保了该评分的可靠性。

5. 新型评分系统预测aSAH后癫痫

癫痫是aSAH后公认的并发症[42] [43]。据报道,颅内动脉瘤破裂手术后癫痫的发生率从1%到27.5%不等,这似乎与SAH本身、开颅术的影响有关,或两者都有[44]。癫痫的风险取决于手术创伤和/或潜在病变的程度[44] [45],其中aSAH发作被认为是延迟癫痫的最重要危险因素[44] [46] [47]。有研究[48]发现SIRS标准和炎症的血清生物标志物(hsCRP、TNF-R1和TTR)在临床上都反映了SAH之后的促炎状态与癫痫的发生独立相关。

Daniel Campos-Fernandez [49]等纳入了419例符合纳入标准的aSAH患者,建立了一种可以对aSAH患者的癫痫发生风险进行分层的预测性评分(RISE评分)。该评分量表由病前改良Rankin评分(mRS)、VASOGRADE评分、手术治疗和早发性癫痫史(EOSs)的存在构成。其中mRS ≥ 2 (R)、VASOGRADE-Yellow (I)、手术干预(S)和EOSs(E)评分1分,对VASOGRADE-Red评分2分。评分范围为0~5分。其中RISE评分 ≤ 1分与低风险相关,2~3分与中度风险相关,≥4分与高危相关。该评分可以及时识别有癫痫风险的患者,优化随访方案和制定预防策略具有重要意义。值得注意的是该评分经过了来自不同三级医疗中心的队列验证中(N = 308),新量表产生了相似的风险分布和良好的aSAH后5年内癫痫的预测能力(AUC = 0.82)。

Blessing N.R. Jaja [50]等建立了一种简单的预测aSAH后癫痫的风险评分(SAFARI评分)。SAFARI评分基于4项构成因素:年龄 ≥ 60岁、住院前癫痫发作情况、前循环动脉瘤破裂、需要脑脊液分流的脑积水。SAFARI的得分范围为0到5分,60岁及以上患者(1分)、前循环动脉瘤破裂(1分)、入院前有癫痫发作(2分),表现为需要引流的脑积水(1分)。基于它们的综合评分后,将患者重新分为3个癫痫发作绝对危险类别,包括低风险组的SAFARI患者0~1分,中危组2~3分,高危组范围为4~5分。该评分在训练队列AUC = 0.77, 验证队列的AUC = 0.65。SAFARI评分是一种简单的工具,可以根据他们癫痫发作的风险使用一些容易得到的预测项目,从而对aSAH患者进行充分的风险分层。但我们知道手术治疗方式也是影响aSAH后癫痫发作的因素,有研究[51]表明,与实施动脉瘤夹闭手术的患者相比,血管内线圈栓塞治疗的患者癫痫的发生率有一个显著降低的趋势。因此治疗方式纳入预测因子可能会提高风险评分的预测准确率。

6. 新型评分系统预测aSAH后继发性脑梗死

CI是动脉瘤性蛛网膜下腔出血的常见并发症及预后不良的主要原因[52]-[54]。在CT随访扫描中可见的CI率在21%至65%之间[55] [56],在MR中甚至高达81% [57] [58]。既往研究表明aSAH后的脑梗死与许多因素相关,主要包括:颅内出血量[52] [56],血管造影阳性的血管痉挛[59] [60],动脉瘤位置和大小[54] [61],初始临床症状严重程度[54] [56],患者年龄[61],糖尿病史[58]高血糖[54] [61],高血压史[54],早期脑积水[58],早期脑水肿[52],发热温度[52] [56],全身炎症[58]。基于这些影响因素,一些研究提出了一些评分来预测aSAH后的脑梗死。

Ramazan Jabbarli [62]等利用SAH开始时可用的临床特征,为早期识别CI高风险个体制定风险评分(BEHAVIOR评分)。该评分包含七个临床特征(0~11分):Fisher评分等级 ≥ 3 (1分),老年患者(年龄 ≥ 55岁,1分),Hunt-Hess等级 ≥ 4 (1分),急性脑积水(1分),初始血管造影血管痉挛(3分),颅内压升高 > 20 mm/Hg (3分)和多发性动脉瘤的治疗(1分)。BEHAVIOR评分又分为三个风险级别:低风险(0~2分,平均风险23.6%),中风险(3~6分,平均风险62.3%)和高风险(7~11分,平均风险93.2%)。这里提出的评分,使用入院时的人口统计学、放射影像学和临床变量的组合,可以非常早期的识别发生CI风险患者。与单独的Hunt-Hess和Fisher评分相比,BEHAVIOR评分与临床结果的相关性更好。此外,与其他评分[63]相比,BEHAVIOR中包含的所有风险因素都很容易收集和分类。因此,对于临床医生来说,它可能是一个可靠的工具,允许在疾病开始时及早识别高风险患者。但是在该评分在随访患者中可能存在选择偏移,因为除了入院和术后的常规CT成像外,所有随访CT扫描仅在具有临床症状时进行,这可能会造成对无症状梗死患者的低估。

7. 小结

随着精确医疗的概念的出现,aSAH治疗方式不断进步,人们越来越注意到早期识别aSAH并发症的重要性。在过去的经典评分系统里,包括GCS评分、Hunt-Hess分级系统、Fisher分级与改良Fisher分级、WFNSS分级,这些评分大多都是笼统地关注aSAH早期整体不良预后,而忽略精确识别aSAH并发症,不能完全适应现代医学的需要。近年来不断有新的评分系统提出,比如马萨诸塞州总医院评分量表,关注到了手术对患者预后影响,第一个针对性的提出颅内动脉瘤夹闭患者预后的评分;Elwatidy评分,同样也是用于夹闭术后的a SAH患者预后的预测。本文综述总结了一些着重于关注aSAH部分并发症的评分,以期帮助临床医生更加全面评估aSAH患者的预后,尽管这些新型aSAH评分系统尚没有广泛推广,但这些评分系统是有意义和潜力的,随着越来越多的研究去进行进一步大样本、多中心验证,会提升其精准度和实用性。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Boers, A.M., Zijlstra, I.A., Gathier, C.S., van den Berg, R., Slump, C.H., Marquering, H.A., et al. (2014) Automatic Quantification of Subarachnoid Hemorrhage on Noncontrast CT. American Journal of Neuroradiology, 35, 2279-2286.
https://doi.org/10.3174/ajnr.a4042
[2] Connolly, E.S., Rabinstein, A.A., Carhuapoma, J.R., Derdeyn, C.P., Dion, J., Higashida, R.T., et al. (2012) Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage. Stroke, 43, 1711-1737.
https://doi.org/10.1161/str.0b013e3182587839
[3] Griessenauer, C.J., Tubbs, R.S., Foreman, P.M., Chua, M.H., Vyas, N.A., Lipsky, R.H., et al. (2018) Association of Renin-Angiotensin System Genetic Polymorphisms and Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 128, 86-93.
https://doi.org/10.3171/2016.9.jns161593
[4] Mittal, A.M., Pease, M., McCarthy, D., Legarreta, A., Belkhir, R., Crago, E.A., et al. (2023) Hunt-Hess Score at 48 Hours Improves Prognostication in Grade 5 Aneurysmal Subarachnoid Hemorrhage. World Neurosurgery, 171, e874-e878.
https://doi.org/10.1016/j.wneu.2023.01.018
[5] Stornelli, S.A. and French, J.D. (1964) Subarachnoid Hemorrhage—Factors in Prognosis and Management. Journal of Neurosurgery, 21, 769-780.
https://doi.org/10.3171/jns.1964.21.9.0769
[6] Rabinstein, A.A., Lanzino, G. and Wijdicks, E.F. (2010) Multidisciplinary Management and Emerging Therapeutic Strategies in Aneurysmal Subarachnoid Haemorrhage. The Lancet Neurology, 9, 504-519.
https://doi.org/10.1016/s1474-4422(10)70087-9
[7] Zijlmans, J.L., Coert, B.A., van den Berg, R., Sprengers, M.E.S., Majoie, C.B.L.M., Vandertop, W.P., et al. (2018) Unfavorable Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage WFNS Grade I. World Neurosurgery, 118, e217-e222.
https://doi.org/10.1016/j.wneu.2018.06.157
[8] Duan, G., Yang, P., Li, Q., Zuo, Q., Zhang, L., Hong, B., et al. (2016) Prognosis Predicting Score for Endovascular Treatment of Aneurysmal Subarachnoid Hemorrhage. Medicine, 95, e2686.
https://doi.org/10.1097/md.0000000000002686
[9] Braine, M.E. and Cook, N. (2016) The Glasgow Coma Scale and Evidence-Informed Practice: A Critical Review of Where We Are and Where We Need to Be. Journal of Clinical Nursing, 26, 280-293.
https://doi.org/10.1111/jocn.13390
[10] Vergouwen, M.D.I., Vermeulen, M., van Gijn, J., Rinkel, G.J.E., Wijdicks, E.F., Muizelaar, J.P., et al. (2010) Definition of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies. Stroke, 41, 2391-2395.
https://doi.org/10.1161/strokeaha.110.589275
[11] Macdonald, R.L. (2013) Delayed Neurological Deterioration after Subarachnoid Haemorrhage. Nature Reviews Neurology, 10, 44-58.
https://doi.org/10.1038/nrneurol.2013.246
[12] van Os, H.J.A., Verbaan, D., Ruigrok, Y.M., Dennesen, P., Müller, M.C.A., Coert, B.A., et al. (2022) Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage in Young Patients with a History of Migraine. Stroke, 53, 2075-2077.
https://doi.org/10.1161/strokeaha.121.038350
[13] Fang, Y., Mei, S., Lu, J., Chen, Y., Chai, Z., Dong, X., et al. (2019) New Risk Score of the Early Period after Spontaneous Subarachnoid Hemorrhage: For the Prediction of Delayed Cerebral Ischemia. CNS Neuroscience & Therapeutics, 25, 1173-1181.
https://doi.org/10.1111/cns.13202
[14] Li, K., Barras, C.D., Chandra, R.V., Kok, H.K., Maingard, J.T., Carter, N.S., et al. (2019) A Review of the Management of Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage. World Neurosurgery, 126, 513-527.
https://doi.org/10.1016/j.wneu.2019.03.083
[15] van der Harst, J.J., Luijckx, G.R., Elting, J.W.J., Lammers, T., Bokkers, R.P.H., van den Bergh, W.M., et al. (2021) The Predictive Value of the CTA Vasospasm Score on Delayed Cerebral Ischaemia and Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. European Journal of Neurology, 29, 620-625.
https://doi.org/10.1111/ene.15139
[16] Di Russo, P., Di Carlo, D.T., Lutenberg, A., Morganti, R., Evins, A.I. and Perrini, P. (2020) Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgical Sciences, 64, 181-189.
https://doi.org/10.23736/s0390-5616.19.04641-1
[17] Hirashima, Y., Hamada, H., Hayashi, N., Kuwayama, N., Origasa, H. and Endo, S. (2003) Independent Predictors of Late Hydrocephalus in Patients with Aneurysmal Subarachnoid Hemorrhage—Analysis by Multivariate Logistic Regression Model. Cerebrovascular Diseases, 16, 205-210.
https://doi.org/10.1159/000071117
[18] Erixon, H.O., Sorteberg, A., Sorteberg, W. and Eide, P.K. (2014) Predictors of Shunt Dependency after Aneurysmal Subarachnoid Hemorrhage: Results of a Single-Center Clinical Trial. Acta Neurochirurgica, 156, 2059-2069.
https://doi.org/10.1007/s00701-014-2200-z
[19] Lai, L. and Morgan, M.K. (2013) Predictors of In-Hospital Shunt-Dependent Hydrocephalus Following Rupture of Cerebral Aneurysms. Journal of Clinical Neuroscience, 20, 1134-1138.
https://doi.org/10.1016/j.jocn.2012.09.033
[20] Zaidi, H.A., Montoure, A., Elhadi, A., Nakaji, P., McDougall, C.G., Albuquerque, F.C., et al. (2015) Long-Term Functional Outcomes and Predictors of Shunt-Dependent Hydrocephalus after Treatment of Ruptured Intracranial Aneurysms in the BRAT Trial. Neurosurgery, 76, 608-615.
https://doi.org/10.1227/neu.0000000000000677
[21] Brisman, J.L. and Berenstein, A. (2004) Factors Related to Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 54, 1031-1031.
https://doi.org/10.1227/01.neu.0000117123.32806.f9
[22] Yang, T., Chang, C.H., Liu, Y., Chen, Y., Tu, P. and Chen, H. (2013) Predictors of Shunt-Dependent Chronic Hydrocephalus after Aneurysmal Subarachnoid Haemorrhage. European Neurology, 69, 296-303.
https://doi.org/10.1159/000346119
[23] Bae, I., Yi, H., Choi, K. and Chun, H. (2014) Comparison of Incidence and Risk Factors for Shunt-Dependent Hydrocephalus in Aneurysmal Subarachnoid Hemorrhage Patients. Journal of Cerebrovascular and Endovascular Neurosurgery, 16, 78-84.
https://doi.org/10.7461/jcen.2014.16.2.78
[24] Paisan, G.M., Ding, D., Starke, R.M., Crowley, R.W. and Liu, K.C. (2017) Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage: Predictors and Long-Term Functional Outcomes. Neurosurgery, 83, 393-402.
https://doi.org/10.1093/neuros/nyx393
[25] Wostrack, M., Reeb, T., Martin, J., Kehl, V., Shiban, E., Preuss, A., et al. (2014) Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage: The Role of Intrathecal Interleukin-6. Neurocritical Care, 21, 78-84.
https://doi.org/10.1007/s12028-014-9991-x
[26] Wang, Y., Lin, Y., Chuang, M., Lee, T., Tsai, N., Cheng, B., et al. (2012) Predictors and Outcomes of Shunt-Dependent Hydrocephalus in Patients with Aneurysmal Sub-Arachnoid Hemorrhage. BMC Surgery, 12, Article No. 12.
https://doi.org/10.1186/1471-2482-12-12
[27] Widenka, D.C., Wolf, S., Schürer, L., et al. (2000) Factors Leading to Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Neurologia i Neurochirurgia Polska, 34, 56-60.
[28] Liang, H., Gui, B., Gao, A., Meng, X., Li, C., Ma, L., et al. (2022) The MAI Score: A Novel Score to Early Predict Shunt-Dependent Hydrocephalus in Patients with Aneurysmal Subarachnoid Hemorrhage after Surgery. Clinical Neurology and Neurosurgery, 219, Article 107317.
https://doi.org/10.1016/j.clineuro.2022.107317
[29] Jabbarli, R., Bohrer, A.-M., Pierscianek, D., Müller, D., Wrede, K.H., Dammann, P., et al. (2016) The Chess Score: A Simple Tool for Early Prediction of Shunt Dependency after Aneurysmal Subarachnoid Hemorrhage. European Journal of Neurology, 23, 912-918.
https://doi.org/10.1111/ene.12962
[30] van Lieshout, J.H., Dibué-Adjei, M., Cornelius, J.F., Slotty, P.J., Schneider, T., Restin, T., et al. (2017) An Introduction to the Pathophysiology of Aneurysmal Subarachnoid Hemorrhage. Neurosurgical Review, 41, 917-930.
https://doi.org/10.1007/s10143-017-0827-y
[31] Kusaka, G., Ishikawa, M., Nanda, A., Granger, D.N. and Zhang, J.H. (2004) Signaling Pathways for Early Brain Injury after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 24, 916-925.
https://doi.org/10.1097/01.wcb.0000125886.48838.7e
[32] Cahill, W.J., Calvert, J.H. and Zhang, J.H. (2006) Mechanisms of Early Brain Injury after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 26, 1341-1353.
https://doi.org/10.1038/sj.jcbfm.9600283
[33] Sehba, F.A., Pluta, R.M. and Zhang, J.H. (2010) Metamorphosis of Subarachnoid Hemorrhage Research: From Delayed Vasospasm to Early Brain Injury. Molecular Neurobiology, 43, 27-40.
https://doi.org/10.1007/s12035-010-8155-z
[34] Sehba, F.A., Hou, J., Pluta, R.M. and Zhang, J.H. (2012) The Importance of Early Brain Injury after Subarachnoid Hemorrhage. Progress in Neurobiology, 97, 14-37.
https://doi.org/10.1016/j.pneurobio.2012.02.003
[35] Weir, B., Grace, M., Hansen, J. and Rothberg, C. (1978) Time Course of Vasospasm in Man. Journal of Neurosurgery, 48, 173-178.
https://doi.org/10.3171/jns.1978.48.2.0173
[36] Hijdra, A., Van Gijn, J., Stefanko, S., Van Dongen, K.J., Vermeulen, M. and Van Crevel, H. (1986) Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. Neurology, 36, 329-329.
https://doi.org/10.1212/wnl.36.3.329
[37] Sabri, M., Lass, E. and Macdonald, R.L. (2013) Early Brain Injury: A Common Mechanism in Subarachnoid Hemorrhage and Global Cerebral Ischemia. Stroke Research and Treatment, 2013, 1-9.
https://doi.org/10.1155/2013/394036
[38] Hofmann, B.B., Donaldson, D.M., Fischer, I., Karadag, C., Neyazi, M., Piedade, G.S., et al. (2023) Blood Pressure Affects the Early CT Perfusion Imaging in Patients with Asah Reflecting Early Disturbed Autoregulation. Neurocritical Care, 39, 125-134.
https://doi.org/10.1007/s12028-023-01683-8
[39] Hofmann, B.B., Fischer, I., Donaldson, D.M., Abusabha, Y., Karadag, C., Muhammad, S., et al. (2023) Evaluation of MTT Heterogeneity of Perfusion CT Imaging in the Early Brain Injury Phase: An Insight into Asah Pathopysiology. Brain Sciences, 13, Article 824.
https://doi.org/10.3390/brainsci13050824
[40] Hofmann, B.B., Donaldson, D.M., Neyazi, M., Abusabha, Y., Beseoglu, K., Hänggi, D., et al. (2023) Clinical Outcome Prediction of Early Brain Injury in Aneurysmal Subarachnoid Hemorrhage: The Shelter-Score. Neurocritical Care, 40, 438-447.
https://doi.org/10.1007/s12028-023-01879-y
[41] Li, R., Lin, F., Chen, Y., Lu, J., Han, H., Ma, L., et al. (2022) A 90-Day Prognostic Model Based on the Early Brain Injury Indicators after Aneurysmal Subarachnoid Hemorrhage: The TAPS Score. Translational Stroke Research, 14, 200-210.
https://doi.org/10.1007/s12975-022-01033-4
[42] Baker, C.J., Prestigiacomo, C.J. and Solomon, R.A. (1995) Short-Term Perioperative Anticonvulsant Prophylaxis for the Surgical Treatment of Low-Risk Patients with Intracranial Aneurysms. Neurosurgery, 37, 863-871.
https://doi.org/10.1097/00006123-199511000-00003
[43] Fabinyi, G.A. and Artiola-Fortuny, L. (1980) Epilepsy after Craniotomy for Intracranial Aneurysm. The Lancet, 315, 1299-1300.
https://doi.org/10.1016/s0140-6736(80)91751-1
[44] Lin, C., Dumont, A.S., Lieu, A., Yen, C., Hwang, S., Kwan, A., et al. (2003) Characterization of Perioperative Seizures and Epilepsy Following Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 99, 978-985.
https://doi.org/10.3171/jns.2003.99.6.0978
[45] Deutschman, C.S. and Haines, S.J. (1985) Anticonvulsant Prophylaxis in Neurological Surgery. Neurosurgery, 17, 510-517.
https://doi.org/10.1227/00006123-198509000-00021
[46] Butzkueven, H., Evans, A.H., Pitman, A., Leopold, C., Jolley, D.J., Kaye, A.H., et al. (2000) Onset Seizures Independently Predict Poor Outcome after Subarachnoid Hemorrhage. Neurology, 55, 1315-1320.
https://doi.org/10.1212/wnl.55.9.1315
[47] Rhoney, D.H., Tipps, L.B., Murry, K.R., Basham, M.C., Michael, D.B. and Coplin, W.M. (2000) Anticonvulsant Prophylaxis and Timing of Seizures after Aneurysmal Subarachnoid Hemorrhage. Neurology, 55, 258-265.
https://doi.org/10.1212/wnl.55.2.258
[48] Claassen, J., Albers, D., Schmidt, J.M., De Marchis, G.M., Pugin, D., Falo, C.M., et al. (2014) Nonconvulsive Seizures in Subarachnoid Hemorrhage Link Inflammation and Outcome. Annals of Neurology, 75, 771-781.
https://doi.org/10.1002/ana.24166
[49] Campos-Fernandez, D., Rodrigo-Gisbert, M., Abraira, L., Quintana Luque, M., Santafé, M., Lallana, S., et al. (2024) Predictive Model for Estimating the Risk of Epilepsy after Aneurysmal Subarachnoid Hemorrhage. Neurology, 102, e209221.
https://doi.org/10.1212/wnl.0000000000209221
[50] Jaja, B.N.R., Schweizer, T.A., Claassen, J., Le Roux, P., Mayer, S.A., Macdonald, R.L., et al. (2017) The SAFARI Score to Assess the Risk of Convulsive Seizure during Admission for Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 82, 887-893.
https://doi.org/10.1093/neuros/nyx334
[51] Hart, Y., Sneade, M., Birks, J., Rischmiller, J., Kerr, R. and Molyneux, A. (2011) Epilepsy after Subarachnoid Hemorrhage: The Frequency of Seizures after Clip Occlusion or Coil Embolization of a Ruptured Cerebral Aneurysm. Journal of Neurosurgery, 115, 1159-1168.
https://doi.org/10.3171/2011.6.jns101836
[52] Schmidt, J.M., Rincon, F., Fernandez, A., Resor, C., Kowalski, R.G., Claassen, J., et al. (2007) Cerebral Infarction Associated with Acute Subarachnoid Hemorrhage. Neurocritical Care, 7, 10-17.
https://doi.org/10.1007/s12028-007-0003-2
[53] Juvela, S., Kuhmonen, J. and Siironen, J. (2011) C-Reactive Protein as Predictor for Poor Outcome after Aneurysmal Subarachnoid Haemorrhage. Acta Neurochirurgica, 154, 397-404.
https://doi.org/10.1007/s00701-011-1243-7
[54] Ferguson, S. and Macdonald, R.L. (2007) Predictors of Cerebral Infarction in Patients with Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 60, 658-667.
https://doi.org/10.1227/01.neu.0000255396.23280.31
[55] Schmidt, J.M., Wartenberg, K.E., Fernandez, A., Claassen, J., Rincon, F., Ostapkovich, N.D., et al. (2008) Frequency and Clinical Impact of Asymptomatic Cerebral Infarction Due to Vasospasm after Subarachnoid Hemorrhage. Journal of Neurosurgery, 109, 1052-1059.
https://doi.org/10.3171/jns.2008.109.12.1052
[56] Juvela, S., Siironen, J., Varis, J., Poussa, K. and Porras, M. (2005) Risk Factors for Ischemic Lesions Following Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 102, 194-201.
https://doi.org/10.3171/jns.2005.102.2.0194
[57] Kivisaari, R.P., Salonen, O., Servo, A., et al. (2001) MR Imaging after Aneurysmal Subarachnoid Hemorrhage and Surgery: A Long-Term Follow-Up Study. American Journal of Neuroradiology, 22, 1143-1148.
[58] Rabinstein, A.A., Weigand, S., Atkinson, J.L.D. and Wijdicks, E.F.M. (2005) Patterns of Cerebral Infarction in Aneurysmal Subarachnoid Hemorrhage. Stroke, 36, 992-997.
https://doi.org/10.1161/01.str.0000163090.59350.5a
[59] Crowley, R.W., Medel, R., Dumont, A.S., Ilodigwe, D., Kassell, N.F., Mayer, S.A., et al. (2011) Angiographic Vasospasm Is Strongly Correlated with Cerebral Infarction after Subarachnoid Hemorrhage. Stroke, 42, 919-923.
https://doi.org/10.1161/strokeaha.110.597005
[60] Hwang, G., Jung, C., Sheen, S.H., Kim, S.H., Park, S.Q., Oh, C.W., et al. (2010) Procedural Predictors of Delayed Cerebral Infarction after Intra-Arterial Vasodilator Infusion for Vasospasm Following Aneurysmal Subarachnoid Hemorrhage. Acta Neurochirurgica, 152, 1503-1510.
https://doi.org/10.1007/s00701-010-0715-5
[61] Siironen, J., Porras, M., Varis, J., Poussa, K., Hernesniemi, J. and Juvela, S. (2007) Early Ischemic Lesion on Computed Tomography: Predictor of Poor Outcome among Survivors of Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 107, 1074-1079.
https://doi.org/10.3171/jns-07/12/1074
[62] Jabbarli, R., Reinhard, M., Roelz, R., Shah, M., Niesen, W., Kaier, K., et al. (2015) Early Identification of Individuals at High Risk for Cerebral Infarction after Aneurysmal Subarachnoid Hemorrhage: The Behavior Score. Journal of Cerebral Blood Flow & Metabolism, 35, 1587-1592.
https://doi.org/10.1038/jcbfm.2015.81
[63] Rowland, M.J., Hadjipavlou, G., Kelly, M., Westbrook, J. and Pattinson, K.T.S. (2012) Delayed Cerebral Ischaemia after Subarachnoid Haemorrhage: Looking Beyond Vasospasm. British Journal of Anaesthesia, 109, 315-329.
https://doi.org/10.1093/bja/aes264