|
[1]
|
Akbuğa, K., Yayla, K.G. and Yayla, Ç. (2022) Evaluation of the Relationship between Aspartate Aminotransferase/Alanine Aminotransferase Ratio and Coronary Slow-Flow Phenomenon. Biomarkers in Medicine, 16, 783-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
田蕊萍, 李伟, 王琰, 等. 尿白蛋白/肌酐比值与缺血性脑卒中关系的研究进展[J]. 神经疾病与精神卫生, 2020, 20(6): 444-449.
|
|
[3]
|
Yang, Z., Fu, Y., Wei, X., Fu, B., Huang, J., Zhang, G., et al. (2023) Optimal Threshold of Urinary Albumin-to-Creatinine Ratio (UACR) for Predicting Long-Term Cardiovascular and Noncardiovascular Mortality. International Urology and Nephrology, 55, 1811-1819. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Oshima, M., Neuen, B.L., Li, J., Perkovic, V., Charytan, D.M., de Zeeuw, D., et al. (2020) Early Change in Albuminuria with Canagliflozin Predicts Kidney and Cardiovascular Outcomes: A Post Hoc Analysis from the CREDENCE Trial. Journal of the American Society of Nephrology, 31, 2925-2936. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wang, J., Wang, Y., Li, Y., Hu, Y., Jin, L., Wang, W., et al. (2022) High Normal Urinary Albumin-Creatinine Ratio Is Associated with Hypertension, Type 2 Diabetes Mellitus, HTN with T2DM, Dyslipidemia, and Cardiovascular Diseases in the Chinese Population: A Report from the REACTION Study. Frontiers in Endocrinology, 13, Article 864562. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
De Ritis, F., Coltorti, M. and Giusti, G. (1957) An Enzymic Test for the Diagnosis of Viral Hepatitis: The Transaminase Serum Activities. Clinica Chimica Acta, 2, 70-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Botros, M. and Sikaris, K.A. (2013) The de Ritis Ratio: The Test of Time. Clinical Biochemist Reviews, 34, 117-130.
|
|
[8]
|
Ferrannini, G., Rosenthal, N., Hansen, M.K. and Ferrannini, E. (2022) Liver Function Markers Predict Cardiovascular and Renal Outcomes in the CANVAS Program. Cardiovascular Diabetology, 21, Article No. 127. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, W., Wang, W., Zhou, L., Zhou, J., He, L., Li, J., et al. (2022) Elevated AST/ALT Ratio Is Associated with All‐cause Mortality and Cancer Incident. Journal of Clinical Laboratory Analysis, 36, e24356. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ferrè, S., Storfer-Isser, A., Kinderknecht, K., Montgomery, E., Godwin, M., Andrews, A., et al. (2023) Fulfillment and Validity of the Kidney Health Evaluation Measure for People with Diabetes. Mayo Clinic Proceedings: Innovations, Quality & Outcomes, 7, 382-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tuttle, K.R., Brosius, F.C., Cavender, M.A., Fioretto, P., Fowler, K.J., Heerspink, H.J.L., et al. (2020) SGLT2 Inhibition for CKD and Cardiovascular Disease in Type 2 Diabetes: Report of a Scientific Workshop Sponsored by the National Kidney Foundation. Diabetes, 70, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
崔健, 夏青, 周茜宁. 尿白蛋白/肌酐比值与2型糖尿病慢性并发症关系的研究进展[J]. 医学综述, 2023, 29(24): 5765-5768.
|
|
[13]
|
Zou, Y., Zhao, L., Zhang, J., Wang, Y., Wu, Y., Ren, H., et al. (2022) Metabolic-Associated Fatty Liver Disease Increases the Risk of End-Stage Renal Disease in Patients with Biopsy-Confirmed Diabetic Nephropathy: A Propensity-Matched Cohort Study. Acta Diabetologica, 60, 225-233. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cao, Y., Deng, Y., Wang, J., Zhao, H., Zhang, J. and Xie, W. (2021) The Association between NAFLD and Risk of Chronic Kidney Disease: A Cross-Sectional Study. Therapeutic Advances in Chronic Disease, 12, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Oye-Somefun, A., Kuk, J.L. and Ardern, C.I. (2021) Associations between Elevated Kidney and Liver Biomarker Ratios, Metabolic Syndrome and All-Cause and Coronary Heart Disease (CHD) Mortality: Analysis of the U.S. National Health and Nutrition Examination Survey (NHANES). BMC Cardiovascular Disorders, 21, Article No. 352. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhao, L., Cheng, J., Chen, Y., Li, Q., Han, B., Chen, Y., et al. (2017) Serum Alanine Aminotransferase/Aspartate Aminotransferase Ratio Is One of the Best Markers of Insulin Resistance in the Chinese Population. Nutrition & Metabolism, 14, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Simental-Mendía, L.E., Rodríguez-Morán, M., Gómez-Díaz, R., Wacher, N.H., Rodríguez-Hernández, H. and Guerrero-Romero, F. (2017) Insulin Resistance Is Associated with Elevated Transaminases and Low Aspartate Aminotransferase/Alanine Aminotransferase Ratio in Young Adults with Normal Weight. European Journal of Gastroenterology & Hepatology, 29, 435-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yilmaz, Y., Alahdab, Y.O., Ozdogan, O. and Dolar, E. (2009) Non-Alcoholic Fatty Liver Disease and Microalbuminuria in Non-Diabetic Patients: Role of Insulin Resistance. Internal Medicine Journal, 39, 709-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kobayashi, H., Tokudome, G., Hara, Y., Sugano, N., Endo, S., Suetsugu, Y., et al. (2009) Insulin Resistance Is a Risk Factor for the Progression of Chronic Kidney Disease. Clinical Nephrology, 71, 643-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Moh, M.C., Pek, S.L.T., Sze, K.C.P., Low, S., Subramaniam, T., Ang, K., et al. (2023) Associations of Non-Invasive Indices of Liver Steatosis and Fibrosis with Progressive Kidney Impairment in Adults with Type 2 Diabetes. Acta Diabetologica, 60, 827-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xu, J., Shi, X. and Pan, Y. (2021) The Association of Aspartate Aminotransferase/Alanine Aminotransferase Ratio with Diabetic Nephropathy in Patients with Type 2 Diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3831-3837. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wynn, T.A. and Ramalingam, T.R. (2012) Mechanisms of Fibrosis: Therapeutic Translation for Fibrotic Disease. Nature Medicine, 18, 1028-1040. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ciardullo, S., Ballabeni, C., Trevisan, R. and Perseghin, G. (2021) Liver Fibrosis Assessed by Transient Elastography Is Independently Associated with Albuminuria in the General United States Population. Digestive and Liver Disease, 53, 866-872. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, Y., Chai, S. and Zhang, X. (2023) Effect of MAFLD on Albuminuria and the Interaction between MAFLD and Diabetes on Albuminuria. Journal of Diabetes, 16, e13501. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Choi, J.W., Lee, C.H. and Park, J. (2019) Comparison of Laboratory Indices of Non-Alcoholic Fatty Liver Disease for the Detection of Incipient Kidney Dysfunction. PeerJ, 7, e6524. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ciardullo, S., Muraca, E., Perra, S., Bianconi, E., Zerbini, F., Oltolini, A., et al. (2020) Screening for Non-Alcoholic Fatty Liver Disease in Type 2 Diabetes Using Non-Invasive Scores and Association with Diabetic Complications. BMJ Open Diabetes Research & Care, 8, e000904. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, C., Cui, Y., Li, C., Zhang, Y., Xu, S., Li, X., et al. (2013) Nrf2 Deletion Causes “Benign” Simple Steatosis to Develop into Nonalcoholic Steatohepatitis in Mice Fed a High-Fat Diet. Lipids in Health and Disease, 12, Article No. 165. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ochiai, H., Shirasawa, T., Yoshimoto, T., Nagahama, S., Watanabe, A., Sakamoto, K., et al. (2020) Elevated Alanine Aminotransferase and Low Aspartate Aminotransferase/Alanine Aminotransferase Ratio Are Associated with Chronic Kidney Disease among Middle-Aged Women: A Cross-Sectional Study. BMC Nephrology, 21, Article No. 471. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Tang, W., Hung, W., Wang, C., Wu, C., Hsuan, C., Yu, T., et al. (2022) The Lower Limit of Reference of Urinary Albumin/Creatinine Ratio and the Risk of Chronic Kidney Disease Progression in Patients with Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 13, Article 858267. [Google Scholar] [CrossRef] [PubMed]
|