[1]
|
赵心臣. 唾液酸[J]. 口腔疾病防治, 1998(4): 63-64.
|
[2]
|
Blix, F.G., Gottschalk, A. and Klenk, E. (1957) Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature, 179, 1088-1088. https://doi.org/10.1038/1791088b0
|
[3]
|
Ni, L., Sun, M., Yu, H., Chokhawala, H., Chen, X. and Fisher, A.J. (2006) Cytidine 5’-Monophosphate (CMP)-Induced Structural Changes in a Multifunctional Sialyltransferase from Pasteurella multocida. Biochemistry, 45, 2139-2148. https://doi.org/10.1021/bi0524013
|
[4]
|
Schauer, R. (1982) Chemistry, Metabolism, and Biological Functions of Sialic Acids. Advances in Carbohydrate Chemistry and Biochemistry, 40, 131-234. https://doi.org/10.1016/s0065-2318(08)60109-2
|
[5]
|
Rillahan, C.D., Antonopoulos, A., Lefort, C.T., Sonon, R., Azadi, P., Ley, K., et al. (2012) Global Metabolic Inhibitors of Sialyl-and Fucosyltransferases Remodel the Glycome. Nature Chemical Biology, 8, 661-668. https://doi.org/10.1038/nchembio.999
|
[6]
|
Yamamoto, T., Ichikawa, M. and Takakura, Y. (2008) Conserved Amino Acid Sequences in the Bacterial Sialyltransferases Belonging to Glycosyltransferase Family 80. Biochemical and Biophysical Research Communications, 365, 340-343. https://doi.org/10.1016/j.bbrc.2007.10.201
|
[7]
|
Vijay, I.K. and Troy, F.A. (1975) Properties of Membrane-Associated Sialyltransferase of Escherichia Coli. Journal of Biological Chemistry, 250, 164-170. https://doi.org/10.1016/s0021-9258(19)41995-9
|
[8]
|
Takakura, Y., Tsukamoto, H. and Yamamoto, T. (2007) Molecular Cloning, Expression and Properties of an α/β-Galactoside α2,3-Sialyltransferase from Vibrio sp. JT-FAJ-16. Journal of Biochemistry, 142, 403-412. https://doi.org/10.1093/jb/mvm147
|
[9]
|
Cheng, J., Yu, H., Lau, K., Huang, S., Chokhawala, H.A., Li, Y., et al. (2008) Multifunctionality of Campylobacter jejuni Sialyltransferase CstII: Characterization of GD3/GT3 Oligosaccharide Synthase, GD3 Oligosaccharide Sialidase, and Trans-Sialidase Activities. Glycobiology, 18, 686-697. https://doi.org/10.1093/glycob/cwn047
|
[10]
|
Breton, C., Šnajdrová, L., Jeanneau, C., Koča, J. and Imberty, A. (2005) Structures and Mechanisms of Glycosyltransferases. Glycobiology, 16, 29R-37R. https://doi.org/10.1093/glycob/cwj016
|
[11]
|
Audry, M., Jeanneau, C., Imberty, A., Harduin-Lepers, A., Delannoy, P. and Breton, C. (2010) Current Trends in the Structure-Activity Relationships of Sialyltransferases. Glycobiology, 21, 716-726. https://doi.org/10.1093/glycob/cwq189
|
[12]
|
Kakuta, Y., Okino, N., Kajiwara, H., Ichikawa, M., Takakura, Y., Ito, M., et al. (2007) Crystal Structure of Vibrionaceae Photobacterium sp. JT-ISH-224 2,6-Sialyltransferase in a Ternary Complex with Donor Product CMP and Acceptor Substrate Lactose: Catalytic Mechanism and Substrate Recognition. Glycobiology, 18, 66-73. https://doi.org/10.1093/glycob/cwm119
|
[13]
|
Lairson, L.L., Henrissat, B., Davies, G.J. and Withers, S.G. (2008) Glycosyltransferases: Structures, Functions, and Mechanisms. Annual Review of Biochemistry, 77, 521-555. https://doi.org/10.1146/annurev.biochem.76.061005.092322
|
[14]
|
Krissinel, E. and Henrick, K. (2007) Inference of Macromolecular Assemblies from Crystalline State. Journal of Molecular Biology, 372, 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
|
[15]
|
Qu, C., Liljas, L., Opalka, N., Brugidou, C., Yeager, M., Beachy, R.N., et al. (2000) 3D Domain Swapping Modulates the Stability of Members of an Icosahedral Virus Group. Structure, 8, 1095-1103. https://doi.org/10.1016/s0969-2126(00)00508-6
|
[16]
|
Chiu, C.P.C., Watts, A.G., Lairson, L.L., Gilbert, M., Lim, D., Wakarchuk, W.W., et al. (2004) Structural Analysis of the Sialyltransferase CstII from Campylobacter jejuni in Complex with a Substrate Analog. Nature Structural & Molecular Biology, 11, 163-170. https://doi.org/10.1038/nsmb720
|
[17]
|
Breton, C., Heissigerová, H., Jeanneau, C., Moravcová, J. and Imberty, A. (2002) Comparative Aspects of Glycosyltransferases. Biochemical Society Symposia, 69, 23-32. https://doi.org/10.1042/bss0690023
|
[18]
|
Mulichak, A.M., Losey, H.C., Walsh, C.T. and Garavito, R.M. (2001) Structure of the UDP-Glucosyltransferase GtfB That Modifies the Heptapeptide Aglycone in the Biosynthesis of Vancomycin Group Antibiotics. Structure, 9, 547-557. https://doi.org/10.1016/s0969-2126(01)00616-5
|
[19]
|
Audry, M., Jeanneau, C., Imberty, A., Harduin-Lepers, A., Delannoy, P. and Breton, C. (2010) Current Trends in the Structure-Activity Relationships of Sialyltransferases. Glycobiology, 21, 716-726. https://doi.org/10.1093/glycob/cwq189
|
[20]
|
Cheng, J., Huang, S., Yu, H., Li, Y., Lau, K. and Chen, X. (2009) Trans-Sialidase Activity of Photobacterium damsela α2,6-Sialyltransferase and Its Application in the Synthesis of Sialosides. Glycobiology, 20, 260-268. https://doi.org/10.1093/glycob/cwp172
|
[21]
|
Willis, L.M., Gilbert, M., Karwaski, M.-F., Blanchard, M.-C. and Wakarchuk, W.W. (2007) Characterization of the α-2,8-Polysialyltransferase from Neisseria meningitidis with Synthetic Acceptors, and the Development of a Self-Priming Polysialyltransferase Fusion Enzyme. Glycobiology, 18, 177-186. https://doi.org/10.1093/glycob/cwm126
|
[22]
|
Lairson, L.L. and Withers, S.G. (2004) Mechanistic Analogies Amongst Carbohydrate Modifying Enzymes. Chemical Communications, 2004, 2243-2248. https://doi.org/10.1039/b406490a
|
[23]
|
Kakuta, Y., Okino, N., Kajiwara, H., Ichikawa, M., Takakura, Y., Ito, M., et al. (2007) Crystal Structure of Vibrionaceae photobacterium sp. JT-ISH-224 α2,6-Sialyltransferase in a Ternary Complex with Donor Product CMP and Acceptor Substrate Lactose: Catalytic Mechanism and Substrate Recognition. Glycobiology, 18, 66-73. https://doi.org/10.1093/glycob/cwm119
|
[24]
|
Pedersen, L.C., Tsuchida, K., Kitagawa, H., Sugahara, K., Darden, T.A. and Negishi, M. (2000) Heparan/Chondroitin Sulfate Biosynthesis: Structure and Mechanism of Human Glucuronyltransferase I. Journal of Biological Chemistry, 275, 34580-34585. https://doi.org/10.1074/jbc.m007399200
|
[25]
|
Choi, Y.H., Kim, J.H., Park, J.H., Lee, N., Kim, D., Jang, K., et al. (2013) Protein Engineering of α2,3/2,6-Sialyltransferase to Improve the Yield and Productivity of in vitro Sialyllactose Synthesis. Glycobiology, 24, 159-169. https://doi.org/10.1093/glycob/cwt092
|
[26]
|
Schauer, R. (2009) Sialic Acids as Regulators of Molecular and Cellular Interactions. Current Opinion in Structural Biology, 19, 507-514. https://doi.org/10.1016/j.sbi.2009.06.003
|
[27]
|
Varki, A. and Gagneux, P. (2012) Multifarious Roles of Sialic Acids in Immunity. Annals of the New York Academy of Sciences, 1253, 16-36. https://doi.org/10.1111/j.1749-6632.2012.06517.x
|
[28]
|
Varki, A. (2008) Sialic Acids in Human Health and Disease. Trends in Molecular Medicine, 14, 351-360. https://doi.org/10.1016/j.molmed.2008.06.002
|
[29]
|
Crespo, H.J., Lau, J.T.Y. and Videira, P.A. (2013) Dendritic Cells: A Spot on Sialic Acid. Frontiers in Immunology, 4, Article 491. https://doi.org/10.3389/fimmu.2013.00491
|
[30]
|
Swindall, A.F. and Bellis, S.L. (2011) Sialylation of the Fas Death Receptor by ST6Gal-I Provides Protection against Fas-Mediated Apoptosis in Colon Carcinoma Cells. Journal of Biological Chemistry, 286, 22982-22990. https://doi.org/10.1074/jbc.m110.211375
|
[31]
|
Cui, H., Lin, Y., Yue, L., Zhao, X. and Liu, J. (2011) Differential Expression of the α2,3-Sialic Acid Residues in Breast Cancer Is Associated with Metastatic Potential. Oncology Reports, 25, 1365-1371. https://doi.org/10.3892/or.2011.1192
|
[32]
|
Lee, M., Lee, H., Bae, S. and Lee, Y. (2008) Protein Sialylation by Sialyltransferase Involves Radiation Resistance. Molecular Cancer Research, 6, 1316-1325. https://doi.org/10.1158/1541-7786.mcr-07-2209
|
[33]
|
Park, J., Yi, J.Y., Jin, Y.B., Lee, Y., Lee, J., Lee, Y., et al. (2012) Sialylation of Epidermal Growth Factor Receptor Regulates Receptor Activity and Chemosensitivity to Gefitinib in Colon Cancer Cells. Biochemical Pharmacology, 83, 849-857. https://doi.org/10.1016/j.bcp.2012.01.007
|
[34]
|
Sakuma, K., Aoki, M. and Kannagi, R. (2012) Transcription Factors c-Myc and CDX2 Mediate E-Selectin Ligand Expression in Colon Cancer Cells Undergoing EGF/bFGF-Induced Epithelial-Mesenchymal Transition. Proceedings of the National Academy of Sciences, 109, 7776-7781. https://doi.org/10.1073/pnas.1111135109
|
[35]
|
Maupin, K.A., Sinha, A., Eugster, E., Miller, J., Ross, J., Paulino, V., et al. (2010) Glycogene Expression Alterations Associated with Pancreatic Cancer Epithelial-Mesenchymal Transition in Complementary Model Systems. PLOS ONE, 5, e13002. https://doi.org/10.1371/journal.pone.0013002
|
[36]
|
Dalziel, M., Dall’Olio, F., Mungul, A., Piller, V. and Piller, F. (2004) Ras Oncogene Induces β‐Galactoside α2,6‐Sialyltransferase (ST6Gal I) via a RalGEF‐Mediated Signal to Its Housekeeping Promoter. European Journal of Biochemistry, 271, 3623-3634. https://doi.org/10.1111/j.1432-1033.2004.04284.x
|
[37]
|
Wang, X., Zhang, L. and Ye, X. (2002) Recent Development in the Design of Sialyltransferase Inhibitors. Medicinal Research Reviews, 23, 32-47. https://doi.org/10.1002/med.10030
|
[38]
|
Jung, K., Schwörer, R. and Schmidt, R.R. (2003) Sialyltransferase Inhibitors. Trends in Glycoscience and Glycotechnology, 15, 275-289. https://doi.org/10.4052/tigg.15.275
|
[39]
|
Wang, L., Liu, Y., Wu, L. and Sun, X. (2016) Sialyltransferase Inhibition and Recent Advances. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864, 143-153. https://doi.org/10.1016/j.bbapap.2015.07.007
|