[1]
|
Norkin, M. and Wingard, J.R. (2017) Recent Advances in Hematopoietic Stem Cell Transplantation. F1000Research, 6, 870. https://doi.org/10.12688/f1000research.11233.1
|
[2]
|
Jagasia, M., Arora, M., Flowers, M.E.D., Chao, N.J., McCarthy, P.L., Cutler, C.S., et al. (2012) Risk Factors for Acute GVHD and Survival after Hematopoietic Cell Transplantation. Blood, 119, 296-307. https://doi.org/10.1182/blood-2011-06-364265
|
[3]
|
Apostolova, P. (2024) GVHD: Bile Duct Stem Cells under Attack. Blood, 144, 805-807. https://doi.org/10.1182/blood.2024025790
|
[4]
|
Zeiser, R. and Blazar, B.R. (2017) Acute Graft-Versus-Host Disease—Biologic Process, Prevention, and Therapy. New England Journal of Medicine, 377, 2167-2179. https://doi.org/10.1056/nejmra1609337
|
[5]
|
Chow, E.J., Cushing-Haugen, K.L., Cheng, G., Boeckh, M., Khera, N., Lee, S.J., et al. (2017) Morbidity and Mortality Differences between Hematopoietic Cell Transplantation Survivors and Other Cancer Survivors. Journal of Clinical Oncology, 35, 306-313. https://doi.org/10.1200/jco.2016.68.8457
|
[6]
|
Bos, S., Beeckmans, H., Vanstapel, A., Sacreas, A., Geudens, V., Willems, L., et al. (2022) Pulmonary Graft-Versus-Host Disease and Chronic Lung Allograft Dysfunction: Two Sides of the Same Coin? The Lancet Respiratory Medicine, 10, 796-810. https://doi.org/10.1016/s2213-2600(22)00001-7
|
[7]
|
Barnes, D.W.H., Corp, M.J., Loutit, J.F. and Neal, F.E. (1956) Treatment of Murine Leukaemia with X Rays and Homologous Bone Marrow: Preliminary Communication. BMJ, 2, 626-627. https://doi.org/10.1136/bmj.2.4993.626
|
[8]
|
Billingham, R.E. (1966) The Biology of Graft-versus-Host Reactions. The Harvey Lectues, 62, 21-78.
|
[9]
|
Couriel, D., Caldera, H., Champlin, R. and Komanduri, K. (2004) Acute Graft-versus-Host Disease: Pathophysiology, Clinical Manifestations, and Management. Cancer, 101, 1936-1946. https://doi.org/10.1002/cncr.20613
|
[10]
|
Brinkman, R.R., Gasparetto, M., Lee, S.J., Ribickas, A.J., Perkins, J., Janssen, W., et al. (2007) High-Content Flow Cytometry and Temporal Data Analysis for Defining a Cellular Signature of Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 13, 691-700. https://doi.org/10.1016/j.bbmt.2007.02.002
|
[11]
|
Alho, A.C., Kim, H.T., Chammas, M.J., Reynolds, C.G., Matos, T.R., Forcade, E., et al. (2016) Unbalanced Recovery of Regulatory and Effector T Cells after Allogeneic Stem Cell Transplantation Contributes to Chronic GVHD. Blood, 127, 646-657. https://doi.org/10.1182/blood-2015-10-672345
|
[12]
|
Sakaguchi, S. (2004) Naturally Arising CD4+ Regulatory t Cells for Immunologic Self-Tolerance and Negative Control of Immune Responses. Annual Review of Immunology, 22, 531-562.
|
[13]
|
Matsuoka, K., Kim, H.T., McDonough, S., Bascug, G., Warshauer, B., Koreth, J., et al. (2010) Altered Regulatory T Cell Homeostasis in Patients with CD4+ Lymphopenia Following Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Clinical Investigation, 120, 1479-1493. https://doi.org/10.1172/jci41072
|
[14]
|
Miura, Y., Thoburn, C.J., Bright, E.C., Phelps, M.L., Shin, T., Matsui, E.C., et al. (2004) Association of Foxp3 Regulatory Gene Expression with Graft-Versus-Host Disease. Blood, 104, 2187-2193. https://doi.org/10.1182/blood-2004-03-1040
|
[15]
|
Edinger, M., Hoffmann, P., Ermann, J., Drago, K., Fathman, C.G., Strober, S., et al. (2003) CD4+CD25+ Regulatory T Cells Preserve Graft-versus-Tumor Activity While Inhibiting Graft-Versus-Host Disease after Bone Marrow Transplantation. Nature Medicine, 9, 1144-1150. https://doi.org/10.1038/nm915
|
[16]
|
Jones, S.C., Murphy, G.F. and Korngold, R. (2003) Post-Hematopoietic Cell Transplantation Control of Graft-Versus-Host Disease by Donor CD4+25+ T Cells to Allow an Effective Graft-versus-Leukemia Response. Biology of Blood and Marrow Transplantation, 9, 243-256. https://doi.org/10.1053/bbmt.2003.50027
|
[17]
|
Pacini, C.P., Soares, M.V.D. and Lacerda, J.F. (2024) The Impact of Regulatory T Cells on the Graft-versus-Leukemia Effect. Frontiers in Immunology, 15, Article 1339318. https://doi.org/10.3389/fimmu.2024.1339318
|
[18]
|
Zhang, P., Tey, S., Koyama, M., Kuns, R.D., Olver, S.D., Lineburg, K.E., et al. (2013) Induced Regulatory T Cells Promote Tolerance When Stabilized by Rapamycin and IL-2 in Vivo. The Journal of Immunology, 191, 5291-5303. https://doi.org/10.4049/jimmunol.1301181
|
[19]
|
Martelli, M.F., Di Ianni, M., Ruggeri, L., Falzetti, F., Carotti, A., Terenzi, A., et al. (2014) HLA-Haploidentical Transplantation with Regulatory and Conventional T-Cell Adoptive Immunotherapy Prevents Acute Leukemia Relapse. Blood, 124, 638-644. https://doi.org/10.1182/blood-2014-03-564401
|
[20]
|
Bolivar-Wagers, S., Loschi, M.L., Jin, S., Thangavelu, G., Larson, J.H., McDonald-Hyman, C.S., et al. (2022) Murine CAR19 Tregs Suppress Acute Graft-versus-Host Disease and Maintain Graft-versus-Tumor Responses. JCI Insight, 7, e160674. https://doi.org/10.1172/jci.insight.160674
|
[21]
|
Jarosch, S., Köhlen, J., Ghimire, S., Orberg, E.T., Hammel, M., Gaag, D., et al. (2023) Multimodal Immune Cell Phenotyping in GI Biopsies Reveals Microbiome-Related T Cell Modulations in Human GvHD. Cell Reports Medicine, 4, Article ID: 101125. https://doi.org/10.1016/j.xcrm.2023.101125
|
[22]
|
Hayase, E. and Jenq, R.R. (2023) New Insights about Immune Populations in Gastrointestinal GvHD. Cell Reports Medicine, 4, Article ID: 101126. https://doi.org/10.1016/j.xcrm.2023.101126
|
[23]
|
Czerw, T., Labopin, M., Schmid, C., Cornelissen, J.J., Chevallier, P., Blaise, D., et al. (2016) High CD3+ and CD34+ Peripheral Blood Stem Cell Grafts Content Is Associated with Increased Risk of Graft-versus-Host Disease without Beneficial Effect on Disease Control after Reduced-Intensity Conditioning Allogeneic Transplantation from Matched Unrelated Donors for Acute Myeloid Leukemia—An Analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Oncotarget, 7, 27255-27266. https://doi.org/10.18632/oncotarget.8463
|
[24]
|
Jiang, P., Yu, F., Xu, X., Cai, Y., Yang, J., Tong, Y., et al. (2023) Impact of Lymphocyte Subsets of Grafts on the Outcome of Haploidentical Peripheral Blood Stem Cell Transplantation. Cell Transplantation, 32, 63752396. https://doi.org/10.1177/09636897231157054
|
[25]
|
Davison, G.M., Opie, J.J., Davids, S.F.G., Mohammed, R. and Novitzky, N. (2024) Early Recovery of Natural Killer Cells Post T-Cell Depleted Allogeneic Stem Cell Transplantation Using Alemtuzumab “in the Bag”. Transplant Immunology, 84, Article ID: 102045. https://doi.org/10.1016/j.trim.2024.102045
|
[26]
|
Roex, M.C.J., Wijnands, C., Veld, S.A.J., van Egmond, E., Bogers, L., Zwaginga, J.J., et al. (2021) Effect of Alemtuzumab-Based T-Cell Depletion on Graft Compositional Change in Vitro and Immune Reconstitution Early after Allogeneic Stem Cell Transplantation. Cytotherapy, 23, 46-56. https://doi.org/10.1016/j.jcyt.2020.08.003
|
[27]
|
Russo, A., Oliveira, G., Berglund, S., Greco, R., Gambacorta, V., Cieri, N., et al. (2018) NK Cell Recovery after Haploidentical HSCT with Posttransplant Cyclophosphamide: Dynamics and Clinical Implications. Blood, 131, 247-262. https://doi.org/10.1182/blood-2017-05-780668
|
[28]
|
Choi, I., Yoon, S.R., Park, S., Kim, H., Jung, S., Jang, Y.J., et al. (2014) Donor-derived Natural Killer Cells Infused after Human Leukocyte Antigen-Haploidentical Hematopoietic Cell Transplantation: A Dose-Escalation Study. Biology of Blood and Marrow Transplantation, 20, 696-704. https://doi.org/10.1016/j.bbmt.2014.01.031
|
[29]
|
Zhou, Z., Liu, X., Zhang, X., Wen, S., Hua, H., Wang, Z., et al. (2023) Impact of Early Natural Killer Cell Reconstitution on the Outcomes of T Cell-Replete Allogeneic Hematopoietic Stem Cell Transplantation. Journal of Inflammation Research, 16, 2993-3008. https://doi.org/10.2147/jir.s416708
|