[1]
|
Kaplum, V., Ramos, A.C., Consolaro, M.E.L., Fernandez, M.A., Ueda-Nakamura, T., Dias-Filho, B.P., et al. (2018) Proanthocyanidin Polymer-Rich Fraction of Stryphnodendron adstringens Promotes in Vitro and in Vivo Cancer Cell Death via Oxidative Stress. Frontiers in Pharmacology, 9, Article 694. https://doi.org/10.3389/fphar.2018.00694
|
[2]
|
Morimitsu, Y., Nakagawa, Y., Hayashi, K., Fujii, H., Kumagai, T., Nakamura, Y., et al. (2002) A Sulforaphane Analogue That Potently Activates the Nrf2-Dependent Detoxification Pathway. Journal of Biological Chemistry, 277, 3456-3463. https://doi.org/10.1074/jbc.m110244200
|
[3]
|
Kitamura, H. and Motohashi, H. (2018) NRF2 Addiction in Cancer Cells. Cancer Science, 109, 900-911. https://doi.org/10.1111/cas.13537
|
[4]
|
Pandey, P., Singh, A.K., Singh, M., Tewari, M., Shukla, H.S. and Gambhir, I.S. (2017) The See-Saw of Keap1-Nrf2 Pathway in Cancer. Critical Reviews in Oncology/Hematology, 116, 89-98. https://doi.org/10.1016/j.critrevonc.2017.02.006
|
[5]
|
Tonelli, C., Chio, I.I.C. and Tuveson, D.A. (2018) Transcriptional Regulation by Nrf2. Antioxidants & Redox Signaling, 29, 1727-1745. https://doi.org/10.1089/ars.2017.7342
|
[6]
|
Lu, M., Ji, J., Jiang, Z. and You, Q. (2016) The Keap1-Nrf2-ARE Pathway as a Potential Preventive and Therapeutic Target: An Update. Medicinal Research Reviews, 36, 924-963. https://doi.org/10.1002/med.21396
|
[7]
|
吴晓彤, 王玲,韩 丽英. Nrf2在宫颈癌发生发展中的作用研究进展[J]. 中国妇幼保健, 2017, 32(12): 2805-2808.
|
[8]
|
Delgado-Buenrostro, N.L., Medina-Reyes, E.I., Lastres-Becker, I., Freyre-Fonseca, V., Ji, Z., Hernández-Pando, R., et al. (2014) Nrf2 Protects the Lung against Inflammation Induced by Titanium Dioxide Nanoparticles: A Positive Regulator Role of Nrf2 on Cytokine Release. Environmental Toxicology, 30, 782-792. https://doi.org/10.1002/tox.21957
|
[9]
|
Menegon, S., Columbano, A. and Giordano, S. (2016) The Dual Roles of NRF2 in Cancer. Trends in Molecular Medicine, 22, 578-593. https://doi.org/10.1016/j.molmed.2016.05.002
|
[10]
|
Ma, X., Luo, Q., Zhu, H., Liu, X., Dong, Z., Zhang, K., et al. (2018) Aldehyde Dehydrogenase 2 Activation Ameliorates CCl4-Induced Chronic Liver Fibrosis in Mice by Up-Regulating Nrf2/Ho-1 Antioxidant Pathway. Journal of Cellular and Molecular Medicine, 22, 3965-3978. https://doi.org/10.1111/jcmm.13677
|
[11]
|
Taguchi, K., Takaku, M., Egner, P.A., Morita, M., Kaneko, T., Mashimo, T., et al. (2016) Generation of a New Model Rat: Nrf2 Knockout Rats Are Sensitive to Aflatoxin B1 Toxicity. Toxicological Sciences, 152, 40-52. https://doi.org/10.1093/toxsci/kfw065
|
[12]
|
Suzuki, T., Shibata, T., Takaya, K., Shiraishi, K., Kohno, T., Kunitoh, H., et al. (2013) Regulatory Nexus of Synthesis and Degradation Deciphers Cellular Nrf2 Expression Levels. Molecular and Cellular Biology, 33, 2402-2412. https://doi.org/10.1128/mcb.00065-13
|
[13]
|
Cho, H., Jedlicka, A.E., Reddy, S.P.M., Kensler, T.W., Yamamoto, M., Zhang, L., et al. (2002) Role of NRF2 in Protection against Hyperoxic Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 26, 175-182. https://doi.org/10.1165/ajrcmb.26.2.4501
|
[14]
|
Xu, T., Yang, Y., Chen, Z., Wang, J., Wang, X., Zheng, Y., et al. (2023) TNFAIP2 Confers Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma via KEAP1/NRF2 Signaling. Journal of Experimental & Clinical Cancer Research, 42, Article No. 190. https://doi.org/10.1186/s13046-023-02775-1
|
[15]
|
Feng, L., Zhao, K., Sun, L., Yin, X., Zhang, J., Liu, C., et al. (2021) SLC7A11 Regulated by NRF2 Modulates Esophageal Squamous Cell Carcinoma Radiosensitivity by Inhibiting Ferroptosis. Journal of Translational Medicine, 19, Article No. 367. https://doi.org/10.1186/s12967-021-03042-7
|
[16]
|
Mukhopadhyay, S., Goswami, D., Adiseshaiah, P.P., Burgan, W., Yi, M., Guerin, T.M., et al. (2020) Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers. Cancer Research, 80, 1630-1643. https://doi.org/10.1158/0008-5472.can-19-1363
|
[17]
|
Hirose, W., Oshikiri, H., Taguchi, K. and Yamamoto, M. (2022) The KEAP1-NRF2 System and Esophageal Cancer. Cancers, 14, Article 4702. https://doi.org/10.3390/cancers14194702
|
[18]
|
Liu, H., Xu, X., Wu, R., Bi, L., Zhang, C., Chen, H., et al. (2021) Antioral Squamous Cell Carcinoma Effects of Carvacrol via Inhibiting Inflammation, Proliferation, and Migration Related to Nrf2/Keap1 Pathway. BioMed Research International, 2021, Article ID: 6616547. https://doi.org/10.1155/2021/6616547
|
[19]
|
Syu, J., Chi, J. and Kung, H. (2016) Nrf2 Is the Key to Chemotherapy Resistance in MCF7 Breast Cancer Cells under Hypoxia. Oncotarget, 7, 14659-14672. https://doi.org/10.18632/oncotarget.7406
|
[20]
|
Saed, G.M., Diamond, M.P. and Fletcher, N.M. (2017) Updates of the Role of Oxidative Stress in the Pathogenesis of Ovarian Cancer. Gynecologic Oncology, 145, 595-602. https://doi.org/10.1016/j.ygyno.2017.02.033
|
[21]
|
Bellezza, I., Giambanco, I., Minelli, A. and Donato, R. (2018) Nrf2-Keap1 Signaling in Oxidative and Reductive Stress. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1865, 721-733. https://doi.org/10.1016/j.bbamcr.2018.02.010
|
[22]
|
Rojo de la Vega, M., Chapman, E. and Zhang, D.D. (2018) NRF2 and the Hallmarks of Cancer. Cancer Cell, 34, 21-43. https://doi.org/10.1016/j.ccell.2018.03.022
|
[23]
|
Sajadimajd, S. and Khazaei, M. (2018) Oxidative Stress and Cancer: The Role of Nrf2. Current Cancer Drug Targets, 18, 538-557. https://doi.org/10.2174/1568009617666171002144228
|
[24]
|
Gong, J. and Xu, H. (2021) Current Perspectives on the Role of Nrf2 in 5-Fluorouracil Resistance in Colorectal Cancer. Anti-Cancer Agents in Medicinal Chemistry, 21, 2297-2303. https://doi.org/10.2174/1871520621666210129094354
|
[25]
|
Mokhtari, R.B., Homayouni, T.S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B., et al. (2017) Combination Therapy in Combating Cancer. Oncotarget, 8, 38022-38043. https://doi.org/10.18632/oncotarget.16723
|
[26]
|
李昭, 郭叶青, 林颖. PERK、Nrf2、HO-1蛋白在早期宫颈癌组织中的表达及其意义[J]. 医学临床研究, 2019, 36(2): 322-323.
|
[27]
|
Kontostathi, G., Zoidakis, J., Makridakis, M., Lygirou, V., Mermelekas, G., Papadopoulos, T., et al. (2017) Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein Ig-H3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis. BioMed Research International, 2017, Article ID: 4180703. https://doi.org/10.1155/2017/4180703
|
[28]
|
Ma, J., Tuersun, H., Jiao, S., Zheng, J., Xiao, J. and Hasim, A. (2015) Functional Role of NRF2 in Cervical Carcinogenesis. PLOS ONE, 10, e0133876. https://doi.org/10.1371/journal.pone.0133876
|
[29]
|
Tossetta, G. and Marzioni, D. (2023) Targeting the NRF2/KEAP1 Pathway in Cervical and Endometrial Cancers. European Journal of Pharmacology, 941, Article ID: 175503. https://doi.org/10.1016/j.ejphar.2023.175503
|
[30]
|
Kensler, T.W., Egner, P.A., Dolan, P.M., et al. (1987) Mechanism of Protection against Aflatoxin Tumorigenicity in Rats Fed 5-(2-Pyrazinyl)-4-Methyl-1, 2-Dithiol-3-Thione (Oltipraz) and Related 1, 2-Dithiol-3-Thiones and 1, 2-Dithiol-3-Ones. Cancer Research, 47, 4271-4277.
|
[31]
|
Garg, R., Gupta, S. and Maru, G.B. (2008) Dietary Curcumin Modulates Transcriptional Regulators of Phase I and Phase II Enzymes in Benzo[ a ]pyrene-Treated Mice: Mechanism of Its Anti-Initiating Action. Carcinogenesis, 29, 1022-1032. https://doi.org/10.1093/carcin/bgn064
|
[32]
|
Aguilar-Garrido, P., Otero-Sobrino, Á., Navarro-Aguadero, M.Á., Velasco-Estévez, M. and Gallardo, M. (2022) The Role of RNA-Binding Proteins in Hematological Malignancies. International Journal of Molecular Sciences, 23, Article 9552. https://doi.org/10.3390/ijms23179552
|
[33]
|
Wang, M., Xue, Y., Shen, L., Qin, P., Sang, X., Tao, Z., et al. (2019) Inhibition of SGK1 Confers Vulnerability to Redox Dysregulation in Cervical Cancer. Redox Biology, 24, Article ID: 101225. https://doi.org/10.1016/j.redox.2019.101225
|
[34]
|
Cho, U., Kim, H., Park, H.S., Kwon, O., Lee, A. and Jeong, S. (2016) Nuclear Expression of GS28 Protein: A Novel Biomarker That Predicts Worse Prognosis in Cervical Cancers. PLOS ONE, 11, e0162623. https://doi.org/10.1371/journal.pone.0162623
|
[35]
|
Rim, D.E., Yoo, H.J., Lee, J., Kwon, O. and Jeong, S. (2019) Role of GS28 in Sodium Nitroprusside-Induced Cell Death in Cervical Carcinoma Cells. Journal of Biochemical and Molecular Toxicology, 33, e22348. https://doi.org/10.1002/jbt.22348
|
[36]
|
Keyvani, V., Riahi, E., Yousefi, M., Esmaeili, S., Shafabakhsh, R., Moradi Hasan-Abad, A., et al. (2022) Gynecologic Cancer, Cancer Stem Cells, and Possible Targeted Therapies. Frontiers in Pharmacology, 13, Article 823572. https://doi.org/10.3389/fphar.2022.823572
|
[37]
|
Jia, Y., Chen, J., Zhu, H., Jia, Z. and Cui, M. (2015) Aberrantly Elevated Redox Sensing Factor Nrf2 Promotes Cancer Stem Cell Survival via Enhanced Transcriptional Regulation of ABCG2 and Bcl-2/Bmi-1 Genes. Oncology Reports, 34, 2296-2304. https://doi.org/10.3892/or.2015.4214
|