|
[1]
|
Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tang, D., Chen, X. and Kroemer, G. (2022) Cuproptosis: A Copper-Triggered Modality of Mitochondrial Cell Death. Cell Research, 32, 417-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cobine, P.A. and Brady, D.C. (2022) Cuproptosis: Cellular and Molecular Mechanisms Underlying Copper-Induced Cell Death. Molecular Cell, 82, 1786-1787. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yang, F., Pei, R., Zhang, Z., et.al. (2019) Copper Induces Oxidative Stress and Apoptosis through Mitochondria-Mediated Pathway in Chicken Hepatocytes. Toxicology in Vitro, 54, 310-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Que, E.L., Domaille, D.W. and Chang, C.J. (2008) Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging. Chemical Reviews, 108, 1517-1549. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Prohaska, J.R. (2012) Copper. In: Erdman Jr, J.W., Macdonald, I.A. and Zeisel, S.H., Eds., Present Knowledge in Nutrition, Wiley-Blackwell, 540-553
|
|
[7]
|
Wang, Y., Zhu, S., Hodgkinson, V., Prohaska, J.R., Weisman, G.A., Gitlin, J.D., et al. (2012) Maternofetal and Neonatal Copper Requirements Revealed by Enterocyte-Specific Deletion of the Menkes Disease Protein. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303, G1236-G1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kirsipuu, T., Zadorožnaja, A., Smirnova, J., Friedemann, M., Plitz, T., Tõugu, V., et al. (2020) Copper(II)-Binding Equilibria in Human Blood. Scientific Reports, 10, Article No. 5686. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hernandez, S., Tsuchiya, Y., García-Ruiz, J.P., Lalioti, V., Nielsen, S., Cassio, D., et al. (2008) ATP7B Copper-Regulated Traffic and Association with the Tight Junctions: Copper Excretion into the Bile. Gastroenterology, 134, 1215-1223. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Lutsenko, S. (2021) Dynamic and Cell-Specific Transport Networks for Intracellular Copper Ions. Journal of Cell Science, 134, jcs240523. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Denoyer, D., Masaldan, S., La Fontaine, S. and Cater, M.A. (2015) Targeting Copper in Cancer Therapy: ‘Copper That Cancer’. Metallomics, 7, 1459-1476. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lopez, J., Ramchandani, D. and Vahdat, L. (2019) 12. Copper Depletion as a Therapeutic Strategy in Cancer. In: Carver, P.L., Ed., Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic, De Gruyter, 303-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ge, E.J., Bush, A.I., Casini, A., Cobine, P.A., Cross, J.R., DeNicola, G.M., et al. (2021) Connecting Copper and Cancer: From Transition Metal Signalling to Metalloplasia. Nature Reviews Cancer, 22, 102-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shanbhag, V., Jasmer-McDonald, K., Zhu, S., et al. (2019) ATP7A Delivers Copper to the Lysyl Oxidase Family of Enzymes and Promotes Tumorigenesis and Metastasis. Proceedings of the National Academy of Sciences, 116, 6836-6841. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Krishnamoorthy, L., Cotruvo, J.A., Chan, J., Kaluarachchi, H., Muchenditsi, A., Pendyala, V.S., et al. (2016) Copper Regulates Cyclic-AMP-Dependent Lipolysis. Nature Chemical Biology, 12, 586-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Brady, D.C., Crowe, M.S., Turski, M.L., Hobbs, G.A., Yao, X., Chaikuad, A., et al. (2014) Copper Is Required for Oncogenic BRAF Signalling and Tumorigenesis. Nature, 509, 492-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Halliwell, B. and Gutteridge, J.M.C. (1984) Oxygen Toxicity, Oxygen Radicals, Transition Metals and Disease. Biochemical Journal, 219, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Nagai, M., Vo, N.H., Shin Ogawa, L., Chimmanamada, D., Inoue, T., Chu, J., et al. (2012) The Oncology Drug Elesclomol Selectively Transports Copper to the Mitochondria to Induce Oxidative Stress in Cancer Cells. Free Radical Biology and Medicine, 52, 2142-2150. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yadav, A.A., Patel, D., Wu, X. and Hasinoff, B.B. (2013) Molecular Mechanisms of the Biological Activity of the Anticancer Drug Elesclomol and Its Complexes with Cu(II), Ni(II) and Pt(II). Journal of Inorganic Biochemistry, 126, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Oliveri, V. (2022) Selective Targeting of Cancer Cells by Copper Ionophores: An Overview. Frontiers in Molecular Biosciences, 9, Article 841814. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cen, D., Brayton, D., Shahandeh, B., et al. (2004) Disulfiram Facilitates Intracellular Cu Uptake and Induces Apoptosis in Human Melanoma Cells. Journal of Medicinal Chemistry, 47, 6914-6920. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kirshner, J.R., He, S., Balasubramanyam, V., Kepros, J., Yang, C., Zhang, M., et al. (2008) Elesclomol Induces Cancer Cell Apoptosis through Oxidative Stress. Molecular Cancer Therapeutics, 7, 2319-2327. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rowland, E.A., Snowden, C.K. and Cristea, I.M. (2018) Protein Lipoylation: An Evolutionarily Conserved Metabolic Regulator of Health and Disease. Current Opinion in Chemical Biology, 42, 76-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Tang, Q., Guo, Y., Meng, L. and Chen, X. (2020) Chemical Tagging of Protein Lipoylation. Angewandte Chemie International Edition, 60, 4028-4033. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Solmonson, A. and DeBerardinis, R.J. (2018) Lipoic Acid Metabolism and Mitochondrial Redox Regulation. Journal of Biological Chemistry, 293, 7522-7530. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Przybyla-Toscano, J., Maclean, A.E., Franceschetti, M., Liebsch, D., Vignols, F., Keech, O., et al. (2021) Protein Lipoylation in Mitochondria Requires Fe-S Cluster Assembly Factors NFU4 and NFU5. Plant Physiology, 188, 997-1013. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cai, K., Tonelli, M., Frederick, R.O. and Markley, J.L. (2017) Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis. Biochemistry, 56, 487-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sheftel, A.D., Stehling, O., Pierik, A.J., Elsässer, H., Mühlenhoff, U., Webert, H., et al. (2010) Humans Possess Two Mitochondrial Ferredoxins, FDX1 and FDX2, with Distinct Roles in Steroidogenesis, Heme, and Fe/S Cluster Biosynthesis. Proceedings of the National Academy of Sciences, 107, 11775-11780. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shi, Y., Ghosh, M., Kovtunovych, G., Crooks, D.R. and Rouault, T.A. (2012) Both Human Ferredoxins 1 and 2 and Ferredoxin Reductase Are Important for Iron-Sulfur Cluster Biogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823, 484-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Arroyo, J.D., Jourdain, A.A., Calvo, S.E., Ballarano, C.A., Doench, J.G., Root, D.E., et al. (2016) A Genome-Wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation. Cell Metabolism, 24, 875-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lu, H., Liang, J., He, X., Ye, H., Ruan, C., Shao, H., et al. (2023) A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. International Journal of Molecular Sciences, 24, Article 9182. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, Y., Zhang, X., Chen, G., Xing, Q., Zhu, B. and Wang, X. (2023) Integrated Analyses Reveal the Prognostic, Immunological Features and Mechanisms of Cuproptosis Critical Mediator Gene FDX1 in KIRC. Genes & Immunity, 24, 171-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Schaafsma, E., Fugle, C.M., Wang, X. and Cheng, C. (2021) Pan-Cancer Association of HLA Gene Expression with Cancer Prognosis and Immunotherapy Efficacy. British Journal of Cancer, 125, 422-432. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liu, Z. and Miao, J. (2023) Prognostic and Immunological Role of FDX1 in Pan-Cancer: An in-Silico Analysis. Scientific Reports, 13, Article No. 7926. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Xiao, C., Yang, L., Jin, L., Lin, W., Zhang, F., Huang, S., et al. (2022) Prognostic and Immunological Role of Cuproptosis-Related Protein FDX1 in Pan-Cancer. Frontiers in Genetics, 13, Article 962028. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yang, L., Zhang, Y., Wang, Y., et al. (2022) Ferredoxin 1 Is a Cuproptosis-Key Gene Responsible for Tumor Immunity and Drug Sensitivity: A Pan-Cancer Analysis. Frontiers in Pharmacology, 13, Article 938134. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Picard, E., Verschoor, C.P., Ma, G.W. and Pawelec, G. (2020) Relationships between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Frontiers in Immunology, 11, Article 369. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, C., Zeng, Y., Guo, X., Shen, H., Zhang, J., Wang, K., et al. (2022) Pan-Cancer Analyses Confirmed the Cuproptosis-Related Gene FDX1 as an Immunotherapy Predictor and Prognostic Biomarker. Frontiers in Genetics, 13, Article 923737. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ashton, T.M., McKenna, W.G., Kunz-Schughart, L.A., et al. (2018) Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clinical Cancer Research, 24, 2482-2490. [Google Scholar] [CrossRef]
|
|
[41]
|
Wang, L., Cao, Y., Guo, W. and Xu, J. (2022) High Expression of Cuproptosis-Related Gene FDX1 in Relation to Good Prognosis and Immune Cells Infiltration in Colon Adenocarcinoma (COAD). Journal of Cancer Research and Clinical Oncology, 149, 15-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chen, G., Zhang, J., Teng, W., Luo, Y. and Ji, X. (2023) FDX1 Inhibits Thyroid Cancer Malignant Progression by Inducing Cuprotosis. Heliyon, 9, e18655. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Takahashi, R., Kamizaki, K., Yamanaka, K., Terai, Y. and Minami, Y. (2023) Expression of Ferredoxin1 in Cisplatin-Resistant Ovarian Cancer Cells Confers Their Resistance against Ferroptosis Induced by Cisplatin. Oncology Reports, 49, Article No. 124. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Quan, B., Liu, W., Yao, F., et al. (2023) LINC02362/hsa-miR-18a-5p/FDX1 Axis Suppresses Proliferation and Drives Cuproptosis and Oxaliplatin Sensitivity of Hepatocellular Carcinoma. American Journal of Cancer Research, 13, 5590-5609.
|