铜死亡:一项治疗肿瘤的新途径
Cuproptosis: A New Approach to Treating Tumors
DOI: 10.12677/acm.2024.14102634, PDF, HTML, XML,    科研立项经费支持
作者: 安志腾:西安医学院研究生院,陕西 西安;刘文康:陕西省人民医院检验科,陕西 西安;姜向阳*:陕西省人民医院妇科,陕西 西安
关键词: 肿瘤铜死亡FDX1Tumor Cuproptosis FDX1
摘要: 铜离子导致细胞死亡是一种铜依赖性且独特的细胞死亡,与其他现有的形式的细胞死亡不同。长期以来,铜诱导的细胞死亡是否可以导致细胞死亡及其导致细胞死亡的机制一直存在争议,直到最近的研究铜死亡cuproptosis的机制被发现。在那之后,越来越多的研究人员试图确定cuproptosis与癌症过程之间的关系。因此,在这篇综述中,我们系统地详细介绍了铜离子在人类的全身和细胞代谢过程,以及铜离子在肿瘤中的作用。其次,讲明了cuproptosis的发现过程及其机制,还概述了cuproptosis及其关键基因FDX1与癌症之间的关联,及FDX1与现有的肿瘤药物相互作用的新进展。
Abstract: Cell death caused by copper ions is a copper-dependent and unique cell death that is different from other existing forms of cell death. For a long time, whether copper-induced cell death can lead to cell death and the mechanism by which it leads to cell death have been controversial until recent studies have discovered the mechanism of copper death cuproptosis. Since then, more and more researchers have tried to determine the relationship between cuproptosis and cancer processes. Therefore, in this review, we systematically and in detail introduce the systemic and cellular metabolic processes of copper ions in humans, as well as the role of copper ions in tumors. Secondly, the discovery process and mechanism of cuproptosis are explained, and the association between cuproptosis and its key gene FDX1 and cancer is also outlined, as well as new progress in the interaction between FDX1 and existing tumor drugs.
文章引用:安志腾, 刘文康, 姜向阳. 铜死亡:一项治疗肿瘤的新途径[J]. 临床医学进展, 2024, 14(10): 161-167. https://doi.org/10.12677/acm.2024.14102634

1. 引言

铜离子是我们人类生活中不可或缺的一种金属离子,细胞的程序性死亡形式有多种,包括细胞凋亡,坏死性凋亡,焦亡,铁死亡等[1],其铜离子与细胞的程序性死亡有何关系?最近提出了一种新的细胞死亡形式,铜离子导致细胞死亡(cuproptosis) [2] [3]

2. 铜离子在人体中的基础作用

铜是介导许多基本细胞功能的酶所必需的辅助因子,包括线粒体呼吸、抗氧化防御和激素、神经递质和色素的生物合成,但同时铜储存的失调会诱导氧化应激和细胞毒性[4] [5]。成人每天所摄入量为0.9 mg,在贝类、种子、坚果、器官肉、巧克力等食物中都富含铜[6]。铜通过肠细胞顶膜上的铜转运蛋白1 CTR1 (或称为SLC31A1)进入肠细胞,并通过铜伴侣抗氧化剂1铜伴侣(ATOX1)转运到上皮的另一侧,并通过ATP酶铜转运α (ATP7A:缺乏导致Menkes病,即全身铜缺乏症)的作用输出到血液中[7]。铜离子通过与蛋白质结合而不是游离在血液中运输。约75%的铜离子以不可交换形式与铜蓝蛋白(CP)结合,约25%的铜离子以可交换形式与人血清白蛋白(HSA)结合,约0.2%的铜离子与组氨酸结合[8]。在肝中与富含硫醇的蛋白质:金属硫蛋白1 (MT1)与金属硫蛋白2 (MT2)结合并储存[9]。铜蓝蛋白在不与金属结合时会迅速分解,是一种急性期反应物,所以可以用来测量体内铜含量。而铜的排泄主要通过肝细胞胆小管上的ATP7B排泄(缺乏导致威尔逊疾病,即肝脏铜超载) [10]

3. 铜离子与肿瘤的关系

长期以来,Cu在癌症进展中的作用一直是一个研究课题,因为Cu离子可能参与细胞增殖相关信号通路的激活。有证据表明,与健康的静息细胞相比,癌细胞通常对铜的需求更高[11] [12]。肿瘤细胞生长需要更多的铜离子,铜离子作为线粒体色素C氧化酶辅助因子,是满足快速分裂细胞的能量需求所必须的,且铜离子促进血管形成,激活VEGF (血管内皮生长因子)、FGF2 (成纤维细胞生长因子)、TNF (肿瘤坏死因子)有助于肿瘤启动、生长和转移[13]。铜失衡不仅会影响线粒体呼吸,铜通路(例如ATOX-ATP7A-LOX通路)也可促进转移性扩增[14]。最近的研究表明,铜离子可结合并抑制PDE3B (磷酸二酯酶3B)从而抑制cAMP的降解和促进cAMP依赖的脂解(PDE3B可使cAMP水解)。并作用于MEK1/2,增强RAF-MEK-ERK通路,使MAPK通路上游酪氨酸激酶TRKB、EGFR、MET的磷酸化增加,从而增强肿瘤的生长[15]。当使用四硫代钼盐酸(TTM,一种铜螯合剂)时,使MEK1/2减弱,抑制了肿瘤生长,也表明了铜离子在肿瘤发展中的作用[16]。铜离子变构激活E2结合酶UBE2D1-UBE2D4,使许多蛋白质被泛素标记并降解,包括最主要的基因P53,所以肿瘤生长会不受抑制。

4. 铜离子与程序性细胞死亡

在过去的几年中,铜与程序性细胞死亡之间的联系长期以来一直是人们关注的焦点,铜诱导细胞死亡的机制长期以来一直被研究。在1980年,铜已被已知会导致细胞死亡[17],然而,确切的机制尚未阐明。在过去关于Cu诱导的细胞死亡的研究中,大多数研究人员将这种细胞死亡归因于铜对线粒体的作用,从而导致ROS的产生。例如2012年一项关于黑色素瘤细胞系的研究得出结论,ES运输铜并导致线粒体相关蛋白水平降低,从而导致ROS增加并进一步抑制肿瘤细胞增殖[18],在2013年对人类白血病K562细胞进行的一项研究中,铜离子被认为能够氧化抗坏血酸并与H2O2反应,再通过ES转运进入细胞后产生更具破坏性的ROS [19]

在几乎所有的关于铜死亡的实验研究中,因需要使铜离子进入到细胞内,均使用到了铜离子载体,从而混淆了铜离子载体对细胞的损伤和铜离子本身对细胞损伤的机制。铜离子载体是一种可逆结合铜离子的脂溶性分子,在铜离子病的发现中发挥了重要作用,并可能作为抗肿瘤药物参与临床治疗[20]。铜离子载体可以通过细胞的质膜或线粒体膜结构运输铜离子。DSF是一种用于治疗酒精依赖的药物,也具有铜离子载体的作用,被认为会导致细胞死亡[21],就像另一种铜离子载体elesclomol (ES)也被认为具有杀死细胞的能力[22]

然而,在ES作用机制的研究中,使用5 mM ROS抑制剂N-乙酰半胱氨酸(NAC)并未消除ES-Cu引起的细胞毒性作用,而10 mM NAC仅部分消除细胞毒性作用,因此ROS介导的细胞死亡可能不是铜引起的细胞死亡的主要模式[23]。其明确了铜离子载体在铜离子导致细胞死亡机制中的非关键地位。

5. 铜离子导致细胞死亡的新机制

最近一项研究提出铜导致细胞死亡可能主要是另一些机制导致的——蛋白质的脂酰化及Fe-S簇蛋白的消失[23]

蛋白脂酰化是脂质修饰的一种。是脂肪酸以脂酰基的形式连接到肽链上,这也是一种高度保守的赖氨酸翻译后修饰,主要发生在四种酶上(二氢硫辛酰胺支链转移酶E2 (DBT)、甘氨酸裂解系统蛋白H (GCSH)、二氢硫辛胺S-琥珀酰基转移酶(DLST)和二氢硫辛酰胺S-乙酰转移酶(DLAT))中,用于调节碳进入三羧酸(TCA)循环[24]。这个过程需要三种编码硫辛酸途径的酶辅助(LIAS硫辛酸合酶、LIPT1、DLD二氢脂酰胺脱氢酶),调节碳进入三羧酸(TCA)循环,此过程还需要PDH复合物的丙酮酸脱氢酶蛋白X成分(PDHX)参与[24]-[27]。当用Elesclomol作为铜离子载体将铜转运到细胞内,铜离子在FDX1的作用下转变成了更有毒性的一价铜离子,进而DLAT (蛋白脂酰化)经过LIAS的作用,增加了两个二硫键,进而铜离子就会直接与脂酰化的蛋白结合,导致其寡聚态化,从而诱发铜死亡。其过程同时还包括蛋白脂酰化的一些基因(PDH复合物,包括DLAT,PDHA1,PDHB)。

另一种主要相关的机制是Fe-S簇蛋白的消失。Fe-S簇是由铁硫簇(ISC)核心复合物(铁加NFS1-ISD11-ACP-ISCU)从半胱氨酸中提取的硫生成的,这个过程需要FDX1或FDX2作为还原剂。FDX1是一种线粒体还原酶,参与铁硫(Fe-S)簇的形成[28]-[30],这是一个对线粒体功能至关重要的过程[31]。FDX1无效细胞表现出基础呼吸水平降低,半乳糖生长进一步降低[13]。FDX1与脂酰化蛋白高度相关,也就是FDX1高表达的组织中,同时也会高表达脂酰化的一些蛋白。当用基因敲除FDX1后会导致蛋白脂酰化完全丧失。也证实了FDX1是蛋白质脂酰化的上游调节因子,FDX1和蛋白质脂酰化是铜死亡的关键调节因子。

6. Cuproptosis关键基因FDX1在肿瘤中的研究新进展

FDX1作为铜离子导致细胞死亡的关键基因,近来越来越多的学者开始研究其在肿瘤细胞中的作用[32] [33]。研究表明,FDX1在不同的正常组织中广泛表达,并且在肾上腺中含量相对较高。当将肿瘤与相应的正常组织进行比较时,FDX1在各种癌症中的表达降低,并且这种高表达与某些癌症类型(如KIPC)中更好的OS和死亡特异性生存率有关。

FDX1表达还与肿瘤的免疫细胞浸润、免疫检查点基因表达和免疫治疗标志物(例如TMB和MSI)有关,并有助于肿瘤的发展[34]。其在大多数癌症的分子和免疫亚型之间表达存在显着差异,这可能表明FDX1是一种很有前途的泛癌诊断生物标志物,并且它还调节免疫力。此外,FDX1在KIRC (肾透明细胞癌)不同临床亚组中的表达差异显著,提示FDX1可能与癌症的生长进展有关。FDX1似乎可能是抗癌治疗的可行靶点[35]。综上所述,数据表明FDX1为几种癌症提供了一种有价值的新生物标志物,用于评估预后和免疫治疗反应[36]。总体而言,这些结果表明,调节FDX1表达可能是提高免疫疗法疗效的一种有前途的策略[37]

大多数癌症中,FDX1表达与MMR基因、MSI和TMB高度相关。这些结果表明,FDX1通过调节DNA和RNA甲基化、MMR基因、MSI和TMB介导肿瘤发生的功能,与先前肿瘤发生机制研究一致[38]。且FDX1的基因和蛋白质水平在大多数肿瘤中显著降低,在一些癌症中具有一定的预后价值[39]。FDX1也可以与免疫和炎症反应、氧化磷酸化、脂肪酸代谢和内皮–间充质转化密切相关,这也与现有的肿瘤机制一致[40]

FDX1及其共表达基因在结肠腺癌(COAD)的发生发展中起着重要作用。此外,FDX1的高表达表明预后良好,免疫细胞浸润良好,可有效抑制肿瘤细胞侵袭和转移。调节FDX1表达将是铜死亡和COAD免疫疗法的潜在治疗方法[41]。FDX1在甲状腺癌患者的肿瘤组织中下调,并通过诱导DLAT的硫辛酰化促进甲状腺癌细胞的铜中毒。其研究结果强调了甲状腺癌发展的新分子机制,可能为甲状腺癌治疗提供一个有希望的靶点[42]

在现有的化疗药物研究中发现,顺铂耐药OC患者FDX1的表达高于顺铂敏感OC患者。因此,FDX1表达的上调可能在获得顺铂耐药性中起关键作用,FDX1可能是治疗铂耐药卵巢癌(OC)的合适诊断和/或预后标志物[43]。在肝细胞癌的研究中,通过FDX1上下游靶lncRNA和靶miRNA的筛选,发现其LINC02362/hsa-miR-18a-5p/FDX1轴是抑制HCC增殖、驱动铜凝变并增强HCC对奥沙利铂敏感性的新途径。该通路有望成为对抗HCC中奥沙利铂耐药的新治疗靶点[44]

7. 展望

作为一种新发现的细胞死亡形式,尽管硫辛酸途径已被证明在介导cuproptosis中起关键作用,但人们对cuproptosis的确切机制知之甚少。一个有趣的问题是其他代谢途径是否也参与cuproptosis。此外,根据目前可用的数据,另一个悬而未决的问题是硫辛酰化线粒体酶的聚集如何触发导致细胞死亡的Cu依赖性信号级联反应。因此,有必要进行额外的研究,以确定关键参与者并探索cuproptosis的基础机制,从而在细胞、组织和全身水平上提供cuproptosis的清晰图片。识别和表征调节这种新发现的Cu依赖性细胞死亡形式的信号通路可能会为临床应用提供新的机会。

其次,尚未描述cuproptosis的特征性表现。一方面,尚未描述铜质病的细胞形态学变化,铜质病是以特征性还是连续的形态学表现发生,另一方面,尚未确定诱导铜质病后在分子或细胞水平上发生的特征性变化,因此缺乏评估铜质病是否发生过的有效手段。此外,在cuproptosis中起重要作用的DLAT寡聚体的下游途径尚未被描述。在以前的研究中,仅描述了DLAT寡聚化的毒性作用,并假设这种DLAT寡聚化导致蛋白毒性应激并最终导致细胞死亡。然而,DLAT寡聚化与细胞死亡之间的直接机制尚未确定。

对cuproptosis的关键基因FDX1,目前的研究存在一些局限性,例如缺乏对FDX1与肿瘤微环境之间联系的探索。此外,应进一步检查FDX1变化后代谢标志物的改变。从而进一步为临床应用提供指导。

项目资助

陕西省人民医院科技发展孵化基金,项目批准编号:2023YJY-70。

NOTES

*通讯作者。

参考文献

[1] Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364.
https://doi.org/10.1038/s41422-019-0164-5
[2] Tang, D., Chen, X. and Kroemer, G. (2022) Cuproptosis: A Copper-Triggered Modality of Mitochondrial Cell Death. Cell Research, 32, 417-418.
https://doi.org/10.1038/s41422-022-00653-7
[3] Cobine, P.A. and Brady, D.C. (2022) Cuproptosis: Cellular and Molecular Mechanisms Underlying Copper-Induced Cell Death. Molecular Cell, 82, 1786-1787.
https://doi.org/10.1016/j.molcel.2022.05.001
[4] Yang, F., Pei, R., Zhang, Z., et.al. (2019) Copper Induces Oxidative Stress and Apoptosis through Mitochondria-Mediated Pathway in Chicken Hepatocytes. Toxicology in Vitro, 54, 310-316.
https://doi.org/10.1016/j.tiv.2018.10.017
[5] Que, E.L., Domaille, D.W. and Chang, C.J. (2008) Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging. Chemical Reviews, 108, 1517-1549.
https://doi.org/10.1021/cr078203u
[6] Prohaska, J.R. (2012) Copper. In: Erdman Jr, J.W., Macdonald, I.A. and Zeisel, S.H., Eds., Present Knowledge in Nutrition, Wiley-Blackwell, 540-553
[7] Wang, Y., Zhu, S., Hodgkinson, V., Prohaska, J.R., Weisman, G.A., Gitlin, J.D., et al. (2012) Maternofetal and Neonatal Copper Requirements Revealed by Enterocyte-Specific Deletion of the Menkes Disease Protein. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303, G1236-G1244.
https://doi.org/10.1152/ajpgi.00339.2012
[8] Kirsipuu, T., Zadorožnaja, A., Smirnova, J., Friedemann, M., Plitz, T., Tõugu, V., et al. (2020) Copper(II)-Binding Equilibria in Human Blood. Scientific Reports, 10, Article No. 5686.
https://doi.org/10.1038/s41598-020-62560-4
[9] Hernandez, S., Tsuchiya, Y., García-Ruiz, J.P., Lalioti, V., Nielsen, S., Cassio, D., et al. (2008) ATP7B Copper-Regulated Traffic and Association with the Tight Junctions: Copper Excretion into the Bile. Gastroenterology, 134, 1215-1223.
https://doi.org/10.1053/j.gastro.2008.01.043
[10] Lutsenko, S. (2021) Dynamic and Cell-Specific Transport Networks for Intracellular Copper Ions. Journal of Cell Science, 134, jcs240523.
https://doi.org/10.1242/jcs.240523
[11] Denoyer, D., Masaldan, S., La Fontaine, S. and Cater, M.A. (2015) Targeting Copper in Cancer Therapy: ‘Copper That Cancer’. Metallomics, 7, 1459-1476.
https://doi.org/10.1039/c5mt00149h
[12] Lopez, J., Ramchandani, D. and Vahdat, L. (2019) 12. Copper Depletion as a Therapeutic Strategy in Cancer. In: Carver, P.L., Ed., Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic, De Gruyter, 303-330.
https://doi.org/10.1515/9783110527872-012
[13] Ge, E.J., Bush, A.I., Casini, A., Cobine, P.A., Cross, J.R., DeNicola, G.M., et al. (2021) Connecting Copper and Cancer: From Transition Metal Signalling to Metalloplasia. Nature Reviews Cancer, 22, 102-113.
https://doi.org/10.1038/s41568-021-00417-2
[14] Shanbhag, V., Jasmer-McDonald, K., Zhu, S., et al. (2019) ATP7A Delivers Copper to the Lysyl Oxidase Family of Enzymes and Promotes Tumorigenesis and Metastasis. Proceedings of the National Academy of Sciences, 116, 6836-6841.
https://doi.org/10.1073/pnas.1817473116
[15] Krishnamoorthy, L., Cotruvo, J.A., Chan, J., Kaluarachchi, H., Muchenditsi, A., Pendyala, V.S., et al. (2016) Copper Regulates Cyclic-AMP-Dependent Lipolysis. Nature Chemical Biology, 12, 586-592.
https://doi.org/10.1038/nchembio.2098
[16] Brady, D.C., Crowe, M.S., Turski, M.L., Hobbs, G.A., Yao, X., Chaikuad, A., et al. (2014) Copper Is Required for Oncogenic BRAF Signalling and Tumorigenesis. Nature, 509, 492-496.
https://doi.org/10.1038/nature13180
[17] Halliwell, B. and Gutteridge, J.M.C. (1984) Oxygen Toxicity, Oxygen Radicals, Transition Metals and Disease. Biochemical Journal, 219, 1-14.
https://doi.org/10.1042/bj2190001
[18] Nagai, M., Vo, N.H., Shin Ogawa, L., Chimmanamada, D., Inoue, T., Chu, J., et al. (2012) The Oncology Drug Elesclomol Selectively Transports Copper to the Mitochondria to Induce Oxidative Stress in Cancer Cells. Free Radical Biology and Medicine, 52, 2142-2150.
https://doi.org/10.1016/j.freeradbiomed.2012.03.017
[19] Yadav, A.A., Patel, D., Wu, X. and Hasinoff, B.B. (2013) Molecular Mechanisms of the Biological Activity of the Anticancer Drug Elesclomol and Its Complexes with Cu(II), Ni(II) and Pt(II). Journal of Inorganic Biochemistry, 126, 1-6.
https://doi.org/10.1016/j.jinorgbio.2013.04.013
[20] Oliveri, V. (2022) Selective Targeting of Cancer Cells by Copper Ionophores: An Overview. Frontiers in Molecular Biosciences, 9, Article 841814.
https://doi.org/10.3389/fmolb.2022.841814
[21] Cen, D., Brayton, D., Shahandeh, B., et al. (2004) Disulfiram Facilitates Intracellular Cu Uptake and Induces Apoptosis in Human Melanoma Cells. Journal of Medicinal Chemistry, 47, 6914-6920.
https://doi.org/10.1021/jm049568z
[22] Kirshner, J.R., He, S., Balasubramanyam, V., Kepros, J., Yang, C., Zhang, M., et al. (2008) Elesclomol Induces Cancer Cell Apoptosis through Oxidative Stress. Molecular Cancer Therapeutics, 7, 2319-2327.
https://doi.org/10.1158/1535-7163.mct-08-0298
[23] Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261.
https://doi.org/10.1126/science.abf0529
[24] Rowland, E.A., Snowden, C.K. and Cristea, I.M. (2018) Protein Lipoylation: An Evolutionarily Conserved Metabolic Regulator of Health and Disease. Current Opinion in Chemical Biology, 42, 76-85.
https://doi.org/10.1016/j.cbpa.2017.11.003
[25] Tang, Q., Guo, Y., Meng, L. and Chen, X. (2020) Chemical Tagging of Protein Lipoylation. Angewandte Chemie International Edition, 60, 4028-4033.
https://doi.org/10.1002/anie.202010981
[26] Solmonson, A. and DeBerardinis, R.J. (2018) Lipoic Acid Metabolism and Mitochondrial Redox Regulation. Journal of Biological Chemistry, 293, 7522-7530.
https://doi.org/10.1074/jbc.tm117.000259
[27] Przybyla-Toscano, J., Maclean, A.E., Franceschetti, M., Liebsch, D., Vignols, F., Keech, O., et al. (2021) Protein Lipoylation in Mitochondria Requires Fe-S Cluster Assembly Factors NFU4 and NFU5. Plant Physiology, 188, 997-1013.
https://doi.org/10.1093/plphys/kiab501
[28] Cai, K., Tonelli, M., Frederick, R.O. and Markley, J.L. (2017) Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis. Biochemistry, 56, 487-499.
https://doi.org/10.1021/acs.biochem.6b00447
[29] Sheftel, A.D., Stehling, O., Pierik, A.J., Elsässer, H., Mühlenhoff, U., Webert, H., et al. (2010) Humans Possess Two Mitochondrial Ferredoxins, FDX1 and FDX2, with Distinct Roles in Steroidogenesis, Heme, and Fe/S Cluster Biosynthesis. Proceedings of the National Academy of Sciences, 107, 11775-11780.
https://doi.org/10.1073/pnas.1004250107
[30] Shi, Y., Ghosh, M., Kovtunovych, G., Crooks, D.R. and Rouault, T.A. (2012) Both Human Ferredoxins 1 and 2 and Ferredoxin Reductase Are Important for Iron-Sulfur Cluster Biogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823, 484-492.
https://doi.org/10.1016/j.bbamcr.2011.11.002
[31] Arroyo, J.D., Jourdain, A.A., Calvo, S.E., Ballarano, C.A., Doench, J.G., Root, D.E., et al. (2016) A Genome-Wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation. Cell Metabolism, 24, 875-885.
https://doi.org/10.1016/j.cmet.2016.08.017
[32] Lu, H., Liang, J., He, X., Ye, H., Ruan, C., Shao, H., et al. (2023) A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. International Journal of Molecular Sciences, 24, Article 9182.
https://doi.org/10.3390/ijms24119182
[33] Wang, Y., Zhang, X., Chen, G., Xing, Q., Zhu, B. and Wang, X. (2023) Integrated Analyses Reveal the Prognostic, Immunological Features and Mechanisms of Cuproptosis Critical Mediator Gene FDX1 in KIRC. Genes & Immunity, 24, 171-182.
https://doi.org/10.1038/s41435-023-00211-0
[34] Schaafsma, E., Fugle, C.M., Wang, X. and Cheng, C. (2021) Pan-Cancer Association of HLA Gene Expression with Cancer Prognosis and Immunotherapy Efficacy. British Journal of Cancer, 125, 422-432.
https://doi.org/10.1038/s41416-021-01400-2
[35] Liu, Z. and Miao, J. (2023) Prognostic and Immunological Role of FDX1 in Pan-Cancer: An in-Silico Analysis. Scientific Reports, 13, Article No. 7926.
https://doi.org/10.1038/s41598-023-34752-1
[36] Xiao, C., Yang, L., Jin, L., Lin, W., Zhang, F., Huang, S., et al. (2022) Prognostic and Immunological Role of Cuproptosis-Related Protein FDX1 in Pan-Cancer. Frontiers in Genetics, 13, Article 962028.
https://doi.org/10.3389/fgene.2022.962028
[37] Yang, L., Zhang, Y., Wang, Y., et al. (2022) Ferredoxin 1 Is a Cuproptosis-Key Gene Responsible for Tumor Immunity and Drug Sensitivity: A Pan-Cancer Analysis. Frontiers in Pharmacology, 13, Article 938134.
https://doi.org/10.3389/fphar.2022.938134
[38] Picard, E., Verschoor, C.P., Ma, G.W. and Pawelec, G. (2020) Relationships between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Frontiers in Immunology, 11, Article 369.
https://doi.org/10.3389/fimmu.2020.00369
[39] Zhang, C., Zeng, Y., Guo, X., Shen, H., Zhang, J., Wang, K., et al. (2022) Pan-Cancer Analyses Confirmed the Cuproptosis-Related Gene FDX1 as an Immunotherapy Predictor and Prognostic Biomarker. Frontiers in Genetics, 13, Article 923737.
https://doi.org/10.3389/fgene.2022.923737
[40] Ashton, T.M., McKenna, W.G., Kunz-Schughart, L.A., et al. (2018) Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clinical Cancer Research, 24, 2482-2490.
https://doi.org/10.1158/1078-0432.CCR-17-3070
[41] Wang, L., Cao, Y., Guo, W. and Xu, J. (2022) High Expression of Cuproptosis-Related Gene FDX1 in Relation to Good Prognosis and Immune Cells Infiltration in Colon Adenocarcinoma (COAD). Journal of Cancer Research and Clinical Oncology, 149, 15-24.
https://doi.org/10.1007/s00432-022-04382-7
[42] Chen, G., Zhang, J., Teng, W., Luo, Y. and Ji, X. (2023) FDX1 Inhibits Thyroid Cancer Malignant Progression by Inducing Cuprotosis. Heliyon, 9, e18655.
https://doi.org/10.1016/j.heliyon.2023.e18655
[43] Takahashi, R., Kamizaki, K., Yamanaka, K., Terai, Y. and Minami, Y. (2023) Expression of Ferredoxin1 in Cisplatin-Resistant Ovarian Cancer Cells Confers Their Resistance against Ferroptosis Induced by Cisplatin. Oncology Reports, 49, Article No. 124.
https://doi.org/10.3892/or.2023.8561
[44] Quan, B., Liu, W., Yao, F., et al. (2023) LINC02362/hsa-miR-18a-5p/FDX1 Axis Suppresses Proliferation and Drives Cuproptosis and Oxaliplatin Sensitivity of Hepatocellular Carcinoma. American Journal of Cancer Research, 13, 5590-5609.