[1]
|
Feng, Z., Chen, P., Li, K., Lou, J., Wu, Y., Li, T., et al. (2021) A Novel Ferroptosis-Related Gene Signature Predicts Recurrence in Patients with Pancreatic Ductal Adenocarcinoma. Frontiers in Molecular Biosciences, 8, Article ID: 650264. https://doi.org/10.3389/fmolb.2021.650264
|
[2]
|
Xiong, D., Zhang, L. and Sun, Z. (2023) Targeting the Epigenome to Reinvigorate T Cells for Cancer Immunotherapy. Military Medical Research, 10, Article No. 59. https://doi.org/10.1186/s40779-023-00496-2
|
[3]
|
Specht, K., Haralambieva, E., Bink, K., Kremer, M., Mandl-Weber, S., Koch, I., et al. (2004) Different Mechanisms of Cyclin D1 Overexpression in Multiple Myeloma Revealed by Fluorescence in Situ Hybridization and Quantitative Analysis of mRNA Levels. Blood, 104, 1120-1126. https://doi.org/10.1182/blood-2003-11-3837
|
[4]
|
Wu, H., Tian, W., Tai, X., Li, X., Li, Z., Shui, J., et al. (2021) Identification and Functional Analysis of Novel Oncogene DDX60L in Pancreatic Ductal Adenocarcinoma. BMC Genomics, 22, Article No. 833. https://doi.org/10.1186/s12864-021-08137-5
|
[5]
|
曹丽君, 张行行, 张月, 等. 下调MYEOV抑制胰腺癌细胞PaTu8988增殖、迁移、侵袭[J]. 现代肿瘤医学, 2023, 31(10): 1794-1799.
|
[6]
|
Liang, E., Lu, Y., Shi, Y., Zhou, Q. and Zhi, F. (2020) MYEOV Increases HES1 Expression and Promotes Pancreatic Cancer Progression by Enhancing SOX9 Transactivity. Oncogene, 39, 6437-6450. https://doi.org/10.1038/s41388-020-01443-4
|
[7]
|
Tange, S., Hirano, T., Idogawa, M., Hirata, E., Imoto, I. and Tokino, T. (2023) MYEOV Overexpression Induced by Demethylation of Its Promoter Contributes to Pancreatic Cancer Progression via Activation of the Folate Cycle/c-Myc/mTORC1 Pathway. BMC Cancer, 23, Article No. 85. https://doi.org/10.1186/s12885-022-10433-6
|
[8]
|
Oshima, K., Kato, K., Ito, Y., Daiko, H., Nozaki, I., Nakagawa, S., et al. (2022) Prognostic Biomarker Study in Patients with Clinical Stage I Esophageal Squamous Cell Carcinoma: Jcog0502-a1. Cancer Science, 113, 1018-1027. https://doi.org/10.1111/cas.15251
|
[9]
|
Leyden, J., Murray, D., Moss, A., Arumuguma, M., Doyle, E., McEntee, G., et al. (2006) Net1 and MYEOV: Computationally Identified Mediators of Gastric Cancer. British Journal of Cancer, 94, 1204-1212. https://doi.org/10.1038/sj.bjc.6603054
|
[10]
|
Zhang, Z., Huang, L., Li, J. and Wang, P. (2022) Bioinformatics Analysis Reveals Immune Prognostic Markers for Overall Survival of Colorectal Cancer Patients: A Novel Machine Learning Survival Predictive System. BMC Bioinformatics, 23, Article No. 124. https://doi.org/10.1186/s12859-022-04657-3
|
[11]
|
Lawlor, G., Doran, P.P., MacMathuna, P. and Murray, D.W. (2010) MYEOV (Myeloma Overexpressed Gene) Drives Colon Cancer Cell Migration and Is Regulated by PGE2: Clinical Cancer Research. Journal of Experimental & Clinical Cancer Research, 29, Article No. 81. https://doi.org/10.1186/1756-9966-29-81
|
[12]
|
Horie, M., Kaczkowski, B., Ohshima, M., Matsuzaki, H., Noguchi, S., Mikami, Y., et al. (2017) Integrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC. Molecular Cancer Research, 15, 1354-1365. https://doi.org/10.1158/1541-7786.mcr-17-0191
|
[13]
|
Fang, L., Wu, S., Zhu, X., Cai, J., Wu, J., He, Z., et al. (2018) MYEOV Functions as an Amplified Competing Endogenous RNA in Promoting Metastasis by Activating TGF-β Pathway in NSCLC. Oncogene, 38, 896-912. https://doi.org/10.1038/s41388-018-0484-9
|
[14]
|
Xu, L., Huang, Z., Zeng, Z., Li, J., Xie, H. and Xie, C. (2022) An Integrative Analysis of DNA Methylation and Gene Expression to Predict Lung Adenocarcinoma Prognosis. Frontiers in Genetics, 13, Article ID: 970507. https://doi.org/10.3389/fgene.2022.970507
|
[15]
|
Janssen, J.W.G., Imoto, I., Inoue, J., Shimada, Y., Ueda, M., Imamura, M., et al. (2002) MYEOV, a Gene at 11q13, Is Coamplified with CCND1, but Epigenetically Inactivated in a Subset of Esophageal Squamous Cell Carcinomas. Journal of Human Genetics, 47, 460-464. https://doi.org/10.1007/s100380200065
|
[16]
|
Janssen, J.W.G., Cuny, M., Orsetti, B., Rodriguez, C., Vallés, H., Bartram, C.R., et al. (2002) MYEOV: A Candidate Gene for DNA Amplification Events Occurring Centromeric to ccnd1 in Breast Cancer. International Journal of Cancer, 102, 608-614. https://doi.org/10.1002/ijc.10765
|
[17]
|
Moreaux, J., Hose, D., Bonnefond, A., Reme, T., Robert, N., Goldschmidt, H., et al. (2010) MYEOV Is a Prognostic Factor in Multiple Myeloma. Experimental Hematology, 38, 1189-1198.e3. https://doi.org/10.1016/j.exphem.2010.09.002
|
[18]
|
Ou, D., Wu, Y., Zhang, J., Liu, J., Liu, Z., Shao, M., et al. (2023) MYEOV with High Frequencies of Mutations in Head and Neck Cancers Facilitates Cancer Cell Malignant Behaviors. Biochemical Genetics, 62, 1657-1674. https://doi.org/10.1007/s10528-023-10484-9
|
[19]
|
Takita, J., Chen, Y., Okubo, J., Sanada, M., Adachi, M., Ohki, K., et al. (2011) Aberrations of NEGR1 on 1p31 and MYEOV on 11q13 in Neuroblastoma. Cancer Science, 102, 1645-1650. https://doi.org/10.1111/j.1349-7006.2011.01995.x
|
[20]
|
Wang, J., Zhang, X., Yao, H., Le, Y., Zhou, W., Li, J., et al. (2020) Mir-490-5p Functions as Tumor Suppressor in Childhood Neuroblastoma by Targeting MYEOV. Human Cell, 33, 261-271. https://doi.org/10.1007/s13577-019-00302-z
|
[21]
|
Shafqat, A., Khan, J.A., Alkachem, A.Y., Sabur, H., Alkattan, K., Yaqinuddin, A., et al. (2023) How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. International Journal of Molecular Sciences, 24, Article No. 17583. https://doi.org/10.3390/ijms242417583
|
[22]
|
Zhang, R. and Ma, A. (2021) High Expression of MYEOV Reflects Poor Prognosis in Non-Small Cell Lung Cancer. Gene, 770, Article ID: 145337. https://doi.org/10.1016/j.gene.2020.145337
|
[23]
|
Luo, H. and Ma, C. (2020) Identification of Prognostic Genes in Uveal Melanoma Microenvironment. PLOS ONE, 15, e0242263. https://doi.org/10.1371/journal.pone.0242263
|
[24]
|
Li, Z., Hu, C., Yang, Z., Yang, M., Fang, J. and Zhou, X. (2021) Bioinformatic Analysis of Prognostic and Immune-Related Genes in Pancreatic Cancer. Computational and Mathematical Methods in Medicine, 2021, Article ID: 5549298. https://doi.org/10.1155/2021/5549298
|
[25]
|
Tang, P., Qu, W., Wu, D., Chen, S., Liu, M., Chen, W., et al. (2021) Identifying and Validating an Acidosis-Related Signature Associated with Prognosis and Tumor Immune Infiltration Characteristics in Pancreatic Carcinoma. Journal of Immunology Research, 2021, Article ID: 3821055. https://doi.org/10.1155/2021/3821055
|
[26]
|
Tang, R., Ji, J., Ding, J., Huang, J., Gong, B., Zhang, X., et al. (2020) Overexpression of MYEOV Predicting Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma. Cell Cycle, 19, 1602-1610. https://doi.org/10.1080/15384101.2020.1757243
|
[27]
|
Jiang, Z., Liu, Z., Li, M., Chen, C. and Wang, X. (2019) Increased Glycolysis Correlates with Elevated Immune Activity in Tumor Immune Microenvironment. EBioMedicine, 42, 431-442. https://doi.org/10.1016/j.ebiom.2019.03.068
|
[28]
|
van den Bulk, J., Verdegaal, E.M. and de Miranda, N.F. (2018) Cancer Immunotherapy: Broadening the Scope of Targetable Tumours. Open Biology, 8, Article ID:180037. https://doi.org/10.1098/rsob.180037
|
[29]
|
Tang, R., Liu, X., Wang, W., Hua, J., Xu, J., Liang, C., et al. (2021) Role of Tumor Mutation Burden-Related Signatures in the Prognosis and Immune Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancer Cell International, 21, Article No. 196. https://doi.org/10.1186/s12935-021-01900-4
|
[30]
|
Malumbres, M. and Barbacid, M. (2009) Cell Cycle, Cdks and Cancer: A Changing Paradigm. Nature Reviews Cancer, 9, 153-166. https://doi.org/10.1038/nrc2602
|