[1]
|
Wong, J.K.H., Tan, H.K., Lau, S.Y., Yap, P. and Danquah, M.K. (2019) Potential and Challenges of Enzyme Incorporated Nanotechnology in Dye Wastewater Treatment: A Review. Journal of Environmental Chemical Engineering, 7, Article 103261. https://doi.org/10.1016/j.jece.2019.103261
|
[2]
|
Aziz, H.A., Razak, M.H.A., Rahim, M.Z.A., Kamar, W.I.S.W., Abu Amr, S.S., Hussain, S., et al. (2018) Evaluation and Comparison the Performance of Titanium and Zirconium(IV) Tetrachloride in Textile Wastewater Treatment. Data in Brief, 18, 920-927. https://doi.org/10.1016/j.dib.2018.03.113
|
[3]
|
Dasgupta, J., Sikder, J., Chakraborty, S., Curcio, S. and Drioli, E. (2015) Remediation of Textile Effluents by Membrane Based Treatment Techniques: A State of the Art Review. Journal of Environmental Management, 147, 55-72. https://doi.org/10.1016/j.jenvman.2014.08.008
|
[4]
|
翟英华. 探析印染废水的危害及其治理措施[J]. 黑龙江科技信息, 2017(11): 7.
|
[5]
|
Shen, J., Li, J., Li, F., Zhao, H., Du, Z. and Cheng, F. (2021) Effect of Lignite Activated Coke Packing on Power Generation and Phenol Degradation in Microbial Fuel Cell Treating High Strength Phenolic Wastewater. Chemical Engineering Journal, 417, Article 128091. https://doi.org/10.1016/j.cej.2020.128091
|
[6]
|
尚菊红. 废水中苯酚处理方法研究进展[J]. 辽宁化工, 2019, 48(2): 137-139.
|
[7]
|
孙亮, 牛华英, 王冬晶, 等. 纳米技术在药物废水处理中的应用进展[J]. 中国抗生素杂志, 2021, 46(9): 829-836.
|
[8]
|
Achak, M., Alaoui Bakri, S., Chhiti, Y., M’hamdi Alaoui, F.E., Barka, N. and Boumya, W. (2021) SARS-CoV-2 in Hospital Wastewater during Outbreak of COVID-19: A Review on Detection, Survival and Disinfection Technologies. Science of The Total Environment, 761, Article 143192. https://doi.org/10.1016/j.scitotenv.2020.143192
|
[9]
|
Busca, G., Berardinelli, S., Resini, C. and Arrighi, L. (2008) Technologies for the Removal of Phenol from Fluid Streams: A Short Review of Recent Developments. Journal of Hazardous Materials, 160, 265-288. https://doi.org/10.1016/j.jhazmat.2008.03.045
|
[10]
|
Sinar Mashuri, S.I., Ibrahim, M.L., Kasim, M.F., Mastuli, M.S., Rashid, U., Abdullah, A.H., et al. (2020) Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts, 10, Article 1260. https://doi.org/10.3390/catal10111260
|
[11]
|
Iorhemen, O., Hamza, R. and Tay, J. (2016) Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling. Membranes, 6, Article 33. https://doi.org/10.3390/membranes6020033
|
[12]
|
孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756.
|
[13]
|
Mierzwa, J.C., Rodrigues, R. and Teixeira, A.C.S.C. (2018) UV-Hydrogen Peroxide Processes. In: Ameta, S.C. and Ameta, R., Eds., Advanced Oxidation Processes for Waste Water Treatment, Elsevier, 13-48. https://doi.org/10.1016/b978-0-12-810499-6.00002-4
|
[14]
|
AlHamedi, F.H., Rauf, M.A. and Ashraf, S.S. (2009) Degradation Studies of Rhodamine B in the Presence of UV/H2O2. Desalination, 239, 159-166. https://doi.org/10.1016/j.desal.2008.03.016
|
[15]
|
Daneshvar, N., Behnajady, M.A., Mohammadi, M.K.A. and Dorraji, M.S.S. (2008) UV/H2O2 Treatment of Rhodamine B in Aqueous Solution: Influence of Operational Parameters and Kinetic Modeling. Desalination, 230, 16-26. https://doi.org/10.1016/j.desal.2007.11.012
|
[16]
|
Galindo, C., Jacques, P. and Kalt, A. (2001) Photochemical and Photocatalytic Degradation of an Indigoid Dye: A Case Study of Acid Blue 74 (AB74). Journal of Photochemistry and Photobiology A: Chemistry, 141, 47-56. https://doi.org/10.1016/s1010-6030(01)00435-x
|
[17]
|
Aleboyeh, A., Kasiri, M.B. and Aleboyeh, H. (2012) Influence of Dyeing Auxiliaries on AB74 Dye Degradation by UV/H2O2 Process. Journal of Environmental Management, 113, 426-431. https://doi.org/10.1016/j.jenvman.2012.10.008
|
[18]
|
Haji, S., Benstaali, B. and Al-Bastaki, N. (2011) Degradation of Methyl Orange by UV/H2O2 Advanced Oxidation Process. Chemical Engineering Journal, 168, 134-139. https://doi.org/10.1016/j.cej.2010.12.050
|
[19]
|
Kurbus, T. (2003) Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ Processes for the Decolorisation of Vinylsulphone Reactive Dyes. Dyes and Pigments, 58, 245-252. https://doi.org/10.1016/s0143-7208(03)00085-8
|
[20]
|
Shu, H. and Chang, M. (2005) Decolorization Effects of Six Azo Dyes by O, UV/O and UV/HO Processes. Dyes and Pigments, 65, 25-31. https://doi.org/10.1016/j.dyepig.2004.06.014
|
[21]
|
Muruganandham, M. (2004) Photochemical Oxidation of Reactive Azo Dye with UV-H2O2 Process. Dyes and Pigments, 62, 269-275. https://doi.org/10.1016/j.dyepig.2003.12.006
|
[22]
|
Galindo, C. (1999) UV/H2O2 Oxidation of Azodyes in Aqueous Media: Evidence of a Structure-Degradability Relationship. Dyes and Pigments, 42, 199-207. https://doi.org/10.1016/s0143-7208(99)00035-2
|
[23]
|
Poulopoulos, S., Arvanitakis, F. and Philippopoulos, C. (2006) Photochemical Treatment of Phenol Aqueous Solutions Using Ultraviolet Radiation and Hydrogen Peroxide. Journal of Hazardous Materials, 129, 64-68. https://doi.org/10.1016/j.jhazmat.2005.06.044
|
[24]
|
王锋. UV/H2O2高级氧化处理苯酚废水研究[J]. 当代化工研究, 2021(3): 1-3.
|
[25]
|
Trapido, M., Hirvonen, A., Veressinina, Y., Hentunen, J. and Munter, R. (1997) Ozonation, Ozone/UV and UV/H2O2 Degradation of Chlorophenols. Ozone: Science & Engineering, 19, 75-96. https://doi.org/10.1080/01919519708547319
|
[26]
|
朱琨, 王海涛, 谢春娟, 等. UV-H2O2系统对水中2,4-二氯酚氧化降解研究[J]. 工业用水与废水, 2006, 37(1): 27-31.
|
[27]
|
Ghaly, M.Y., Härtel, G., Mayer, R. and Haseneder, R. (2001) Photochemical Oxidation of p-Chlorophenol by UV/H2O2 and Photo-Fenton Process. A Comparative Study. Waste Management, 21, 41-47. https://doi.org/10.1016/s0956-053x(00)00070-2
|
[28]
|
高乃云, 祝淑敏, 马艳, 等. 2,4,6-三氯酚的UV/H2O2光化学降解[J]. 中南大学学报(自然科学版), 2013, 44(3): 1262-1268.
|
[29]
|
Zhang, A. and Li, Y. (2014) Removal of Phenolic Endocrine Disrupting Compounds from Waste Activated Sludge Using UV, H2O2, and UV/H2O2 Oxidation Processes: Effects of Reaction Conditions and Sludge Matrix. Science of the Total Environment, 493, 307-323. https://doi.org/10.1016/j.scitotenv.2014.05.149
|
[30]
|
苟玺莹, 张盼月, 钱锋, 等. UV/H2O2降解水中对乙酰氨基酚的动力学及反应途径[J]. 环境科学学报, 2018, 38(6): 2123-2130.
|
[31]
|
Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y. and Qu, J. (2011) Photodegradation and Toxicity Changes of Antibiotics in UV and UV/H2O2 Process. Journal of Hazardous Materials, 185, 1256-1263. https://doi.org/10.1016/j.jhazmat.2010.10.040
|
[32]
|
López‐Peñalver, J.J., Sánchez‐Polo, M., Gómez‐Pacheco, C.V. and Rivera‐Utrilla, J. (2010) Photodegradation of Tetracyclines in Aqueous Solution by Using UV and UV/H2O2 Oxidation Processes. Journal of Chemical Technology & Biotechnology, 85, 1325-1333. https://doi.org/10.1002/jctb.2435
|
[33]
|
Kwon, M., Kim, S., Yoon, Y., Jung, Y., Hwang, T., Lee, J., et al. (2015) Comparative Evaluation of Ibuprofen Removal by UV/H2O2 and UV/S2O82-Processes for Wastewater Treatment. Chemical Engineering Journal, 269, 379-390. https://doi.org/10.1016/j.cej.2015.01.125
|
[34]
|
李中华. UV/H2O2工艺对水中布洛芬的降解研究[D]: [硕士学位论文]. 新乡: 河南师范大学, 2016.
|
[35]
|
袁芳. UV/H2O2高级氧化工艺对水中布洛芬的去除试验[J]. 净水技术, 2015, 34(5): 33-38.
|
[36]
|
李华杰, 周婧, 彭明国, 等. UV/H2O2工艺降解典型消炎药布洛芬影响因素和降解机理[J]. 环境工程学报, 2017, 11(2): 839-846.
|
[37]
|
苏荣葵. UV/H2O2高级氧化技术降解布洛芬的研究[J]. 南昌航空大学学报(自然科学版), 2017, 31(2): 97-102, 108.
|
[38]
|
Vogna, D., Marotta, R., Napolitano, A., Andreozzi, R. and d’Ischia, M. (2004) Advanced Oxidation of the Pharmaceutical Drug Diclofenac with UV/H2O2 and Ozone. Water Research, 38, 414-422. https://doi.org/10.1016/j.watres.2003.09.028
|
[39]
|
Wols, B.A., Hofman-Caris, C.H.M., Harmsen, D.J.H. and Beerendonk, E.F. (2013) Degradation of 40 Selected Pharmaceuticals by UV/H2O2. Water Research, 47, 5876-5888. https://doi.org/10.1016/j.watres.2013.07.008
|
[40]
|
Rosario-Ortiz, F.L., Wert, E.C. and Snyder, S.A. (2010) Evaluation of UV/H2O2 Treatment for the Oxidation of Pharmaceuticals in Wastewater. Water Research, 44, 1440-1448. https://doi.org/10.1016/j.watres.2009.10.031
|
[41]
|
Tan, C., Gao, N., Deng, Y., Zhang, Y., Sui, M., Deng, J., et al. (2013) Degradation of Antipyrine by UV, UV/H2O2 and UV/PS. Journal of Hazardous Materials, 260, 1008-1016. https://doi.org/10.1016/j.jhazmat.2013.06.060
|
[42]
|
Tian, F., Ye, W., Xu, B., Hu, X., Ma, S., Lai, F., et al. (2020) Comparison of UV-Induced AOPs (UV/Cl2, UV/NH2Cl, UV/ClO2 and UV/H2O2) in the Degradation of Iopamidol: Kinetics, Energy Requirements and DBPs-Related Toxicity in Sequential Disinfection Processes. Chemical Engineering Journal, 398, Article 125570. https://doi.org/10.1016/j.cej.2020.125570
|
[43]
|
Afzal, A., Oppenländer, T., Bolton, J.R. and El-Din, M.G. (2010) Anatoxin—A Degradation by Advanced Oxidation Processes: Vacuum-UV at 172 nm, Photolysis Using Medium Pressure UV and UV/H2O2. Water Research, 44, 278-286. https://doi.org/10.1016/j.watres.2009.09.021
|
[44]
|
Chang, M., Chung, C., Chern, J. and Chen, T. (2010) Dye Decomposition Kinetics by UV/H2O2: Initial Rate Analysis by Effective Kinetic Modelling Methodology. Chemical Engineering Science, 65, 135-140. https://doi.org/10.1016/j.ces.2009.01.056
|
[45]
|
Aleboyeh, A., Moussa, Y. and Aleboyeh, H. (2005) The Effect of Operational Parameters on UV/H2O2 Decolourisation of Acid Blue 74. Dyes and Pigments, 66, 129-134. https://doi.org/10.1016/j.dyepig.2004.09.008
|