[1]
|
Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., et al. (2020) Prevalence of Diabetes Recorded in Mainland China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. BMJ, 369, m997. https://doi.org/10.1136/bmj.m997
|
[2]
|
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华内分泌代谢杂志, 2021, 37(4): 311-398.
|
[3]
|
葛均波, 霍勇, 高秀芳, 等. 改善心血管和肾脏结局的新型抗高血糖药物临床应用中国专家建议[J]. 中国循环杂志, 2020, 35(3): 231-238.
|
[4]
|
Wheeler, D.C., Stefánsson, B.V., Jongs, N., Chertow, G.M., Greene, T., Hou, F.F., et al. (2021) Effects of Dapagliflozin on Major Adverse Kidney and Cardiovascular Events in Patients with Diabetic and Non-Diabetic Chronic Kidney Disease: A Prespecified Analysis from the DAPA-CKD Trial. The Lancet Diabetes & Endocrinology, 9, 22-31. https://doi.org/10.1016/s2213-8587(20)30369-7
|
[5]
|
McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Martinez, F.A., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008. https://doi.org/10.1056/nejmoa1911303
|
[6]
|
The EMPA-KIDNEY Collaborative Group (2023) Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 388, 117-127. https://doi.org/10.1056/nejmoa2204233
|
[7]
|
Perkovic, V., Jardine, M.J., Neal, B., Bompoint, S., Heerspink, H.J.L., Charytan, D.M., et al. (2019) Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 380, 2295-2306. https://doi.org/10.1056/nejmoa1811744
|
[8]
|
DeFronzo, R.A., Norton, L. and Abdul-Ghani, M. (2016) Renal, Metabolic and Cardiovascular Considerations of SGLT2 Inhibition. Nature Reviews Nephrology, 13, 11-26. https://doi.org/10.1038/nrneph.2016.170
|
[9]
|
Cingolani, H.E. and Ennis, I.L. (2007) Sodium-Hydrogen Exchanger, Cardiac Overload, and Myocardial Hypertrophy. Circulation, 115, 1090-1100. https://doi.org/10.1161/circulationaha.106.626929
|
[10]
|
Baartscheer, A., Schumacher, C.A., Wüst, R.C.I., Fiolet, J.W.T., Stienen, G.J.M., Coronel, R., et al. (2016) Empagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia, 60, 568-573. https://doi.org/10.1007/s00125-016-4134-x
|
[11]
|
Shin, S.J., Chung, S., Kim, S.J., Lee, E., Yoo, Y., Kim, J., et al. (2016) Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes. PLOS ONE, 11, e0165703. https://doi.org/10.1371/journal.pone.0165703
|
[12]
|
Durante, W., Behnammanesh, G. and Peyton, K.J. (2021) Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. International Journal of Molecular Sciences, 22, Article 8786. https://doi.org/10.3390/ijms22168786
|
[13]
|
Koike, Y., Shirabe, S., Maeda, H., Yoshimoto, A., Arai, K., Kumakura, A., et al. (2019) Effect of Canagliflozin on the Overall Clinical State Including Insulin Resistance in Japanese Patients with Type 2 Diabetes Mellitus. Diabetes Research and Clinical Practice, 149, 140-146. https://doi.org/10.1016/j.diabres.2019.01.029
|
[14]
|
Yip, A.S.Y., Leong, S., Teo, Y.H., Teo, Y.N., Syn, N.L.X., See, R.M., et al. (2022) Effect of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors on Serum Urate Levels in Patients with and without Diabetes: A Systematic Review and Meta-Regression of 43 Randomized Controlled Trials. Therapeutic Advances in Chronic Disease, 13. https://doi.org/10.1177/20406223221083509
|
[15]
|
Lin, B., Koibuchi, N., Hasegawa, Y., Sueta, D., Toyama, K., Uekawa, K., et al. (2014) Glycemic Control with Empagliflozin, a Novel Selective SGLT2 Inhibitor, Ameliorates Cardiovascular Injury and Cognitive Dysfunction in Obese and Type 2 Diabetic Mice. Cardiovascular Diabetology, 13, Article No. 148. https://doi.org/10.1186/s12933-014-0148-1
|
[16]
|
Korbut, A.I., Taskaeva, I.S., Bgatova, N.P., Muraleva, N.A., Orlov, N.B., Dashkin, M.V., et al. (2020) SGLT2 Inhibitor Empagliflozin and DPP4 Inhibitor Linagliptin Reactivate Glomerular Autophagy in db/db Mice, a Model of Type 2 Diabetes. International Journal of Molecular Sciences, 21, Article 2987. https://doi.org/10.3390/ijms21082987
|
[17]
|
Bonnet, F. and Scheen, A.J. (2018) Effects of SGLT2 Inhibitors on Systemic and Tissue Low-Grade Inflammation: The Potential Contribution to Diabetes Complications and Cardiovascular Disease. Diabetes & Metabolism, 44, 457-464. https://doi.org/10.1016/j.diabet.2018.09.005
|
[18]
|
McGovern, A.P., Hogg, M., Shields, B.M., Sattar, N.A., Holman, R.R., Pearson, E.R., et al. (2020) Risk Factors for Genital Infections in People Initiating SGLT2 Inhibitors and Their Impact on Discontinuation. BMJ Open Diabetes Research & Care, 8, e001238. https://doi.org/10.1136/bmjdrc-2020-001238
|
[19]
|
纪立伟. 关注钠-葡萄糖转运蛋白2抑制剂引起的非高血糖性酮症酸中毒[J]. 药物不良反应杂志, 2021, 23(6): 281-284.
|