[1]
|
Wang, L., Xu, X., Zhang, M., Hu, C., Zhang, X., Li, C., et al. (2023) Prevalence of Chronic Kidney Disease in China. JAMA Internal Medicine, 183, 298-310. https://doi.org/10.1001/jamainternmed.2022.6817
|
[2]
|
Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2017) KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney International Supplements, 7, 1-59. https://doi.org/10.1016/j.kisu.2017.04.001
|
[3]
|
程海涛, 张晓暄, 李银辉. 肾性骨病发病机制研究及进展[J]. 中国骨质疏松杂志, 2020, 26(10): 1550-1554.
|
[4]
|
王左钰, 周阳, 熊明霞, 等. 成骨细胞代谢重编程与早期肾性骨病发生发展的研究进展[J]. 中国全科医学, 2024, 27(15): 1904-1910.
|
[5]
|
倪利华, 宋凯云, 汪晓晨, 等. 甲状旁腺素通过Wnt/β-catenin信号通路诱导内皮细胞发生内皮-脂肪细胞转分化[J]. 中华肾脏病杂志, 2019, 35(6): 432-440.
|
[6]
|
伍子贤, 戴如璋, 林少豪, 等. 肾性骨病相关分子通路的研究进展[J]. 中国骨质疏松杂志, 2020, 26(1): 146-151.
|
[7]
|
Muñoz-Castañeda, J.R., Rodelo-Haad, C., Pendon-Ruiz de Mier, M.V., Martin-Malo, A., Santamaria, R. and Rodriguez, M. (2020) Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins, 12, Article 185. https://doi.org/10.3390/toxins12030185
|
[8]
|
Sutkeviciute, I., Clark, L.J., White, A.D., Gardella, T.J. and Vilardaga, J. (2019) PTH/PTHrP Receptor Signaling, Allostery, and Structures. Trends in Endocrinology & Metabolism, 30, 860-874. https://doi.org/10.1016/j.tem.2019.07.011
|
[9]
|
张洪彬, 赵寒辉, 王素霞, 等. 继发性甲状旁腺功能亢进的发病机制和诊治[J]. 临床肾脏病杂志, 2021, 21(11): 950-956.
|
[10]
|
郭亮, 周文胜, 朱恒涛. 继发性甲状旁腺功能亢进治疗进展[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(9): 883-888.
|
[11]
|
Schunk, S.J., Floege, J., Fliser, D. and Speer, T. (2020) Wnt-β-Catenin Signalling—A Versatile Player in Kidney Injury and Repair. Nature Reviews Nephrology, 17, 172-184. https://doi.org/10.1038/s41581-020-00343-w
|
[12]
|
Hu, L., Chen, W., Qian, A. and Li, Y. (2024) Wnt/β-Catenin Signaling Components and Mechanisms in Bone Formation, Homeostasis, and Disease. Bone Research, 12, Article No. 39. https://doi.org/10.1038/s41413-024-00342-8
|
[13]
|
Cruciat, C.-M. and Niehrs, C. (2012) Secreted and Transmembrane Wnt Inhibitors and Activators. Cold Spring Harbor Perspectives in Biology, 5, a015081. https://doi.org/10.1101/cshperspect.a015081
|
[14]
|
Kim, J., Han, W., Park, T., Kim, E.J., Bang, I., Lee, H.S., et al. (2020) Sclerostin Inhibits Wnt Signaling through Tandem Interaction with Two LRP6 Ectodomains. Nature Communications, 11, Article No. 5357. https://doi.org/10.1038/s41467-020-19155-4
|
[15]
|
Sun, N., Uda, Y., Azab, E., Kochen, A., Santos, R.N.C.E., Shi, C., et al. (2019) Effects of Histone Deacetylase Inhibitor Scriptaid and Parathyroid Hormone on Osteocyte Functions and Metabolism. Journal of Biological Chemistry, 294, 9722-9733. https://doi.org/10.1074/jbc.ra118.007312
|
[16]
|
Kulkarni, N.H., Halladay, D.L., Miles, R.R., Gilbert, L.M., Frolik, C.A., Galvin, R.J.S., et al. (2005) Effects of Parathyroid Hormone on Wnt Signaling Pathway in Bone. Journal of Cellular Biochemistry, 95, 1178-1190. https://doi.org/10.1002/jcb.20506
|
[17]
|
Bordukalo-Nikšić, T., Kufner, V. and Vukičević, S. (2022) The Role of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Frontiers in Immunology, 13, Article 869422. https://doi.org/10.3389/fimmu.2022.869422
|
[18]
|
周鑫, 邢露, 李鹏权, 等. 血管钙化抑制因子BMP-7的研究进展[J]. 中国药理学通报, 2024, 40(7): 1226-1230.
|
[19]
|
Mathew, S., Davies, M., Lund, R., Saab, G. and Hruska, K.A. (2006) Function and Effect of Bone Morphogenetic Protein-7 in Kidney Bone and the Bone-Vascular Links in Chronic Kidney Disease. European Journal of Clinical Investigation, 36, 43-50. https://doi.org/10.1111/j.1365-2362.2006.01663.x
|
[20]
|
Dalfino, G., Simone, S., Porreca, S., Cosola, C., Balestra, C., Manno, C., et al. (2010) Bone Morphogenetic Protein-2 May Represent the Molecular Link between Oxidative Stress and Vascular Stiffness in Chronic Kidney Disease. Atherosclerosis, 211, 418-423. https://doi.org/10.1016/j.atherosclerosis.2010.04.023
|
[21]
|
Chen, N.X., Duan, D., O’Neill, K.D., Wolisi, G.O., Koczman, J.J., LaClair, R., et al. (2006) The Mechanisms of Uremic Serum-Induced Expression of Bone Matrix Proteins in Bovine Vascular Smooth Muscle Cells. Kidney International, 70, 1046-1053. https://doi.org/10.1038/sj.ki.5001663
|
[22]
|
David, V., Martin, A., Isakova, T., Spaulding, C., Qi, L., Ramirez, V., et al. (2016) Inflammation and Functional Iron Deficiency Regulate Fibroblast Growth Factor 23 Production. Kidney International, 89, 135-146. https://doi.org/10.1038/ki.2015.290
|
[23]
|
Portales-Castillo, I. and Simic, P. (2022) PTH, FGF-23, Klotho and Vitamin D as Regulators of Calcium and Phosphorus: Genetics, Epigenetics and Beyond. Frontiers in Endocrinology, 13, Article 992666. https://doi.org/10.3389/fendo.2022.992666
|
[24]
|
Erben, R.G. and Andrukhova, O. (2017) FGF23-Klotho Signaling Axis in the Kidney. Bone, 100, 62-68. https://doi.org/10.1016/j.bone.2016.09.010
|
[25]
|
Freundlich, M., Gamba, G. and Rodriguez-Iturbe, B. (2020) Fibroblast Growth Factor 23—Klotho and Hypertension: Experimental and Clinical Mechanisms. Pediatric Nephrology, 36, 3007-3022. https://doi.org/10.1007/s00467-020-04843-6
|
[26]
|
Kawai, M., Kinoshita, S., Shimba, S., Ozono, K. and Michigami, T. (2014) Sympathetic Activation Induces Skeletal FGF23 Expression in a Circadian Rhythm-Dependent Manner. Journal of Biological Chemistry, 289, 1457-1466. https://doi.org/10.1074/jbc.m113.500850
|
[27]
|
王世涛, 张法荣. 肾性骨病的中医药治疗进展[J]. 中国中西医结合肾病杂志, 2023, 24(4): 368-370.
|
[28]
|
Kim, J., Kim, M., Hong, S., Kim, E., Lee, H., Jung, H., et al. (2021) Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Frontiers in Pharmacology, 12, Article 690113. https://doi.org/10.3389/fphar.2021.690113
|
[29]
|
Zhang, Z., Zhang, Q., Yang, H., Liu, W., Zhang, N., Qin, L., et al. (2016) Monotropein Isolated from the Roots of Morinda Officinalis Increases Osteoblastic Bone Formation and Prevents Bone Loss in Ovariectomized Mice. Fitoterapia, 110, 166-172. https://doi.org/10.1016/j.fitote.2016.03.013
|
[30]
|
Lee, S., Park, S., Kwak, H., Oh, J., Min, Y. and Kim, S. (2008) Anabolic Activity of Ursolic Acid in Bone: Stimulating Osteoblast Differentiation in Vitro and Inducing New Bone Formation in vivo. Pharmacological Research, 58, 290-296. https://doi.org/10.1016/j.phrs.2008.08.008
|
[31]
|
姚鑫宇, 武瑞骐, 陈广辉, 等. 地黄活性成分治疗骨质疏松症的相关信号通路研究[J]. 中国骨质疏松杂志, 2023, 29(12): 1826-1832, 1850.
|
[32]
|
Deng, T., Ding, W., Lu, X., Zhang, Q., Du, J., Wang, L., et al. (2024) Pharmacological and Mechanistic Aspects of Quercetin in Osteoporosis. Frontiers in Pharmacology, 15, Article 1338951. https://doi.org/10.3389/fphar.2024.1338951
|
[33]
|
Wei, Q., He, M., Chen, M., Chen, Z., Yang, F., Wang, H., et al. (2017) Icariin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Stem Cells by Increasing TAZ Expression. Biomedicine & Pharmacotherapy, 91, 581-589. https://doi.org/10.1016/j.biopha.2017.04.019
|
[34]
|
Chen, X., Shen, Y., He, M., Yang, F., Yang, P., Pang, F., et al. (2019) Polydatin Promotes the Osteogenic Differentiation of Human Bone Mesenchymal Stem Cells by Activating the Bmp2-Wnt/β-Catenin Signaling Pathway. Biomedicine & Pharmacotherapy, 112, Article 108746. https://doi.org/10.1016/j.biopha.2019.108746
|
[35]
|
Tao, K., Xiao, D., Weng, J., Xiong, A., Kang, B. and Zeng, H. (2016) Berberine Promotes Bone Marrow-Derived Mesenchymal Stem Cells Osteogenic Differentiation via Canonical Wnt/β-Catenin Signaling Pathway. Toxicology Letters, 240, 68-80. https://doi.org/10.1016/j.toxlet.2015.10.007
|
[36]
|
Chen, J., Liao, X. and Gan, J. (2023) Review on the Protective Activity of Osthole against the Pathogenesis of Osteoporosis. Frontiers in Pharmacology, 14, Article 1236893. https://doi.org/10.3389/fphar.2023.1236893
|
[37]
|
郭华慧, 李美丹, 黄仁发, 等. 基于Klotho-FGF23轴探讨加味六味地黄汤对CKD-MBD模型大鼠骨保护作用的机制[J]. 中国实验方剂学杂志, 2021, 27(24): 61-70.
|
[38]
|
郭华慧, 黄仁发. 基于Wnt/β-catenin信号通路探讨加味六味地黄汤改善肾性骨病的机制[D]: [硕士学位论文]. 南宁: 广西中医药大学, 2021.
|
[39]
|
李永伟, 王美霞, 冯静, 等. 黑地黄丸对肾性骨病大鼠的改善作用机制研究[J]. 中国临床药理学杂志, 2021, 37(18): 2472-2475.
|
[40]
|
于思明, 郭丹丹, 代丽娟, 等. 补肾健骨方对维持性血液透析患者肾性骨病与血清Klotho蛋白水平的影响[J]. 中国临床保健杂志, 2021, 24(4): 454-458.
|
[41]
|
杨冰, 檀金川. 延肾一号方对维持性血透矿物质和骨代谢异常患者FGF23、klotho蛋白的影响[D]: [硕士学位论文]. 石家庄: 河北中医学院, 2021.
|
[42]
|
Hu, S., Wang, D., Zhang, R., et al. (2018) Effect of Ronghuang Granule on serum FGF23, FGFRs and Klotho in Non-Dialysis Patients with CKD-MBD and Kidney Deficiency and Damp-Heat Syndrome. Journal of Southern Medical University, 38, 1427-1432. https://doi.org/10.12122/j.issn.1673-4254.2018.12.05
|
[43]
|
Ma, X. and He, L. (2018) The Intervention Effect of Zuogui Pill on Chronic Kidney Disease-Mineral and Bone Disorder Regulatory Factor. Biomedicine & Pharmacotherapy, 106, 54-60. https://doi.org/10.1016/j.biopha.2018.06.092
|