[1]
|
段克友, 官建中. 外泌体在骨质疏松症治疗中的研究进展[J]. 中国修复重建外科杂志, 2021, 35(12): 1642-1649.
|
[2]
|
Gielen, E., Dupont, J., Dejaeger, M. and Laurent, M.R. (2023) Sarcopenia, Osteoporosis and Frailty. Metabolism, 145, Article 155638. https://doi.org/10.1016/j.metabol.2023.155638
|
[3]
|
赵宗权, 吴贻红, 汤振源, 等. 老年骨质疏松症流行病学调查及预防措施研究[J]. 中国骨质疏松杂志, 2019, 25(7): 994-997.
|
[4]
|
Kanis, J.A., Cooper, C., Rizzoli, R. and Reginster, J.-Y. (2019) Executive Summary of the European Guidance for the Diagnosis and Management of Osteoporosis in Postmenopausal Women. Calcified Tissue International, 104, 235-238. https://doi.org/10.1007/s00223-018-00512-x
|
[5]
|
中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4): 317-318.
|
[6]
|
Hernlund, E., Svedbom, A., Ivergård, M., Compston, J., Cooper, C., Stenmark, J., et al. (2013) Osteoporosis in the European Union: Medical Management, Epidemiology and Economic Burden. Archives of Osteoporosis, 8, Article No. 136. https://doi.org/10.1007/s11657-013-0136-1
|
[7]
|
Cervellati, C., Bonaccorsi, G., Piva, I. and Greco, P. (2018) Oxidative Stress as a Possible Pathogenic Cofactor of Post-Menopausal Osteoporosis: Existing Evidence in Support of the Axis Oestrogen Deficiency-Redox Imbalance-Bone Loss. Indian Journal of Medical Research, 147, Article 341. https://doi.org/10.4103/ijmr.ijmr_524_18
|
[8]
|
Krylova, S.V. and Feng, D. (2023) The Machinery of Exosomes: Biogenesis, Release, and Uptake. International Journal of Molecular Sciences, 24, Article 1337. https://doi.org/10.3390/ijms24021337
|
[9]
|
Yu, X., Odenthal, M. and Fries, J. (2016) Exosomes as Mirna Carriers: Formation-Function-Future. International Journal of Molecular Sciences, 17, Article 2028. https://doi.org/10.3390/ijms17122028
|
[10]
|
Yang, Y., Yujiao, W., Fang, W., Linhui, Y., Ziqi, G., Zhichen, W., et al. (2020) The Roles of Mirna, Lncrna and Circrna in the Development of Osteoporosis. Biological Research, 53, Article No. 40. https://doi.org/10.1186/s40659-020-00309-z
|
[11]
|
Behera, J., Ison, J., Tyagi, A., Mbalaviele, G. and Tyagi, N. (2022) Mechanisms of Autophagy and Mitophagy in Skeletal Development, Diseases and Therapeutics. Life Sciences, 301, Article 120595. https://doi.org/10.1016/j.lfs.2022.120595
|
[12]
|
Bottani, M., Banfi, G. and Lombardi, G. (2019) Perspectives on miRNAs as Epigenetic Markers in Osteoporosis and Bone Fracture Risk: A Step Forward in Personalized Diagnosis. Frontiers in Genetics, 10, Article 1044. https://doi.org/10.3389/fgene.2019.01044
|
[13]
|
Armas, L.A.G. and Recker, R.R. (2012) Pathophysiology of Osteoporosis. Endocrinology and Metabolism Clinics of North America, 41, 475-486. https://doi.org/10.1016/j.ecl.2012.04.006
|
[14]
|
Tu, C., He, J., Chen, R. and Li, Z. (2020) The Emerging Role of Exosomal Non-Coding RNAs in Musculoskeletal Diseases. Current Pharmaceutical Design, 25, 4523-4535. https://doi.org/10.2174/1381612825666191113104946
|
[15]
|
Zhu, Y., Li, Z., Zhang, Y., Lan, F., He, J. and Wu, Y. (2020) The Essential Role of Osteoclast-Derived Exosomes in Magnetic Nanoparticle-Infiltrated Hydroxyapatite Scaffold Modulated Osteoblast Proliferation in an Osteoporosis Model. Nanoscale, 12, 8720-8726. https://doi.org/10.1039/d0nr00867b
|
[16]
|
Sun, Y., Kuek, V., Liu, Y., Tickner, J., Yuan, Y., Chen, L., et al. (2018) MiR-214 Is an Important Regulator of the Musculoskeletal Metabolism and Disease. Journal of Cellular Physiology, 234, 231-245. https://doi.org/10.1002/jcp.26856
|
[17]
|
Li, D., Liu, J., Guo, B., Liang, C., Dang, L., Lu, C., et al. (2016) Osteoclast-Derived Exosomal miR-214-3p Inhibits Osteoblastic Bone Formation. Nature Communications, 7, Article No. 10872. https://doi.org/10.1038/ncomms10872
|
[18]
|
Zhu, S., Yao, F., Qiu, H., Zhang, G., Xu, H. and Xu, J. (2017) Coupling Factors and Exosomal Packaging Micrornas Involved in the Regulation of Bone Remodelling. Biological Reviews, 93, 469-480. https://doi.org/10.1111/brv.12353
|
[19]
|
Chen, M., Li, Y., Lv, H., Yin, P., Zhang, L. and Tang, P. (2020) Quantitative Proteomics and Reverse Engineer Analysis Identified Plasma Exosome Derived Protein Markers Related to Osteoporosis. Journal of Proteomics, 228, Article 103940. https://doi.org/10.1016/j.jprot.2020.103940
|
[20]
|
Xu, R., Shen, X., Si, Y., Fu, Y., Zhu, W., Xiao, T., et al. (2018) MicroRNA-31a-5p from Aging BMSCs Links Bone Formation and Resorption in the Aged Bone Marrow Microenvironment. Aging Cell, 17, e12794. https://doi.org/10.1111/acel.12794
|
[21]
|
Lu, Q., Qin, H., Tan, H., Wei, C., Yang, X., He, J., et al. (2021) Senescence Osteoblast-Derived Exosome-Mediated Mir-139-5p Regulates Endothelial Cell Functions. BioMed Research International, 2021, 1-12. https://doi.org/10.1155/2021/5576023
|
[22]
|
何姣姣, 陈以发, 陈玉林, 等. 绝经后骨质疏松的骨免疫学机制[J]. 中国骨质疏松杂志, 2023, 29(7): 1032-1036.
|
[23]
|
瞿霖, 赵梦幻, 王冬玉, 等. 雌激素受体α在绝经后骨质疏松中的研究进展及作用机制[J]. 中国骨质疏松杂志, 2024, 30(7): 1021-1027.
|
[24]
|
顾亚, 李毅, 陈铭, 等. 不同细胞来源外泌体在骨质疏松小鼠体内的骨靶向性比较[J]. 解放军医学院学报, 2021, 42(3): 310-314.
|
[25]
|
Luo, Z., Li, F., Liu, Y., Rao, S., Yin, H., Huang, J., et al. (2019) Aptamer-Functionalized Exosomes from Bone Marrow Stromal Cells Target Bone to Promote Bone Regeneration. Nanoscale, 11, 20884-20892. https://doi.org/10.1039/c9nr02791b
|
[26]
|
叶庆元, 邱新毓, 田荣, 等. 供体MSCs来源的外泌体转运miR-26a恢复宿主MSCs功能并缓解骨质疏松[J]. 实用口腔医学杂志, 2017, 33(5): 575-579.
|
[27]
|
Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E.M. and Xie, C. (2017) Osteoblast-Osteoclast Interactions. Connective Tissue Research, 59, 99-107. https://doi.org/10.1080/03008207.2017.1290085
|
[28]
|
Zhang, J., Fu, W., He, M., Xie, W., Lv, Q., Wan, G., et al. (2011) MiRNA-20a Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells by Co-Regulating BMP Signaling. RNA Biology, 8, 829-838. https://doi.org/10.4161/rna.8.5.16043
|
[29]
|
Maeda, K., Kobayashi, Y., Koide, M., Uehara, S., Okamoto, M., Ishihara, A., et al. (2019) The Regulation of Bone Metabolism and Disorders by Wnt Signaling. International Journal of Molecular Sciences, 20, Article 5525. https://doi.org/10.3390/ijms20225525
|
[30]
|
Vimalraj, S., Partridge, N.C. and Selvamurugan, N. (2014) A Positive Role of MicroRNA-15b on Regulation of Osteoblast Differentiation. Journal of Cellular Physiology, 229, 1236-1244. https://doi.org/10.1002/jcp.24557
|
[31]
|
Zhang, F., Cao, K., Du, G., Zhang, Q. and Yin, Z. (2019) miR-29a Promotes Osteoblast Proliferation by Downregulating DKK-1 Expression and Activating Wnt/β-Catenin Signaling Pathway. Advances in Clinical and Experimental Medicine, 28, 1293-1300. https://doi.org/10.17219/acem/104533
|
[32]
|
Elson, A., Anuj, A., Barnea-Zohar, M. and Reuven, N. (2022) The Origins and Formation of Bone-Resorbing Osteoclasts. Bone, 164, Article 116538. https://doi.org/10.1016/j.bone.2022.116538
|
[33]
|
Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., et al. (2005) DC-STAMP Is Essential for Cell-Cell Fusion in Osteoclasts and Foreign Body Giant Cells. The Journal of Experimental Medicine, 202, 345-351. https://doi.org/10.1084/jem.20050645
|
[34]
|
Dou, C., Zhang, C., Kang, F., Yang, X., Jiang, H., Bai, Y., et al. (2014) miR-7b Directly Targets DC-STAMP Causing Suppression of Nfatc1 and C-Fos Signaling during Osteoclast Fusion and Differentiation. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1839, 1084-1096. https://doi.org/10.1016/j.bbagrm.2014.08.002
|
[35]
|
Lee, Y., Kim, H.J., Park, C.K., Kim, Y., Lee, H., Kim, J., et al. (2013) MicroRNA-124 Regulates Osteoclast Differentiation. Bone, 56, 383-389. https://doi.org/10.1016/j.bone.2013.07.007
|
[36]
|
Tang, L., Yin, Y., Liu, J., Li, Z. and Lu, X. (2017) miR-124 Attenuates Osteoclastogenic Differentiation of Bone Marrow Monocytes via Targeting Rab27a. Cellular Physiology and Biochemistry, 43, 1663-1672. https://doi.org/10.1159/000484027
|
[37]
|
Minamizaki, T., Nakao, Y., Irie, Y., Ahmed, F., Itoh, S., Sarmin, N., et al. (2020) The Matrix Vesicle Cargo miR-125b Accumulates in the Bone Matrix, Inhibiting Bone Resorption in Mice. Communications Biology, 3, Article No. 30. https://doi.org/10.1038/s42003-020-0754-2
|
[38]
|
史晓林, 刘康. 老年性骨质疏松症中西医结合诊疗指南[J]. 中国骨质疏松杂志, 2024, 30(7): 937-946.
|
[39]
|
葛继荣, 王和鸣, 郑洪新, 等. 中医药防治原发性骨质疏松症专家共识(2020) [J]. 中国骨质疏松杂志, 2020, 26(12): 1717-1725.
|
[40]
|
叶佰盛, 李威, 黄振, 等. 从《内经》“生病起于过用”探讨原发性骨质疏松症因机证治[J]. 中国骨质疏松杂志, 2024, 30(2): 246-249.
|
[41]
|
张文明. miR-141调控OP小鼠BMSCs成骨分化机制及健骨颗粒干预作用研究[D]: [博士学位论文]. 福州: 福建中医药大学, 2016.
|
[42]
|
汪青. 二仙汤治疗肾阳虚型绝经后骨质疏松症的临床疗效评价及基于网络药理学的机制研究[D]: [博士学位论文]. 南京: 南京中医药大学, 2021.
|
[43]
|
潘欣, 曾思良, 梁兴伦, 等. MicroRNA-195-5p调节Bmpr1α表达对骨髓间充质干细胞成脂分化的影响[J]. 同济大学学报(医学版), 2017, 38(3): 1-7+13.
|
[44]
|
陈哲. 糖尿病骨质疏松中医证型及滋肾降糖丸干预作用研究[D]: [硕士学位论文]. 广州: 广州中医药大学, 2018.
|
[45]
|
张昊, 余翔, 任辉, 等. 左归丸调控miR34a对BMSCs成骨分化能力的影响[J]. 辽宁中医杂志, 2018, 45(6): 1300-1304.
|
[46]
|
He, C., Wang, Z. and Shi, J. (2020) Pharmacological Effects of Icariin. Advances in Pharmacology, 87, 179-203. https://doi.org/10.1016/bs.apha.2019.10.004
|
[47]
|
袁雯霞, 赵杨敏, 干云霄, 等. 淫羊藿苷对缺糖缺氧条件下间充质干细胞活性及旁分泌功能的影响[J]. 浙江医学教育, 2020, 19(2): 41-44.
|
[48]
|
杨傲飞. 基于肾主骨生髓理论研究淫羊藿苷调控外泌体内miR-122-5p对BMSCs成骨、迁移的作用及机制[D]: [博士学位论文]. 武汉: 湖北中医药大学, 2020.
|
[49]
|
孙海涛. LncRNA TIM3/miR-214-5p/Samd4轴在绝经后骨质疏松症中的分子机制及淫羊藿苷的干预效应[D]: [博士学位论文]. 南京: 南京中医药大学, 2021.
|
[50]
|
徐月新. miR-664-3p通过靶向调节Smad4和Osterix的表达而促进骨质疏松的发生[D]: [硕士学位论文]. 南京: 南京中医药大学, 2015.
|
[51]
|
郭招娣. 异补骨脂素干预后BMSCs源性外泌体调控MC3T3-E1成骨分化的研究[D]: [硕士学位论文]. 广州: 广州中医药大学, 2019.
|
[52]
|
张莹莹. 葛根素对成骨细胞miRNA-204的调控及其与Runx2基因表达的关系[D]: [硕士学位论文]. 南京: 南京中医药大学, 2016.
|
[53]
|
Huang, M., Zhuang, Y., Ning, X., Zhang, H., Shen, Z. and Shang, X. (2020) Artesunate Inhibits Osteoclastogenesis through the miR-503/Rank Axis. Bioscience Reports, 40, BSR20194387. https://doi.org/10.1042/bsr20194387
|
[54]
|
Zeng, H., Dong, L., Xu, C., Zhao, X. and Wu, L. (2020) Artesunate Promotes Osteoblast Differentiation through miR-34a/DKK1 Axis. Acta Histochemica, 122, Article 151601. https://doi.org/10.1016/j.acthis.2020.151601
|
[55]
|
Zhang, Y., Liu, M., He, Y., Deng, N., Chen, Y., Huang, J., et al. (2020) Protective Effect of Resveratrol on Estrogen Deficiency-Induced Osteoporosis Though Attenuating NADPH Oxidase 4/nuclear Factor Kappa B Pathway by Increasing miR-92b-3p Expression. International Journal of Immunopathology and Pharmacology, 34, Article 205873842094176. https://doi.org/10.1177/2058738420941762
|