[1]
|
Divolis, G., Synolaki, E., Doulou, A., Gavriil, A., Giannouli, C.C., Apostolidou, A., et al. (2024) Neutrophil-Derived Activin-A Moderates Their Pro-Netotic Activity and Attenuates Collateral Tissue Damage Caused by Influenza A Virus Infection. Frontiers in Immunology, 15, Article 1302489. https://doi.org/10.3389/fimmu.2024.1302489
|
[2]
|
Mutua, V. and Gershwin, L.J. (2020) A Review of Neutrophil Extracellular Traps (Nets) in Disease: Potential Anti-Nets Therapeutics. Clinical Reviews in Allergy & Immunology, 61, 194-211. https://doi.org/10.1007/s12016-020-08804-7
|
[3]
|
Lawrence, S.M., Corriden, R. and Nizet, V. (2018) The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiology and Molecular Biology Reviews, 82, e00057-17. https://doi.org/10.1128/mmbr.00057-17
|
[4]
|
Papayannopoulos, V. (2017) Neutrophil Extracellular Traps in Immunity and Disease. Nature Reviews Immunology, 18, 134-147. https://doi.org/10.1038/nri.2017.105
|
[5]
|
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535. https://doi.org/10.1126/science.1092385
|
[6]
|
戚明珠, 李卓航, 黄荷兰, 等. 体外诱导中性粒细胞胞外诱捕网形成条件的优选及验证[J]. 中国中药杂志, 2024, 49(9): 2336-2344.
|
[7]
|
Pruchniak, M.P., Kotuła, I. and Manda-Handzlik, A. (2015) Review Paper Neutrophil Extracellular Traps (Nets) Impact upon Autoimmune Disorders. Central European Journal of Immunology, 2, 217-224. https://doi.org/10.5114/ceji.2015.52836
|
[8]
|
Biermann, M.H.C., Podolska, M.J., Knopf, J., Reinwald, C., Weidner, D., Maueröder, C., et al. (2016) Oxidative Burst-Dependent Netosis Is Implicated in the Resolution of Necrosis-Associated Sterile Inflammation. Frontiers in Immunology, 7, Article 557. https://doi.org/10.3389/fimmu.2016.00557
|
[9]
|
Douda, D.N., Khan, M.A., Grasemann, H. and Palaniyar, N. (2015) SK3 Channel and Mitochondrial ROS Mediate NADPH Oxidase-Independent NETosis Induced by Calcium Influx. Proceedings of the National Academy of Sciences, 112, 2817-2822. https://doi.org/10.1073/pnas.1414055112
|
[10]
|
Yipp, B.G. and Kubes, P. (2013) Netosis: How Vital Is It? Blood, 122, 2784-2794. https://doi.org/10.1182/blood-2013-04-457671
|
[11]
|
Yang, D. and Liu, J. (2021) Neutrophil Extracellular Traps: A New Player in Cancer Metastasis and Therapeutic Target. Journal of Experimental & Clinical Cancer Research, 40, Article No. 233. https://doi.org/10.1186/s13046-021-02013-6
|
[12]
|
van Dam, L.S., Rabelink, T.J., van Kooten, C. and Teng, Y.K.O. (2019) Clinical Implications of Excessive Neutrophil Extracellular Trap Formation in Renal Autoimmune Diseases. Kidney International Reports, 4, 196-211. https://doi.org/10.1016/j.ekir.2018.11.005
|
[13]
|
周琦, 孙慧娟, 刘树民. 中性粒细胞胞外诱捕网的形成及其在自身免疫性疾病中的作用[J]. 中国中药杂志, 2021, 46(21): 5568-5575.
|
[14]
|
曾田一, 李丹, 常文科, 等. 中性粒细胞胞外诱捕网在炎症相关疾病及肿瘤中的作用[J]. 生命科学, 2024, 36(6): 857-866.
|
[15]
|
戚明珠, 苏晓慧, 林娜, 等. 中性粒细胞胞外诱捕网对缺血性脑卒中的影响及中药干预研究进展[J]. 中国中药杂志, 2021, 46(1): 1-5.
|
[16]
|
李若寒, 李佳媚, 任佳佳, 等. 急性呼吸窘迫综合征中炎症和凝血的交互作用[J]. 中国急救医学, 2023, 43(9): 752-757.
|
[17]
|
Liu, D., Yang, P., Gao, M., Yu, T., Shi, Y., Zhang, M., et al. (2019) NLRP3 Activation Induced by Neutrophil Extracellular Traps Sustains Inflammatory Response in the Diabetic Wound. Clinical Science, 133, 565-582. https://doi.org/10.1042/cs20180600
|
[18]
|
Xu, Z., Huang, Y., Mao, P., Zhang, J. and Li, Y. (2015) Sepsis and ARDS: The Dark Side of Histones. Mediators of Inflammation, 2015, Article ID: 205054. https://doi.org/10.1155/2015/205054
|
[19]
|
王雪李, 黄中伟. 中性粒细胞外陷阱在脓毒症发生机制中的研究进展[J]. 中华急诊医学杂志, 2023, 32(6): 837-840.
|
[20]
|
Song, C., Li, H., Li, Y., Dai, M., Zhang, L., Liu, S., et al. (2019) Nets Promote ALI/ARDS Inflammation by Regulating Alveolar Macrophage Polarization. Experimental Cell Research, 382, Article ID: 111486. https://doi.org/10.1016/j.yexcr.2019.06.031
|
[21]
|
Chen, L., Zhao, Y., Lai, D., Zhang, P., Yang, Y., Li, Y., et al. (2018) Neutrophil Extracellular Traps Promote Macrophage Pyroptosis in Sepsis. Cell Death & Disease, 9, Article No. 597. https://doi.org/10.1038/s41419-018-0538-5
|
[22]
|
何梦, 何正光. 重症肺炎相关生物标志物的研究进展[J]. 系统医学, 2023, 8(20): 190-193.
|
[23]
|
丁存香. 重症肺炎免疫失衡机制及中医药治疗进展分析[J]. 内蒙古中医药, 2024, 43(2): 162-164.
|
[24]
|
孙世瑜, 朱淼, 李田田, 等. 早期血液炎症指标对重症社区获得性肺炎导致呼吸衰竭患者预后的评估研究[J]. 新医学, 2024, 55(3): 198-203.
|
[25]
|
王龙, 王广军, 梁群. 重症肺炎发病机制及中西医治疗研究进展[J]. 长春中医药大学学报, 2023, 39(11): 1275-1279.
|
[26]
|
孙芳, 朱美君. 平均血小板体积/血小板计数、血清Presepsin水平对重症肺炎患者预后的评估价值[J]. 检验医学与临床, 2023, 20(12): 1721-1725.
|
[27]
|
甘惠玲, 赵双平. APACHEII评分对重症肺炎致急性肺损伤患者撤机结局的预测价值[J]. 内科急危重症杂志, 2019, 25(2): 123-125.
|
[28]
|
Li, J., Zhang, K., Zhang, y., Gu, Z. and Huang, C. (2023) Neutrophils in COVID-19: Recent Insights and Advances. Virology Journal, 20, Article No. 169. https://doi.org/10.1186/s12985-023-02116-w
|
[29]
|
Guéant, J., Guéant‐Rodriguez, R., Fromonot, J., Oussalah, A., Louis, H., Chery, C., et al. (2021) Elastase and Exacerbation of Neutrophil Innate Immunity Are Involved in Multi‐Visceral Manifestations of COVID‐19. Allergy, 76, 1846-1858. https://doi.org/10.1111/all.14746
|
[30]
|
王馨. 重症社区获得性肺炎患者下呼吸道病原与人中性粒细胞胞外诱捕网相关性研究[D]: [硕士学位论文]. 兰州: 甘肃中医药大学, 2022.
|
[31]
|
丁海林, 王建李, 徐斐翔. 中性粒细胞胞外网状陷阱与多重耐药菌感染对重症肺炎患者预后的影响[J]. 中国临床医学, 2022, 29(6): 921-925.
|
[32]
|
Yaqinuddin, A. and Kashir, J. (2020) Novel Therapeutic Targets for SARS-Cov-2-Induced Acute Lung Injury: Targeting a Potential Il-1β/Neutrophil Extracellular Traps Feedback Loop. Medical Hypotheses, 143, Article ID: 109906. https://doi.org/10.1016/j.mehy.2020.109906
|
[33]
|
王哲, 马欣, 黄芳, 等. 重症肺炎患者NLRP3信号通路及相关细胞因子表达及其诊断价值[J]. 中华医院感染学杂志, 2024, 34(9): 1295-1298.
|
[34]
|
杨艳, 谢慧, 张艳. 重症肺炎患者血清NLRP3、YKL-40与炎症反应及预后的关系[J]. 中国卫生工程学, 2021, 20(3): 503-506.
|
[35]
|
于俊芳, 柳蕊, 段红云, 等. 儿童社区获得性重症肺炎转归的影响因素分析以及血清HMGB1、PCT、TLR4的预测价值[J]. 临床研究, 2024, 32(6): 16-21.
|
[36]
|
石蓉, 金爱花. PCT、sTREM-1、HMGB1对重症肺炎合并呼吸衰竭患者预后的预测价值[J]. 中国卫生标准管理, 2024, 15(5): 115-118.
|
[37]
|
谭铨广. 双硫仑通过抑制NETs释放治疗急性肺损伤实验研究[D]: [硕士学位论文]. 广州: 南方医科大学, 2023.
|
[38]
|
Thomas, G.M., Carbo, C., Curtis, B.R., Martinod, K., Mazo, I.B., Schatzberg, D., et al. (2012) Extracellular DNA Traps Are Associated with the Pathogenesis of TRALI in Humans and Mice. Blood, 119, 6335-6343. https://doi.org/10.1182/blood-2012-01-405183
|
[39]
|
Wang, Y., Wang, C. and Li, J. (2024) Neutrophil Extracellular Traps: A Catalyst for Atherosclerosis. Molecular and Cellular Biochemistry. https://doi.org/10.1007/s11010-024-04931-3
|
[40]
|
Chen, W.A. and Boskovic, D.S. (2024) Neutrophil Extracellular DNA Traps in Response to Infection or Inflammation, and the Roles of Platelet Interactions. International Journal of Molecular Sciences, 25, Article 3025. https://doi.org/10.3390/ijms25053025
|
[41]
|
张连芳, 谢榕城, 林雪烽, 等. 重症监护室内重症肺炎患者新发血栓事件和病死率的研究分析[J]. 中国呼吸与危重监护杂志, 2024, 23(1): 7-14.
|
[42]
|
吴邮电, 李宁. 老年下肢深静脉血栓患者血清Gas6、IL-1β、NETs水平与介入治疗效果的关系[J]. 检验医学与临床, 2024, 21(4): 515-519.
|
[43]
|
Etulain, J., Martinod, K., Wong, S.L., Cifuni, S.M., Schattner, M. and Wagner, D.D. (2015) P-Selectin Promotes Neutrophil Extracellular Trap Formation in Mice. Blood, 126, 242-246. https://doi.org/10.1182/blood-2015-01-624023
|