蚕丝纬编针织网的细胞相容性及体外降解性实验研究
Experimental Study on Cytocompatibility and in Vitro Degradability of Silk Weft Knitted Mesh
DOI: 10.12677/hjbm.2024.144059, PDF, HTML, XML,    科研立项经费支持
作者: 唐 靓*, 张文元#:杭州医学院检验医学院、生物工程学院,浙江 杭州;李跃中:杭州医学院药学院、食品科学与工程学院,浙江 杭州
关键词: 蚕丝纬编针织网骨髓间充质干细胞细胞片细胞相容性体外降解性力学性能Silk Weft Knitted Mesh Bone Marrow-Derived Mesenchymal Stem Cells Cell Sheet Cytocompatibility In Vitro Degradability Mechanical Properties
摘要: 目的:蚕丝纬编针织网支架结合骨髓间充质干细胞(BMSCs)细胞片制成组织工程支架,并对其进行细胞相容性观察,以及蚕丝纬编针织网支架的体外降解性。方法:通过密度梯度离心法结合贴壁培养法提取兔BMSCs,通过维生素C培养法制备BMSCs细胞片。采用纬编针织法制备蚕丝网状支架,将BMSCs细胞片覆盖于该支架上体外培养2周,观察细胞在支架上的生长情况。并进行蚕丝纬编针织网支架为期1年的体外降解性的力学性能及质量变化测试。结果:提取的BMSCs生长旺盛。支架-BMSCs细胞片培养2周的扫描电镜观察显示:BMSCs黏附于支架呈立体生长,增殖良好。通过体外1年降解实验,蚕丝纬编针织网状支架降解速率非常缓慢,力学性能及质量变化很小。结论:蚕丝纬编针织网-BMSCs细胞片具有良好的细胞相容性,蚕丝纬编针织网体外降解速率非常缓慢,可以尝试作为组织工程韧带/肌腱的支架材料。
Abstract: Objective: Silk weft knitted mesh scaffolds were combined with bone marrow-derived mesenchymal stem cells (BMSCs) to form tissue engineering scaffolds, and the cytocompatibility and degradability of silk weft knitted mesh scaffolds were observed. Methods: BMSCs were extracted by density gradient centrifugation combined with adherent culture, and BMSCs cell sheets were prepared by vitamin C culture. A silk mesh scaffold was prepared by weft knitting method. BMSCs cell sheets were covered on the scaffold and cultured for 2 weeks in vitro to observe the growth of cells on the scaffold. The mechanical properties and quality changes of silk weft knitted mesh scaffolds were tested for 1 year. Results: The extracted BMSCs grew strongly. Scanning electron microscopy (SEM) observation of BMSCs cells cultured on scaffolds for 2 weeks showed that BMSCs adhered to scaffolds in stereoscopic growth and proliferation. After 1 year in vitro degradation experiment, the degradation rate of silk weft knitted mesh scaffold is very slow, and the mechanical properties and quality changes are very small. Conclusion: BMSCs cell sheet with silk weft knitted mesh has good cytocompatibility, and the degradation rate of silk weft knitted mesh is slow in vitro, which can be used as scaffolds for tissue engineering ligaments/tendons.
文章引用:唐靓, 李跃中, 张文元. 蚕丝纬编针织网的细胞相容性及体外降解性实验研究[J]. 生物医学, 2024, 14(4): 555-562. https://doi.org/10.12677/hjbm.2024.144059

1. 引言

蚕丝丝素蛋白(SF)是一种具有优异力学性能、生物相容性和生物可吸收性的天然蛋白质,在组织工程应用中备受关注[1]。随着人口老龄化的加剧,肌肉骨骼组织的修复已成为组织工程研究的重点。在组织工程测试的各种材料中,蚕丝丝素蛋白(SF)越来越被认为是一种有前途的材料。SF是一种具有优异理化特性的天然蛋白聚合物,在肌肉骨骼组织工程领域已建立了良好的声誉[2]。蚕丝适合作为组织工程韧带与肌腱的支架材料[3] [4]。蚕丝纬编针织网状支架具有充足的力学性能,有较大的空隙结构,可提供足够的内部空间供韧带/肌腱组织、细胞生长[5]。然而目前的细胞接种技术,是将细胞直接接种于支架上,存在易流失、利用率低等缺点,而细胞凝胶复合材料粘附支架强度有限,不能将大量的细胞整合到密集的移植物中等问题[6]。细胞片技术可以有效地解决细胞流失等问题,且费用较低,已成为组织工程领域的研究热点。本实验通过维生素C培养法制备骨髓间充质干细胞(BMSCs)细胞片,并覆盖于蚕丝纬编针织网状支架上体外培养,观察细胞在支架上的生长情况。体外降解实验是最直观且方便的途径,具有针对性和科学性。本实验将纬编针织蚕丝纤维网状支架通过为期1年的体外降解,考察该支架的降解性及力学性能变化。

2. 材料与方法

2.1. 材料和主要器材

桑蚕丝(Bombyx Mori silk)购于杭州丝绸市场。I型鼠尾胶原(5 mg/ml,欣友生物技术有限公司)。扫描电镜(XL30-ESEM, Philips-FEI),拉力试验机(QX-W300,上海企想检测仪器有限公司),冷冻干燥机(LL3000, Heto PowerDry)。新西兰白兔,生产许可证号:SCXK(浙) 2022-0008,杭州余杭科联兔业专业合作社提供。

2.2. 兔骨髓间充质干细胞(BMSCs)提取及BMSCs细胞片制备

按照文献[7],通过密度梯度离心结合贴壁培养法从3月龄新西兰白兔髂骨提取、纯化BMSCs。并按照文献[8],制备BMSCs细胞片。

2.3. 蚕丝丝素纤维网状支架的制备

参照文献[9],蚕丝通过0.5% Na2CO3溶液煮沸两次,每次30 min,脱去丝胶,得到蚕丝丝素纤维细丝。按下列顺序编织:将蚕丝丝素纤维单丝200根,逆时针扭合(2捻)成1小束(含蚕丝丝素纤维单丝400根)。按图1将纤维小束通过纬编针织成长条网状支架(长25 mm × 宽5 mm)。分别经0.1 mol/L稀盐酸、蒸馏水、0.1 mol/L NaOH、蒸馏水超声清洗机洗涤,晾干。进行如下细胞相容性实验,以及体外降解实验。

Figure 1. Schematic diagram of weft knitting

1. 纬编针织示意图

2.4. 支架-BMSCs细胞片复合物的体外培养

将5 mg/ml I型胶原缓慢滴加充填于“2.3项”制备的蚕丝网中,−80℃冰箱过夜,冷干机冻干。环氧乙烷消毒。

将“2.2项”制备的BMSCs细胞片覆盖缠绕于上述I型胶原修饰的蚕丝网支架上,以丝线稍作固定。37℃、5% CO2培养2天后,去除丝线,继续培养,共培养2周。取支架-BMSCs细胞片复合物,戊二醛固定,锇酸固定,梯度乙醇脱水,临界点干燥,喷金,扫描电镜观察。

2.5. 体外降解实验

1) 体外模拟降解实验:以模拟体液(simulated body fluid, SBF)作为降解液,按照文献[10]配制。将“2.3项”制备的蚕丝长条网状试样,每条试样称重,记为M0。环氧乙烷灭菌。并将其浸入装有10 ml SBF的试管中,硅胶塞盖紧,每个试管静态放置1条试样。37℃,每周换液1次,共40根。分别于0 (降解前)、3、6、12个月各取出10个试样,洗净后进行以下实验。

2) 材料的力学性能测试:每个时间点取出的10个试样,在湿润条件下进行力学性能测试。试样两端用纱布紧密包裹,固定于拉力试验机上,经适当预拉后,拉力至2 N时测其横截面积及夹具间距长度,再以50 mm/min进行拉伸试验,记录最大负荷、拉伸强度、弹性模量。

3) 质量损耗率检测:收集上述“2)项”力学检测后的试样材料,真空干燥,称重,记为Mt。并计算质量损耗率:质量损耗率 = (M0 − Mt)/M0 × 100%。

3. 结果

3.1. BMSCs培养及传代

骨髓经密度梯度离心及贴壁培养后获得BMSCs。提取的BMSCs生长迅速,原代培养呈现集落生长。第三代BMSCs传代培养2 d后BMSCs细胞呈长梭形生长(图2)。随着时间增加,细胞呈旋涡生长,生长迅速旺盛。

Figure 2. The third-generation BMSCs showed a long spindle-shaped vortex growth after 2 days of subculture, with rapid and vigorous growth (200×)

2. 第三代BMSCs传代培养2天后呈长梭形旋涡生长,生长迅速旺盛(200×)

3.2. 蚕丝纬编针织网的SEM观察

蚕丝纤维纬编针织网有较大的孔隙,伸缩性良好(图3(a))。于蚕丝纤维针织网上滴加的胶原冻干后可附着于网上(图3(b))。

(a) (b)

Figure 3. SEM observation of silk fiber weft knitted net. (a): Silk fiber weft knitted net (100×); (b): The collagen dripped on the knitted net is freeze-dried and attached to the net (30×)

3. 蚕丝纤维纬编针织网SEM观察。(a):蚕丝纤维纬编针织网(100×);(b):在针织网上滴加的胶原冻干后附着于网上(30×)

3.3. BMSCs细胞片在支架上生长的SEM观察情况

BMSCs细胞片附于充填胶原海绵的蚕丝网支架复合培养2周,通过扫描电镜观察,BMSCs细胞附于支架上生长良好,呈立体状,有伪足生长,增殖旺盛(图4)。

Figure 4. Scanning electron microscope observation of BMSCs cells attached to scaffold (1000×)

4. BMSCs细胞附于支架上的扫描电镜观察(1000×)

3.4. 体外降解实验结果

3.4.1. 蚕丝网形貌变化大体观察

蚕丝网经过1年体外降解,在形貌变化上均未见实质性的降解现象。

3.4.2. 蚕丝网的机械性能测定

蚕丝网支架经过1年在体外模拟体液中降解,其最大载荷、拉伸强度、弹性模量下降非常缓慢,不同时间点的力学性能均未见实质性下降(表1),p > 0.05。

Table 1. Mechanical properties change of silk mesh scaffolds degraded in vitro for 1 year ( x ¯ ±s , n = 10)

1. 蚕丝网支架体外降解1年的力学性能变化( x ¯ ±s , n = 10)

降解时间/月

最大载荷/N

拉伸强度/MPa

弹性模量/MPa

0

113.25 ± 13.64

40.91 ± 4.76

194.26 ± 22.40

3

111.20 ± 12.79

40.32 ± 4.45

189.84 ± 22.62

6

109.97 ± 12.82

40.16 ± 4.54

187.93 ± 23.01

12

106.33 ± 13.08

39.78 ± 5.16

185.08 ± 22.93

3.4.3. 蚕丝网质量损耗率检测

蚕丝网经过1年在体外模拟体液中降解,3、6、12个月的质量损耗率分别为0.21% ± 0.02%,0.26% ± 0.02%,0.40% ± 0.03%,均未见实质性的质量损耗(p > 0.05)。

4. 讨论

蚕丝是一种易于加工的生物聚合物,这使得以蚕丝为基础的生物材料被塑造成不同的形式和结构。蚕丝丝素蛋白是一种天然聚合物,具有良好的生物相容性、高机械强度和低降解率等特点,越来越被认为是肌肉骨骼组织工程应用中首选的支架材料[11]。蚕丝可编织成多种形状,具有优异的承载受力功能,可用于韧带/肌腱组织再生[3] [12]。而且蚕丝可引导羟基磷灰石(骨矿物质基质的主要无机成分)增长的能力,从而改善骨整合[13]。将蚕丝添加到聚二氧环酮和聚乳酸-co-己内酯中,可提高材料的性能和体内外生物相容性;蚕丝在72 h内可促进肌腱源性干细胞的附着和增殖。而体内研究表明,植入6周后,蚕丝可以降低促炎细胞因子的表达[14]。研究表明蚕丝–胶原蛋白支架具有相当大的临床应用潜力[15],透明质酸/蚕丝–胶原支架可促进前交叉韧带重建后腱–骨界面的骨整合[16]

除了支架材料的选择外,支架结构也非常重要,它决定了种子细胞能否在支架上停泊、附着、增殖、分化,以及能否维持一定的力学强度,并最终达到韧带/肌腱修复的要求[17]。蚕丝针织丝网–胶原海绵支架具有特殊的“内部空间保留”特性,可以再生功能性前交叉韧带,并长期预防骨关节炎,提示其作为功能性前交叉韧带重建生物支架的临床应用价值[18]。Tang等[5]研究了采用海绵状再生丝素/胶原I结合蚕丝纬编针织网支架构建组织工程肌腱的可行性,显示支架–骨髓间充质干细胞复合材料具有修复跟腱缺损的潜力。

细胞片技术是再生医学领域近年的研究热点[19] [20],因其能够提供足量组织结构完整的健康细胞及细胞外基质、治愈难治性疾病并恢复机体受损功能而受到广泛关注[21] [22]。本实验在组织工程构建中使用这两种技术的交集:作为细胞外基质的细胞片结构和作为组织工程要素的支撑支架[23]。解决复杂的组织工程问题需要一个综合的方法,包括三维支架和细胞片[24]。使用细胞片方法,BMSCs存活时间更长,并可以大量交付[25]

本实验结果表明,BMSCs细胞片附于充填胶原的蚕丝纬编针织网支架复合培养2周,BMSCs细胞附于支架上生长旺盛,呈立体状。蚕丝纬编针织网经过体外1年降解实验,网状支架降解速率非常缓慢,力学性能及质量变化很小。

蚕丝支架目前只是在实验动物中进行研究,真正应用于临床还有很长的路要走。未来蚕丝组织工程韧带/肌腱的发展方向,一方面可以提高和改善蚕丝性能和蚕丝支架结构,更好地与种子细胞相结合,并可与生长因子或其他材料联合应用,以满足临床中韧带/肌腱修复的更高需求。另一方面,可以改善手术方式,先将蚕丝支架预血管化,模拟关节外炎症刺激,以促进血管和细胞的早期生长。

5. 结论

实验结果显示,BMSCs黏附于支架呈立体生长,增殖良好。通过体外1年降解实验,蚕丝纬编针织网状支架降解速率非常缓慢,力学性能及质量变化很小。结果表明:蚕丝纬编针织网-BMSCs细胞片具有良好的细胞相容性,蚕丝纬编针织网体外降解速率非常缓慢,可以尝试作为组织工程韧带/肌腱的支架材料。

基金项目

浙江省医药卫生科技计划项目(项目编号:2022KY727)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sun, W., Gregory, D.A., Tomeh, M.A. and Zhao, X. (2021) Silk Fibroin as a Functional Biomaterial for Tissue Engineering. International Journal of Molecular Sciences, 22, Article No. 1499.
https://doi.org/10.3390/ijms22031499
[2] Ma, D., Wang, Y. and Dai, W. (2018) Silk Fibroin-Based Biomaterials for Musculoskeletal Tissue Engineering. Materials Science and Engineering: C, 89, 456-469.
https://doi.org/10.1016/j.msec.2018.04.062
[3] Zhang, L., Liu, X., Li, G., Wang, P. and Yang, Y. (2018) Tailoring Degradation Rates of Silk Fibroin Scaffolds for Tissue Engineering. Journal of Biomedical Materials Research Part A, 107, 104-113.
https://doi.org/10.1002/jbm.a.36537
[4] Li, Y., Liu, Z., Tang, Y., Fan, Q., Feng, W., Luo, C., et al. (2020) Three-Dimensional Silk Fibroin Scaffolds Enhance the Bone Formation and Angiogenic Differentiation of Human Amniotic Mesenchymal Stem Cells: A Biocompatibility Analysis. Acta Biochimica et Biophysica Sinica, 52, 590-602.
https://doi.org/10.1093/abbs/gmaa042
[5] Tang, L., Yang, Y., Li, Y., et al. (2018) Knitted Silk Mesh-Like Scaffold Incorporated with Sponge-Like Regenerated Silk Fibroin/Collagen I and Seeded with Mesenchymal Stem Cells for Repairing Achilles Tendon in Rabbits. Acta of Bioengineering and Biomechanics, 20, 77-87.
[6] Font Tellado, S., Balmayor, E.R. and Van Griensven, M. (2015) Strategies to Engineer Tendon/Ligament-to-Bone Interface: Biomaterials, Cells and Growth Factors. Advanced Drug Delivery Reviews, 94, 126-140.
https://doi.org/10.1016/j.addr.2015.03.004
[7] Zhang, W., Yang, Y., Zhang, K., Luo, T., Tang, L. and Li, Y. (2017) Silk-Poly(lactic-co-glycolic Acid) Scaffold/Mesenchymal Stem Cell Composites for Anterior Cruciate Ligament Reconstruction in Rabbits. Journal of Biomaterials and Tissue Engineering, 7, 571-581.
https://doi.org/10.1166/jbt.2017.1604
[8] 唐靓, 张文元, 李跃中. 天然蚕丝混合再生蚕丝纬编针织网的生物学性能[J]. 中国医学工程, 2022, 30(10): 1-4.
[9] 张科技, 张文元, 杨亚冬, 等. 蚕丝-PLGA网状支架的力学强度检测及其与骨髓间充质干细胞共培养[J]. 中国卫生检验杂志, 2014, 24(23): 3351-3353.
[10] Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. and Yamamuro, T. (1990) Solutions Able to Reproduce in Vivo Surface‐structure Changes in Bioactive Glass‐Ceramic A‐W3. Journal of Biomedical Materials Research, 24, 721-734.
https://doi.org/10.1002/jbm.820240607
[11] Zhang, L., Zhang, W., Hu, Y., Fei, Y., Liu, H., Huang, Z., et al. (2021) Systematic Review of Silk Scaffolds in Musculoskeletal Tissue Engineering Applications in the Recent Decade. ACS Biomaterials Science & Engineering, 7, 817-840.
https://doi.org/10.1021/acsbiomaterials.0c01716
[12] Fan, J., Sun, L., Chen, X., Qu, L., Li, H., Liu, X., et al. (2017) Implementation of a Stratified Approach and Gene Immobilization to Enhance the Osseointegration of a Silk-Based Ligament Graft. Journal of Materials Chemistry B, 5, 7035-7050.
https://doi.org/10.1039/c7tb01579h
[13] Bhattacharjee, P., Kundu, B., Naskar, D., Kim, H., Maiti, T.K., Bhattacharya, D., et al. (2017) Silk Scaffolds in Bone Tissue Engineering: An Overview. Acta Biomaterialia, 63, 1-17.
https://doi.org/10.1016/j.actbio.2017.09.027
[14] Shiroud Heidari, B., Muiños Lopez, E., Harrington, E., Ruan, R., Chen, P., Davachi, S.M., et al. (2023) Novel Hybrid Biocomposites for Tendon Grafts: The Addition of Silk to Polydioxanone and Poly(lactide-Co-Caprolactone) Enhances Material Properties, in Vitro and in Vivo Biocompatibility. Bioactive Materials, 25, 291-306.
https://doi.org/10.1016/j.bioactmat.2023.02.003
[15] Bi, F., Shi, Z., Liu, A., Guo, P. and Yan, S. (2015) Anterior Cruciate Ligament Reconstruction in a Rabbit Model Using Silk-Collagen Scaffold and Comparison with Autograft. PLOS ONE, 10, e0125900.
https://doi.org/10.1371/journal.pone.0125900
[16] Bi, F., Chen, Y., Liu, J., Wang, Y., Xu, D. and Tian, K. (2021) Anterior Cruciate Ligament Reconstruction in a Rabbit Model Using a Silk-Collagen Scaffold Modified by Hydroxyapatite at Both Ends: A Histological and Biomechanical Study. Journal of Orthopaedic Surgery and Research, 16, Article No. 139.
https://doi.org/10.1186/s13018-021-02281-0
[17] Zhang, W., Yang, Y., Zhang, K., Li, Y. and Fang, G. (2014) Weft-Knitted Silk-Poly(lactide-Co-Glycolide) Mesh Scaffold Combined with Collagen Matrix and Seeded with Mesenchymal Stem Cells for Rabbit Achilles Tendon Repair. Connective Tissue Research, 56, 25-34.
https://doi.org/10.3109/03008207.2014.976309
[18] Shen, W., Chen, X., Hu, Y., Yin, Z., Zhu, T., Hu, J., et al. (2014) Long-Term Effects of Knitted Silk-Collagen Sponge Scaffold on Anterior Cruciate Ligament Reconstruction and Osteoarthritis Prevention. Biomaterials, 35, 8154-8163.
https://doi.org/10.1016/j.biomaterials.2014.06.019
[19] Liu, Q., Yu, Y., Reisdorf, R.L., Qi, J., Lu, C., Berglund, L.J., et al. (2019) Engineered Tendon-Fibrocartilage-Bone Composite and Bone Marrow-Derived Mesenchymal Stem Cell Sheet Augmentation Promotes Rotator Cuff Healing in a Non-Weight-Bearing Canine Model. Biomaterials, 192, 189-198.
https://doi.org/10.1016/j.biomaterials.2018.10.037
[20] Kaibuchi, N., Iwata, T., Onizuka, S., Yano, K., Yamato, M., Okano, T., et al. (2017) Cytological Character of Mini Pig Mesenchymal Stromal Cells from Various Tissues and the Attempt of Cell Sheet Formation. Regenerative Therapy, 6, 83-89.
https://doi.org/10.1016/j.reth.2017.02.001
[21] Lai, K., Xi, Y., Du, X., Jiang, Z., Li, Y., Huang, T., et al. (2020) Activation of Nell-1 in BMSC Sheet Promotes Implant Osseointegration through Regulating Runx2/Osterix Axis. Frontiers in Cell and Developmental Biology, 8, Article No. 868.
https://doi.org/10.3389/fcell.2020.00868
[22] Wang, Y., Lu, C., He, C., Chen, B., Zheng, Y., Zheng, J., et al. (2018) Construction of a Multilayered Mesenchymal Stem Cell Sheet with a 3D Dynamic Culture System. Journal of Visualized Experiments, No. 140, Article No. 58624.
https://doi.org/10.3791/58624
[23] Maruyama, M., Wei, L., Thio, T., Storaci, H.W., Ueda, Y. and Yao, J. (2020) The Effect of Mesenchymal Stem Cell Sheets on Early Healing of the Achilles Tendon in Rats. Tissue Engineering Part A, 26, 206-213.
https://doi.org/10.1089/ten.tea.2019.0163
[24] Wang, Z., Han, L., Sun, T., Ma, J., Sun, S., Ma, L., et al. (2020) Extracellular Matrix Derived from Allogenic Decellularized Bone Marrow Mesenchymal Stem Cell Sheets for the Reconstruction of Osteochondral Defects in Rabbits. Acta Biomaterialia, 118, 54-68.
https://doi.org/10.1016/j.actbio.2020.10.022
[25] Wang, X., Chen, Z., Zhou, B., Duan, X., Weng, W., Cheng, K., et al. (2018) Cell-Sheet-Derived ECM Coatings and Their Effects on BMSCS Responses. ACS Applied Materials & Interfaces, 10, 11508-11518.
https://doi.org/10.1021/acsami.7b19718