[1]
|
季晓君, 赵廷丽, 苗雷, 等. 急性髓系白血病的靶向治疗药物研发进展[J]. 肿瘤防治研究, 2023, 50(4): 413-421.
|
[2]
|
金洁, 周一乐. 成人急性髓细胞白血病的诊断与治疗进展[J]. 临床血液学杂志, 2022, 35(5): 309-311, 317.
|
[3]
|
Döhner, H., Estey, E.H., Amadori, S., Appelbaum, F.R., Büchner, T., Burnett, A.K., et al. (2010) Diagnosis and Management of Acute Myeloid Leukemia in Adults: Recommendations from an International Expert Panel, on Behalf of the European Leukemianet. Blood, 115, 453-474. https://doi.org/10.1182/blood-2009-07-235358
|
[4]
|
Papaemmanuil, E., Gerstung, M., Bullinger, L., Gaidzik, V.I., Paschka, P., Roberts, N.D., et al. (2016) Genomic Classification and Prognosis in Acute Myeloid Leukemia. New England Journal of Medicine, 374, 2209-2221. https://doi.org/10.1056/nejmoa1516192
|
[5]
|
王春键, 贾晋松, 江浩. NK细胞在急性髓细胞性白血病过继性免疫治疗中的应用及其进展[J]. 中国肿瘤生物治疗杂志, 2019, 26(6): 705-709.
|
[6]
|
Ramos, N., Mo, C., Karp, J. and Hourigan, C. (2015) Current Approaches in the Treatment of Relapsed and Refractory Acute Myeloid Leukemia. Journal of Clinical Medicine, 4, 665-695. https://doi.org/10.3390/jcm4040665
|
[7]
|
中华医学会血液学分会. 急性髓系白血病(复发难治性)中国诊疗指南(2011年版) [J]. 中华血液学杂志, 2011, 32(12): 887-888.
|
[8]
|
Creutzig, U., van den Heuvel-Eibrink, M.M., Gibson, B., Dworzak, M.N., Adachi, S., de Bont, E., et al. (2012) Diagnosis and Management of Acute Myeloid Leukemia in Children and Adolescents: Recommendations from an International Expert Panel. Blood, 120, 3187-3205. https://doi.org/10.1182/blood-2012-03-362608
|
[9]
|
Bose, P., Vachhani, P. and Cortes, J.E. (2017) Treatment of Relapsed/Refractory Acute Myeloid Leukemia. Current Treatment Options in Oncology, 18, Article No. 17. https://doi.org/10.1007/s11864-017-0456-2
|
[10]
|
Knorr, D.A., Bachanova, V., Verneris, M.R. and Miller, J.S. (2014) Clinical Utility of Natural Killer Cells in Cancer Therapy and Transplantation. Seminars in Immunology, 26, 161-172. https://doi.org/10.1016/j.smim.2014.02.002
|
[11]
|
Arpinati, M. and Curti, A. (2013) Immunotherapy in Acute Myeloid Leukemia. Immunotherapy, 6, 95-106. https://doi.org/10.2217/imt.13.152
|
[12]
|
Cooley, S., Parham, P. and Miller, J.S. (2018) Strategies to Activate NK Cells to Prevent Relapse and Induce Remission Following Hematopoietic Stem Cell Transplantation. Blood, 131, 1053-1062. https://doi.org/10.1182/blood-2017-08-752170
|
[13]
|
Wu, Y., Tian, Z. and Wei, H. (2017) Developmental and Functional Control of Natural Killer Cells by Cytokines. Frontiers in Immunology, 8, Article 930. https://doi.org/10.3389/fimmu.2017.00930
|
[14]
|
Mandal, A. and Viswanathan, C. (2015) Natural Killer Cells: In Health and Disease. Hematology/Oncology and Stem Cell Therapy, 8, 47-55. https://doi.org/10.1016/j.hemonc.2014.11.006
|
[15]
|
Prager, I. and Watzl, C. (2019) Mechanisms of Natural Killer Cell-Mediated Cellular Cytotoxicity. Journal of Leukocyte Biology, 105, 1319-1329. https://doi.org/10.1002/jlb.mr0718-269r
|
[16]
|
Ochoa, M.C., Minute, L., Rodriguez, I., Garasa, S., Perez-Ruiz, E., Inogés, S., et al. (2017) Antibody-Dependent Cell Cytotoxicity: Immunotherapy Strategies Enhancing Effector NK Cells. Immunology & Cell Biology, 95, 347-355. https://doi.org/10.1038/icb.2017.6
|
[17]
|
Farag, S.S., Fehniger, T.A., Ruggeri, L., Velardi, A. and Caligiuri, M.A. (2002) Natural Killer Cell Receptors: New Biology and Insights into the Graft-Versus-Leukemia Effect. Blood, 100, 1935-1947. https://doi.org/10.1182/blood-2002-02-0350
|
[18]
|
Wu, J., Song, Y., Bakker, A.B.H., Bauer, S., Spies, T., Lanier, L.L., et al. (1999) An Activating Immunoreceptor Complex Formed by NKG2D and Dap10. Science, 285, 730-732. https://doi.org/10.1126/science.285.5428.730
|
[19]
|
Biassoni, R., Cantoni, C., Marras, D., Giron-Michel, J., Falco, M., Moretta, L., et al. (2003) Human Natural Killer Cell Receptors: Insights into Their Molecular Function and Structure. Journal of Cellular and Molecular Medicine, 7, 376-387. https://doi.org/10.1111/j.1582-4934.2003.tb00240.x
|
[20]
|
Rincon-Orozco, B., Kunzmann, V., Wrobel, P., Kabelitz, D., Steinle, A. and Herrmann, T. (2005) Activation of Vγ9Vδ2 T Cells by NKG2D. The Journal of Immunology, 175, 2144-2151. https://doi.org/10.4049/jimmunol.175.4.2144
|
[21]
|
Cosman, D., Müllberg, J., Sutherland, C.L., Chin, W., Armitage, R., Fanslow, W., et al. (2001) Ulbps, Novel MHC Class I-Related Molecules, Bind to CMV Glycoprotein UL16 and Stimulate NK Cytotoxicity through the NKG2D Receptor. Immunity, 14, 123-133. https://doi.org/10.1016/s1074-7613(01)00095-4
|
[22]
|
Miller, J.S. and Lanier, L.L. (2019) Natural Killer Cells in Cancer Immunotherapy. Annual Review of Cancer Biology, 3, 77-103. https://doi.org/10.1146/annurev-cancerbio-030518-055653
|
[23]
|
Orr, M.T. and Lanier, L.L. (2010) Natural Killer Cell Education and Tolerance. Cell, 142, 847-856. https://doi.org/10.1016/j.cell.2010.08.031
|
[24]
|
Sandoval-Borrego, D., Moreno-Lafont, M.C., Vazquez-Sanchez, E.A., Gutierrez-Hoya, A., López-Santiago, R., Montiel-Cervantes, L.A., et al. (2016) Overexpression of CD158 and NKG2A Inhibitory Receptors and Underexpression of NKG2D and Nkp46 Activating Receptors on NK Cells in Acute Myeloid Leukemia. Archives of Medical Research, 47, 55-64. https://doi.org/10.1016/j.arcmed.2016.02.001
|
[25]
|
Sanchez-Correa, B., Gayoso, I., Bergua, J.M., Casado, J.G., Morgado, S., Solana, R., et al. (2011) Decreased Expression of DNAM-1 on NK Cells from Acute Myeloid Leukemia Patients. Immunology & Cell Biology, 90, 109-115. https://doi.org/10.1038/icb.2011.15
|
[26]
|
Fauriat, C., Just-Landi, S., Mallet, F., Arnoulet, C., Sainty, D., Olive, D., et al. (2006) Deficient Expression of NCR in NK Cells from Acute Myeloid Leukemia: Evolution during Leukemia Treatment and Impact of Leukemia Cells in NCRdull Phenotype Induction. Blood, 109, 323-330. https://doi.org/10.1182/blood-2005-08-027979
|
[27]
|
Chretien, A., Devillier, R., Fauriat, C., Orlanducci, F., Harbi, S., Le Roy, A., et al. (2017) NKp46 Expression on NK Cells as a Prognostic and Predictive Biomarker for Response to Allo-SCT in Patients with AML. OncoImmunology, 6, e1307491. https://doi.org/10.1080/2162402x.2017.1307491
|
[28]
|
Chretien, A., Fauriat, C., Orlanducci, F., Rey, J., Borg, G.B., Gautherot, E., et al. (2017) NKp30 Expression Is a Prognostic Immune Biomarker for Stratification of Patients with Intermediate-Risk Acute Myeloid Leukemia. Oncotarget, 8, 49548-49563. https://doi.org/10.18632/oncotarget.17747
|
[29]
|
Nowbakht, P., Ionescu, M.S., Rohner, A., Kalberer, C.P., Rossy, E., Mori, L., et al. (2005) Ligands for Natural Killer Cell-Activating Receptors Are Expressed Upon the Maturation of Normal Myelomonocytic Cells but at Low Levels in Acute Myeloid Leukemias. Blood, 105, 3615-3622. https://doi.org/10.1182/blood-2004-07-2585
|
[30]
|
Salih, H.R., Antropius, H., Gieseke, F., Lutz, S.Z., Kanz, L., Rammensee, H., et al. (2003) Functional Expression and Release of Ligands for the Activating Immunoreceptor NKG2D in Leukemia. Blood, 102, 1389-1396. https://doi.org/10.1182/blood-2003-01-0019
|
[31]
|
Hilpert, J., Grosse-Hovest, L., Grünebach, F., Buechele, C., Nuebling, T., Raum, T., et al. (2012) Comprehensive Analysis of NKG2D Ligand Expression and Release in Leukemia: Implications for NKG2D-Mediated NK Cell Responses. The Journal of Immunology, 189, 1360-1371. https://doi.org/10.4049/jimmunol.1200796
|
[32]
|
Rosenberg, S.A., Lotze, M.T., Muul, L.M., Leitman, S., Chang, A.E., Ettinghausen, S.E., et al. (1985) Observations on the Systemic Administration of Autologous Lymphokine-Activated Killer Cells and Recombinant Interleukin-2 to Patients with Metastatic Cancer. New England Journal of Medicine, 313, 1485-1492. https://doi.org/10.1056/nejm198512053132327
|
[33]
|
Torelli, G.F., Guarini, A., Palmieri, G., Breccia, M., Vitale, A., Santoni, A., et al. (2002) Expansion of Cytotoxic Effectors with Lytic Activity against Autologous Blasts from Acute Myeloid Leukaemia Patients in Complete Haematological Remission. British Journal of Haematology, 116, 299-307. https://doi.org/10.1046/j.1365-2141.2002.03277.x
|
[34]
|
Sim, G.C., Martin-Orozco, N., Jin, L., Yang, Y., Wu, S., Washington, E., et al. (2013) IL-2 Therapy Promotes Suppressive ICOS+ Treg Expansion in Melanoma Patients. Journal of Clinical Investigation, 124, 99-110. https://doi.org/10.1172/jci46266
|
[35]
|
Ruggeri, L., Mancusi, A., Capanni, M., Urbani, E., Carotti, A., Aloisi, T., et al. (2007) Donor Natural Killer Cell Allorecognition of Missing Self in Haploidentical Hematopoietic Transplantation for Acute Myeloid Leukemia: Challenging Its Predictive Value. Blood, 110, 433-440. https://doi.org/10.1182/blood-2006-07-038687
|
[36]
|
Lee, D.A., Denman, C.J., Rondon, G., Woodworth, G., Chen, J., Fisher, T., et al. (2016) Haploidentical Natural Killer Cells Infused before Allogeneic Stem Cell Transplantation for Myeloid Malignancies: A Phase I Trial. Biology of Blood and Marrow Transplantation, 22, 1290-1298. https://doi.org/10.1016/j.bbmt.2016.04.009
|
[37]
|
Miller, J.S., Soignier, Y., Panoskaltsis-Mortari, A., McNearney, S.A., Yun, G.H., Fautsch, S.K., et al. (2005) Successful Adoptive Transfer and in Vivo Expansion of Human Haploidentical NK Cells in Patients with Cancer. Blood, 105, 3051-3057. https://doi.org/10.1182/blood-2004-07-2974
|
[38]
|
Bachanova, V., Cooley, S., Defor, T.E., Verneris, M.R., Zhang, B., McKenna, D.H., et al. (2014) Clearance of Acute Myeloid Leukemia by Haploidentical Natural Killer Cells Is Improved Using IL-2 Diphtheria Toxin Fusion Protein. Blood, 123, 3855-3863. https://doi.org/10.1182/blood-2013-10-532531
|
[39]
|
Kildey, K., Francis, R.S., Hultin, S., Harfield, M., Giuliani, K., Law, B.M.P., et al. (2019) Specialized Roles of Human Natural Killer Cell Subsets in Kidney Transplant Rejection. Frontiers in Immunology, 10, Article 1877. https://doi.org/10.3389/fimmu.2019.01877
|
[40]
|
Kerbauy, L., Ang, S., Liu, E., et al. (2017) Cord Blood NK Cells Engineered to Express a Humanized CD123-Targeted Chimeric Antigen Receptor (CAR) and IL-15 as Off-the-Shelf Therapy for Acute Myeloid Leukemia. Blood, 130, 4453.
|
[41]
|
Sellar, R. (2014) Preclinical Targeting of Human Acute Myeloid Leukemia and Myeloablation Using Chimeric Antigen Receptor-Modified T Cells. Blood, 123, 2343-54.
|
[42]
|
Liu, Y., Bewersdorf, J.P., Stahl, M. and Zeidan, A.M. (2019) Immunotherapy in Acute Myeloid Leukemia and Myelodysplastic Syndromes: The Dawn of a New Era? Blood Reviews, 34, 67-83. https://doi.org/10.1016/j.blre.2018.12.001
|
[43]
|
Romain, G., Senyukov, V., Rey-Villamizar, N., Merouane, A., Kelton, W., Liadi, I., et al. (2014) Antibody FC Engineering Improves Frequency and Promotes Kinetic Boosting of Serial Killing Mediated by NK Cells. Blood, 124, 3241-3249. https://doi.org/10.1182/blood-2014-04-569061
|
[44]
|
Hsu, J., Hodgins, J.J., Marathe, M., Nicolai, C.J., Bourgeois-Daigneault, M., Trevino, T.N., et al. (2018) Contribution of NK Cells to Immunotherapy Mediated by PD-1/PD-L1 Blockade. Journal of Clinical Investigation, 128, 4654-4668. https://doi.org/10.1172/jci99317
|
[45]
|
Ghosh, A., Barba, P. and Perales, M. (2019) Checkpoint Inhibitors in AML: Are We There Yet? British Journal of Haematology, 188, 159-167. https://doi.org/10.1111/bjh.16358
|
[46]
|
Gilliland, D.G. and Griffin, J.D. (2002) The Roles of FLT3 in Hematopoiesis and Leukemia. Blood, 100, 1532-1542. https://doi.org/10.1182/blood-2002-02-0492
|
[47]
|
Cui, L., Liu, Y., Pang, Y., Qian, T., Quan, L., Cheng, Z., et al. (2019) Emerging Agents and Regimens for Treatment of Relapsed and Refractory Acute Myeloid Leukemia. Cancer Gene Therapy, 27, 1-14. https://doi.org/10.1038/s41417-019-0119-5
|
[48]
|
Dhar, P. and Wu, J.D. (2018) NKG2D and Its Ligands in Cancer. Current Opinion in Immunology, 51, 55-61. https://doi.org/10.1016/j.coi.2018.02.004
|
[49]
|
Aldoss, I., Yang, D., Aribi, A., Ali, H., Sandhu, K., Al Malki, M.M., et al. (2018) Efficacy of the Combination of Venetoclax and Hypomethylating Agents in Relapsed/Refractory Acute Myeloid Leukemia. Haematologica, 103, e404-e407. https://doi.org/10.3324/haematol.2018.188094
|
[50]
|
Wu, H., Li, K., Pan, W., Guo, M., Qiu, D., He, Y., et al. (2022) Venetoclax Enhances NK Cell Killing Sensitivity of AML Cells through the NKG2D/NKG2DL Activation Pathway. International Immunopharmacology, 104, Article ID: 108497. https://doi.org/10.1016/j.intimp.2021.108497
|
[51]
|
Vasu, S., He, S., Cheney, C., Gopalakrishnan, B., Mani, R., Lozanski, G., et al. (2016) Decitabine Enhances Anti-CD33 Monoclonal Antibody BI 836858—Mediated Natural Killer ADCC against AML Blasts. Blood, 127, 2879-2889. https://doi.org/10.1182/blood-2015-11-680546
|
[52]
|
Cany, J., Roeven, M.W.H., Hoogstad-van Evert, J.S., Hobo, W., Maas, F., Franco Fernandez, R., et al. (2018) Decitabine Enhances Targeting of AML Cells by CD34+ Progenitor-Derived NK Cells in NOD/SCID/IL2RGnull Mice. Blood, 131, 202-214. https://doi.org/10.1182/blood-2017-06-790204
|