JNK/c-Jun信号通路在肾脏疾病发生发展中的调控作用
Regulatory Role of JNK/c-Jun Signaling Pathway in the Occurrence and Development of Kidney Disease
摘要: JNK是MAPK超家族成员之一,c-Jun是JNK的主要下游因子,是一种受JNK调控的即早基因。JNK和c-Jun是创伤、应激、细胞凋亡相关的调节因子,参与调控多种疾病的发生发展过程。近年来,研究发现,JNK/c-Jun信号通路在IgA肾病、抗GBM肾小球肾炎、肾纤维化、急性肾损伤等多种肾脏疾病中表现为异常活化,调控着相关肾脏疾病的发生和发展过程。本文就JNK/c-Jun信号通路在肾脏疾病发生发展过程中的调控作用作简要综述。
Abstract: JNK is one of the members of the MAPK superfamily, and c-Jun is the main downstream factor of JNK, which is an early gene regulated by JNK. JNK and c-Jun are regulators related to trauma, stress and apoptosis, and are involved in regulating the occurrence and development of a variety of diseases. In recent years, studies have found that the JNK/c-Jun signaling pathway is abnormally activated in a variety of kidney diseases, such as IgA nephropathy, anti-GBM glomerulonephritis, renal fibrosis, and acute kidney injury, which regulates the occurrence and development of related kidney diseases. This article briefly reviews the regulatory role of JNK/c-Jun signaling pathway in the occurrence and development of kidney diseases.
文章引用:关雅洁, 金春花. JNK/c-Jun信号通路在肾脏疾病发生发展中的调控作用[J]. 临床医学进展, 2024, 14(10): 371-376. https://doi.org/10.12677/acm.2024.14102667

1. 引言

JNK又被称为应激活化蛋白激酶(Stress-Activated Protein Kinase, SAPK),是1990年被Sturgil发现的促分裂原活化蛋白激酶(Mitogen-Activated Protein Kinase, MAPK)超家族成员之一,属于哺乳动物细胞内广泛存在的一类丝氨酸/苏氨酸蛋白激酶[1]。c-Jun氨基末端激酶是JNK的主要下游因子,是一种受JNK调控的即早基因[2]。c-Jun是最重要的转录因子,在调控细胞的增殖、分化、侵袭和凋亡方面起关键作用。JNK/c-Jun信号通路不仅可以在蛋白水平促进c-Jun的表达,而且激活的JNK/c-Jun信号通路还可使c-Jun蛋白发生磷酸化,从而极大地提高c-Jun的转录活性,因而是细胞凋亡和生长控制的主要信号途径[3]。大量实验提示,JNK/c-Jun信号通路是与细胞分化、细胞凋亡、衰老、应激反应相关的调节因子,在多种人类疾病的发生与发展中起着至关重要的作用,因此JNK/c-Jun信号通路是正常与疾病状态时细胞的一个重要调节靶点[4] [5]。越来越多的研究表明,JNK/c-Jun信号通路与肾脏疾病发生发展密切相关。本文就JNK/c-Jun信号通路在肾脏疾病发生发展过程中的作用进行综述,为肾脏疾病的病理机制研究及治疗提供思路。

2. JNK/c-Jun信号通路与IgA肾病

IgA肾病目前已被公认为是全世界最常见的原发性肾小球疾病,约20%~40%的IgA肾病患者会在10~20年内进展至终末期肾脏病[6]。在我国,IgA肾病占原发性肾小球疾病的45.26%,是尿毒症最常见的病因(26.69%) [7],约20%~40%的患者会在10~20年内进展至终末期肾脏病(ESRD) [8],给国家和个人带来沉重的经济负担和社会压力。IgA肾病是一个病理诊断,其病理特征为肾小球系膜区和/或肾小球毛细血管襻出现IgA或以IgA为主,伴或不伴有其他免疫球蛋白如IgG、IgM的沉积,但通常都会伴随补体C3的沉积。此外,还有不同程度的肾小球系膜细胞增生和细胞外基质(ECM)的堆积。故肾小球系膜细胞增殖和细胞外基质沉积是IgA肾病最基本的病理特征。目前已有研究证实JNK/c-Jun信号通路在调控肾小球系膜细胞增殖中占有重要地位。多项研究表明,c-Jun可调控细胞周期中的G1期进程,并可通过加速G1-S期细胞周期进程促进细胞增殖[9]-[11]。研究表明,通过对IgA肾病患者及健康对照者的肾组织标本进行RNA测序发现,IgA肾病患者肾组织中c-Jun基因转录本的表达量明显高于健康对照组[12]。miR-214是脊椎动物特有的miRNA,其广泛表达于全身各种组织细胞中,参与调节各项细胞功能及病理生理状态,多项研究表明,miR-214在多种肾脏疾病中呈现差异表达,并参与调节肾脏细胞增殖、分化及凋亡等。李艳据此设计的IgA肾病动物模型[6]体内实验结果表明:IgA肾病小鼠中,尾静脉注射miR-214-3p antagomir能够抑制肾组织中miR-214-3p的表达,减少肾小球系膜区的IgA沉积、肾小球系膜细胞增生和ECM堆积,降低蛋白尿水平,并可抑制细胞增殖蛋白PCNA和cyclinD1的表达,从而减轻肾脏损伤。体外实验结果表明:在p-IgA1诱导的IgA肾病小鼠肾小球系膜细胞中,转染miR-214-3p inhibitor能够下调系膜细胞中miR-214-3p的表达,抑制系膜细胞增殖和细胞周期转换,以及细胞增殖蛋白PCNA和cyclinD1的表达。因此,在IgA肾病中,miR-214-3p能够通过加速肾小球系膜细胞周期转换来促进肾小球系膜细胞增殖。上述研究揭示了抑制经过JNK/c-Jun信号通路的miR-214-3p能够减轻IgA肾病肾小球系膜细胞增殖和ECM堆积,以及肾小球系膜区的IgA沉积,降低蛋白尿水平。此外,也可以通过直接阻断JNK/c-Jun信号通路来抑制肾小球系膜细胞增殖,减轻IgA肾病的肾脏病理损伤,从而为临床上IgA肾病的治疗提供新的靶点。

3. JNK/c-Jun信号通路与抗GBM肾小球肾炎

抗肾小球基底膜肾炎是一种侵袭性炎症性疾病[13],该病起病急,常表现为急进性肾炎综合征,肾功能呈进行性恶化。Isome等[14]早已通过实验研究表明,巨噬细胞在实验性抗肾小球基底膜肾炎的发生发展中至关重要。在Ikezumi等的模型中,巨噬细胞介导的肾损伤作用已通过JNK/c-Jun转移的方式得以解决。在将培养的巨噬细胞转移到抗肾小球基底膜肾病的白细胞衰竭大鼠体内之前,给它们提前注射JNK/c-Jun抑制剂,结果显示,虽然并不能阻止巨噬细胞招募到肾小球,但却可以显著抑制蛋白尿的诱导和系膜细胞的增殖,这均表明巨噬细胞的反应已发生了改变[15]。事实上,通过阻断JNK/c-Jun信号通路,明显减弱了培养的巨噬细胞对TNF-α的反应[15]。在随后的研究中,口服一种高度选择的JNK抑制剂(CC-401)被用于大鼠抗肾小球基底膜肾炎的标准模型中[16]。而通过阻断JNK/c-Jun可达到抑制蛋白尿,并减轻肾小球和肾小管间质病变的严重程度的目的。经过分析表明,在抗肾小球基底膜肾炎中,阻断JNK/c-Jun信号通路后,可以显著改变巨噬细胞激活标记物(iNOS和TNF-α)的炎症反应,但未改变T细胞和体液免疫反应,从而得出结论:阻断JNK/c-Jun可抑制巨噬细胞促炎反应,有益于减轻肾损伤[16]

4. JNK/c-Jun信号通路与肾纤维化

肾纤维化(renal fibrosis)是所有慢性肾脏疾病(CKD)发展至终末期肾脏病的最后共同通路。其主要病理改变为大量增生出成纤维细胞及肌成纤维细胞,产生和堆积大量的细胞外基质如胶原纤维和纤粘连蛋白,从而导致肾小球硬化、肾小管间质纤维化,最终导致肾脏功能丧失[17]。就目前研究看来,肾纤维化已成为一种不可逆转的进行性病变,由此所发展的终末期肾脏病急需依赖透析治疗或肾脏移植生存,对患者及家庭来说,为此耗费极大的财力和物力已变成沉重的负担。动物研究表明,在严重缺血、毒素和持续性炎症反应下,增殖的肾小管上皮细胞发生DNA损伤,激活蛋白激酶ATM [18] [19],启动P53/P21通路,引起肾小管上皮细胞周期停滞于G2/M期,进而激活细胞内JNK/c-Jun信号通路,启动促纤维化生长因子(TGF-β1和CTGF)的基因转录以及蛋白合成与分泌,导致肾间质纤维化[20]。JNK信号通路在阻塞肾中的肾小管上皮细胞和肌成纤维细胞中也显示出显著的激活[21]。使用JNK抑制剂可以有效地阻止c-Jun磷酸化,并显著减少间质肌成纤维细胞的积累和胶原的合成和沉积[22]。肾脏纤维化的发生是一个非常复杂的慢性病理过程,世界各国的肾脏病学者做了大量的工作,试图寻找抗肾脏纤维化的措施,但至今临床上仍缺乏有效可靠的抗纤维化治疗方法,上述研究或许抑制JNK/c-Jun信号通路为靶点可为治疗肾脏纤维化提供了新的思路[22]

5. JNK/c-Jun信号通路与急性肾损伤

急性肾损伤(Acute Kidney Injury, AKI)是指突发和持续的肾功能下降的一组临床综合征,表现为血清肌酐增加(48 h内>0.3 mg/mL)及尿量减少(0.5 ml/kg/h, >6 h) [23]。急性肾损伤(Acute Kidney Injury, AKI) 十分普遍,其发病率占住院患者约10%~15%,而在重症监护患者中超过50%。近年来,AKI发病率明显升高,全球每年约有1330万AKI患者,死亡人数约为170万[24]。研究表明,缺血再灌注(Ischemia-Reperfusion, IR)是AKI的重要发病机制,也是AKI的最常见原因[25]

IR引起的急性肾损伤(Acute Kidney Injury, AKI)一直是临床上棘手的问题,病死率高,尽管目前医疗环境在不断改善,手术技术已经取得较大进展,肾IR仍然是一个严重的临床问题[26]。早已有研究表明,在缺血/再灌注损伤或顺铂引起的急性肾功能衰竭中,一种主要发生在肾小管上皮细胞中的快速反应——JNK通路被显著激活[27]。许多研究表明,JNK信号通路与各种细胞的凋亡和自噬有关[28]-[30]。而凋亡是诱导AKI的一个重要因素。越来越多的证据表明,以JNK为介导的信号可以通过直接或间接途径产生凋亡效应。激活的JNK可以直接增强转录因子c-Jun的活性,从而进一步诱导凋亡[31]。在肾缺血/再灌注模型中,使用JNK抑制剂已被证明可以减少急性肾损伤[32] [33]。同样,阻断JNK对顺铂诱导的急性肾功能衰竭、肾小管细胞凋亡和组织学损伤具有保护作用[34] [35]。草药单体积雪草苷可以通过调节JNK/c-Jun介导的凋亡和氧化应激来改善顺铂诱导的AKI [31]。该研究结果为治疗缺血再灌注诱导的急性肾损伤提供了一种潜在的新方法。

6. 结语

综上所述,JNK/c-Jun信号通路在肾脏疾病的发生发展中发挥着重要作用。不同的肾脏疾病与JNK/c-Jun信号通路的调节功能密切相关。从不同纬度去探讨JNK/c-Jun信号通路在肾脏疾病发生发展中的作用,对阐释肾脏疾病发生的病理机制具有重要作用,也可为肾脏疾病的诊断和治疗提供新的分子标志物和作用靶点。

NOTES

*通讯作者。

参考文献

[1] 黎增辉, 廖爱军. JNK信号通路[J]. 国际病理科学与临床志, 2010, 30(3): 273-276.
[2] 李莉, 孙颖颖, 白莹, 等. 青藤碱在JNK/c-Jun信号通路中对LPS诱导的肺上皮细胞凋亡和自噬的影响[J]. 中国免疫学杂志, 2024, 40(4): 731-735.
[3] 张宇琼, 张雪怡, 徐美琴, 等. JNK/c-Jun信号通路参与介导EB病毒编码的BARF1基因上调胃癌细胞Bcl-2的表达[J]. 江苏大学学报(医学版), 2015, 25(3): 199-202.
[4] 程崑, 李涛. JNK通路研究现状[J]. 齐齐哈尔医学院学报, 2014, 35(7): 1038-1041.
[5] Hammouda, M., Ford, A., Liu, Y. and Zhang, J. (2020) The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells, 9, Article 857.
https://doi.org/10.3390/cells9040857
[6] 李艳. miR-214-3p通过PTEN/JNK/c-Jun信号通路参与IgA肾病的发病机制研究[D]: [博士学位论文]. 重庆: 中南大学, 2022.
[7] Li, L. and Liu, Z. (2004) Epidemiologic Data of Renal Diseases from a Single Unit in China: Analysis Based on 13,519 Renal Biopsies. Kidney International, 66, 920-923.
https://doi.org/10.1111/j.1523-1755.2004.00837.x
[8] Wyatt, R.J. and Julian, B.A. (2013) IgA Nephropathy. New England Journal of Medicine, 368, 2402-2414.
https://doi.org/10.1056/nejmra1206793
[9] Hu, S., Bao, H., Xu, X., Zhou, X., Qin, W., Zeng, C., et al. (2015) Increased miR‐374b Promotes Cell Proliferation and the Production of Aberrant Glycosylated IgA1 in B Cells of IgA Nephropathy. FEBS Letters, 589, 4019-4025.
https://doi.org/10.1016/j.febslet.2015.10.033
[10] Li, C., Shi, J. and Zhao, Y. (2018) miR‐320 Promotes B Cell Proliferation and the Production of Aberrant Glycosylated IgA1 in IgA Nephropathy. Journal of Cellular Biochemistry, 119, 4607-4614.
https://doi.org/10.1002/jcb.26628
[11] Yang, L., Zhang, X., Peng, W., Wei, M. and Qin, W. (2016) MicroRNA-155-Induced T Lymphocyte Subgroup Drifting in IgA Nephropathy. International Urology and Nephrology, 49, 353-361.
https://doi.org/10.1007/s11255-016-1444-3
[12] Selvaskandan, H., Pawluczyk, I. and Barratt, J. (2017) MicroRNAs: A New Avenue to Understand, Investigate and Treat Immunoglobulin a Nephropathy? Clinical Kidney Journal, 11, 29-37.
https://doi.org/10.1093/ckj/sfx096
[13] Nikolic‐Paterson, D.J. and C. Atkins, R. (2001) The Role of Macrophages in Glomerulonephritis. Nephrology Dialysis Transplantation, 16, 3-7.
https://doi.org/10.1093/ndt/16.suppl_5.3
[14] Isome, M., Fujinaka, H., Adhikary, L.P., Kovalenko, P., El-Shemi, A.G.A., Yoshida, Y., et al. (2004) Important Role for Macrophages in Induction of Crescentic Anti-GBM Glomerulonephritis in WKY Rats. Nephrology Dialysis Transplantation, 19, 2997-3004.
https://doi.org/10.1093/ndt/gfh558
[15] Ikezumi, Y., Hurst, L., Atkins, R.C. and Nikolic-Paterson, D.J. (2004) Macrophage-Mediated Renal Injury Is Dependent on Signaling via the JNK Pathway. Journal of the American Society of Nephrology, 15, 1775-1784.
https://doi.org/10.1097/01.asn.0000131272.06958.de
[16] Flanc, R.S., Ma, F.Y., Tesch, G.H., Han, Y., Atkins, R.C., Bennett, B.L., et al. (2007) A Pathogenic Role for JNK Signaling in Experimental Anti-GBM Glomerulonephritis. Kidney International, 72, 698-708.
https://doi.org/10.1038/sj.ki.5002404
[17] 王海燕. 肾脏病学[M]. 第4版. 北京: 人民卫生出版社, 2020.
[18] Abraham, R.T. (2001) Cell Cycle Checkpoint Signaling through the ATM and ATR Kinases. Genes & Development, 15, 2177-2196.
https://doi.org/10.1101/gad.914401
[19] Bencokova, Z., Kaufmann, M.R., Pires, I.M., Lecane, P.S., Giaccia, A.J. and Hammond, E.M. (2009) ATM Activation and Signaling under Hypoxic Conditions. Molecular and Cellular Biology, 29, 526-537.
https://doi.org/10.1128/mcb.01301-08
[20] Yang, L., Besschetnova, T.Y., Brooks, C.R., Shah, J.V. and Bonventre, J.V. (2010) Epithelial Cell Cycle Arrest in G2/M Mediates Kidney Fibrosis after Injury. Nature Medicine, 16, 535-543.
https://doi.org/10.1038/nm.2144
[21] Ma, F.Y., Flanc, R.S., Tesch, G.H., Han, Y., Atkins, R.C., Bennett, B.L., et al. (2007) A Pathogenic Role for c-Jun Amino-Terminal Kinase Signaling in Renal Fibrosis and Tubular Cell Apoptosis. Journal of the American Society of Nephrology, 18, 472-484.
https://doi.org/10.1681/asn.2006060604
[22] Ma, F.Y., Liu, J. and Nikolic-Paterson, D.J. (2008) The Role of Stress-Activated Protein Kinase Signaling in Renal Pathophysiology. Brazilian Journal of Medical and Biological Research, 42, 29-37.
https://doi.org/10.1590/s0100-879x2008005000049
[23] Chen, Y. (2010) Definition and Classification of Acute Kidney Injury: Contributions and Problems in the Clinical Practice. Chinese Journal of Integrative Medicine, 16, 204-206.
https://doi.org/10.1007/s11655-010-0204-2
[24] 王薇, 赛文莉, 杨斌. 巨噬细胞极化及与肾小管上皮细胞互动在缺血再灌注所致急性肾损伤中的作用[J]. 生理学报, 2022, 74(1): 28-38.
[25] 吴玲, 吴丽华, 刘昱, 等. 肾动脉缺血再灌注诱导急性肾损伤模型的建立和评价[J]. 中国中西医结合肾病杂志, 2023, 24(11): 961-964, 1036.
[26] 路艳, 朴宗方, 李建玲, 等. 舒芬太尼通过上调microRNA-145促进自噬和改善缺血再灌注诱导的急性肾损伤[J]. 中南大学学报(医学版), 2022, 47(10): 1315-1323.
[27] Pombo, C.M., Bonventre, J.V., Avruch, J., Woodgett, J.R., Kyriakis, J.M. and Force, T. (1994) The Stress-Activated Protein Kinases Are Major c-Jun Amino-Terminal Kinases Activated by Ischemia and Reperfusion. Journal of Biological Chemistry, 269, 26546-26551.
https://doi.org/10.1016/s0021-9258(18)47229-8
[28] Lin, T., Ruan, S., Huang, D., Meng, X., Li, W., Wang, B., et al. (2019) MeHg-Induced Autophagy via JNK/Vps34 Complex Pathway Promotes Autophagosome Accumulation and Neuronal Cell Death. Cell Death & Disease, 10, Article No. 399.
https://doi.org/10.1038/s41419-019-1632-z
[29] Ugbode, C., Garnham, N., Fort-Aznar, L., Evans, G.J.O., Chawla, S. and Sweeney, S.T. (2020) JNK Signalling Regulates Antioxidant Responses in Neurons. Redox Biology, 37, Article 101712.
https://doi.org/10.1016/j.redox.2020.101712
[30] Wu, Q., Wu, W., Fu, B., Shi, L., Wang, X. and Kuca, K. (2019) JNK Signaling in Cancer Cell Survival. Medicinal Research Reviews, 39, 2082-2104.
https://doi.org/10.1002/med.21574
[31] Shan, R., Yu, J., Zhang, S., Xie, M., Hou, R., Xie, C., et al. (2024) Madecassoside Alleviates Acute Kidney Injury by Regulating JNK-Mediated Oxidative Stress and Programmed Cell Death. Phytomedicine, 123, Article ID: 155252.
https://doi.org/10.1016/j.phymed.2023.155252
[32] Rongshan, L., Tao, D., Xiaocheng, L. and Caixia, L. (2006) Influence of SB203580 on Cell Apoptosis and P38MAPK in Renal Ischemia/Reperfusion Injury. Journal of Huazhong University of Science and Technology [Medical Sciences], 26, 50-52.
https://doi.org/10.1007/bf02828037
[33] Wang, Y., Ji, H., Xing, S., Pei, D. and Guan, Q. (2007) SP600125, a Selective JNK Inhibitor, Protects Ischemic Renal Injury via Suppressing the Extrinsic Pathways of Apoptosis. Life Sciences, 80, 2067-2075.
https://doi.org/10.1016/j.lfs.2007.03.010
[34] Ramesh, G. and Reeves, W.B. (2005) P38 MAP Kinase Inhibition Ameliorates Cisplatin Nephrotoxicity in Mice. American Journal of Physiology-Renal Physiology, 289, F166-F174.
https://doi.org/10.1152/ajprenal.00401.2004
[35] Francescato, H.D.C., Costa, R.S., Junior, F.B. and Coimbra, T.M. (2007) Effect of JNK Inhibition on Cisplatin-Induced Renal Damage. Nephrology Dialysis Transplantation, 22, 2138-2148.
https://doi.org/10.1093/ndt/gfm144