[1]
|
Xue, H., Li, J., Xie, H. and Wang, Y. (2018) Review of Drug Repositioning Approaches and Resources. International Journal of Biological Sciences, 14, 1232-1244. https://doi.org/10.7150/ijbs.24612
|
[2]
|
Mongia, A. and Majumdar, A. (2020) Drug-Target Interaction Prediction Using Multi Graph Regularized Nuclear Norm Minimization. PLOS ONE, 15, e0226484. https://doi.org/10.1371/journal.pone.0226484
|
[3]
|
Yao, L., Evans, J.A. and Rzhetsky, A. (2010) Novel Opportunities for Computational Biology and Sociology in Drug Discovery. Trends in Biotechnology, 28, 161-170. https://doi.org/10.1016/j.tibtech.2010.01.004
|
[4]
|
张然, 王学志, 汪嘉葭, 等. 药物-靶点相互作用预测的计算方法综述[J]. 计算机工程与应用, 2023, 59(12): 1-13.
|
[5]
|
Mei, J., Kwoh, C., Yang, P., Li, X. and Zheng, J. (2012) Drug-Target Interaction Prediction by Learning from Local Information and Neighbors. Bioinformatics, 29, 238-245. https://doi.org/10.1093/bioinformatics/bts670
|
[6]
|
Lee, I. and Nam, H. (2018) Identification of Drug-Target Interaction by a Random Walk with Restart Method on an Interactome Network. BMC Bioinformatics, 19, Article No. 208. https://doi.org/10.1186/s12859-018-2199-x
|
[7]
|
Shamima, M.K., Mehedi, M.H. and Hiroyuki, K. (2019) PreAIP: Computational Prediction of Anti-Inflammatory Peptides by Integrating Multiple Complementary Features. Frontiers in Genetics, 10, Article 129.
|
[8]
|
Fu, G., Ding, Y., Seal, A., Chen, B., Sun, Y. and Bolton, E. (2016) Predicting Drug Target Interactions Using Meta-Path-Based Semantic Network Analysis. BMC Bioinformatics, 17, Article No. 160. https://doi.org/10.1186/s12859-016-1005-x
|
[9]
|
Bleakley, K. and Yamanishi, Y. (2009) Supervised Prediction of Drug-Target Interactions Using Bipartite Local Models. Bioinformatics, 25, 2397-2403. https://doi.org/10.1093/bioinformatics/btp433
|
[10]
|
Ding, Y.J., Tang, J.J. and Guo, F. (2021) Identification of Drug-Target Interactions via Multi-View Graph Regularized Link Propagation Model. Neurocomputing, 461, 618-631.
|
[11]
|
Zhang, Z., Zhang, X., Wu, M., Ou-Yang, L., Zhao, X. and Li, X. (2020) A Graph Regularized Generalized Matrix Factorization Model for Predicting Links in Biomedical Bipartite Networks. Bioinformatics, 36, 3474-3481. https://doi.org/10.1093/bioinformatics/btaa157
|
[12]
|
Ezzat, A., Zhao, P., Wu, M., Li, X. and Kwoh, C. (2017) Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14, 646-656. https://doi.org/10.1109/tcbb.2016.2530062
|
[13]
|
Zheng, X., He, S., Song, X., Zhang, Z. and Bo, X. (2018) DTI-RCNN: New Efficient Hybrid Neural Network Model to Predict Drug-Target Interactions. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L. and Maglogiannis, I., Eds, Artificial Neural Networks and Machine Learning—ICANN 201, Springer, 104-114. https://doi.org/10.1007/978-3-030-01418-6_11
|
[14]
|
Scarselli, F., Gori, M., Chung Tsoi, A., Hagenbuchner, M. and Monfardini, G. (2009) The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20, 61-80. https://doi.org/10.1109/tnn.2008.2005605
|
[15]
|
Kipf, N.T. and Welling, M. (2016) Semi-Supervised Classification with Graph Convolutional Networks. arXiv: 1609.02907.
|
[16]
|
Velickovic, P., Cucurull, G., Casanova, A., et al. (2017) Graph Attention Networks. arXiv: 1710.10903.
|
[17]
|
Dong, Y., Chawla, N.V. and Swami, A. (2017) Metapath2vec: Scalable Representation Learning for Heterogeneous Networks. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, 13-17 August 2017, 135-144. https://doi.org/10.1145/3097983.3098036
|
[18]
|
Zhao, T., Hu, Y., Valsdottir, L.R., Zang, T. and Peng, J. (2020) Identifying Drug-Target Interactions Based on Graph Convolutional Network and Deep Neural Network. Briefings in Bioinformatics, 22, 2141-2150. https://doi.org/10.1093/bib/bbaa044
|
[19]
|
Peng, J., Wang, Y., Guan, J., Li, J., Han, R., Hao, J., et al. (2021) An End-To-End Heterogeneous Graph Representation Learning-Based Framework for Drug-Target Interaction Prediction. Briefings in Bioinformatics, 22, bbaa430. https://doi.org/10.1093/bib/bbaa430
|
[20]
|
Li, Y., Qiao, G., Gao, X. and Wang, G. (2022) Supervised Graph Co-Contrastive Learning for Drug-Target Interaction Prediction. Bioinformatics, 38, 2847-2854. https://doi.org/10.1093/bioinformatics/btac164
|
[21]
|
Yao, K., Wang, X., Li, W., Zhu, H., Jiang, Y., Li, Y., et al. (2023) Semi-Supervised Heterogeneous Graph Contrastive Learning for Drug-Target Interaction Prediction. Computers in Biology and Medicine, 163, Article ID: 107199. https://doi.org/10.1016/j.compbiomed.2023.107199
|
[22]
|
Yang, C., Liu, M., He, F., Zhang, X., Peng, J. and Han, J. (2019) Similarity Modeling on Heterogeneous Networks via Automatic Path Discovery. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N. and Ifrim, G., Eds., Machine Learning and Knowledge Discovery in Databases, Springer, 37-54. https://doi.org/10.1007/978-3-030-10928-8_3
|
[23]
|
Su, Y., Hu, Z., Wang, F., Bin, Y., Zheng, C., Li, H., et al. (2023) AMGDTI: Drug-Target Interaction Prediction Based on Adaptive Meta-Graph Learning in Heterogeneous Network. Briefings in Bioinformatics, 25, bbad474. https://doi.org/10.1093/bib/bbad474
|
[24]
|
Gao, J., Gao, J., Ying, X., Lu, M. and Wang, J. (2021) Higher-Order Interaction Goes Neural: A Substructure Assembling Graph Attention Network for Graph Classification. IEEE Transactions on Knowledge and Data Engineering, 35, 1594-1608. https://doi.org/10.1109/tkde.2021.3105544
|
[25]
|
Wu, Q., Zhang, H., Gao, X., He, P., Weng, P., Gao, H., et al. (2019) Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. The World Wide Web Conference, San Francisco, 13-17 May 2019, 2091-2102. https://doi.org/10.1145/3308558.3313442
|
[26]
|
Gao, H., Wang, Z. and Ji, S. (2018) Large-scale Learnable Graph Convolutional Networks. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 1416-1424. https://doi.org/10.1145/3219819.3219947
|
[27]
|
Wang, H., Zhou, G., Liu, S., et al. (2021) Drug-Target Interaction Prediction with Graph Attention Networks. arXiv: 2107.06099.
|
[28]
|
Li, M., Cai, X., Xu, S. and Ji, H. (2023) Metapath-Aggregated Heterogeneous Graph Neural Network for Drug-Target Interaction Prediction. Briefings in Bioinformatics, 24, bbac578. https://doi.org/10.1093/bib/bbac578
|
[29]
|
Li, J., Wang, J., Lv, H., Zhang, Z. and Wang, Z. (2022) IMCHGAN: Inductive Matrix Completion with Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19, 655-665. https://doi.org/10.1109/tcbb.2021.3088614
|
[30]
|
Jiang, L., Sun, J., Wang, Y., Ning, Q., Luo, N. and Yin, M. (2022) Identifying Drug-Target Interactions via Heterogeneous Graph Attention Networks Combined with Cross-Modal Similarities. Briefings in Bioinformatics, 23, bbac016. https://doi.org/10.1093/bib/bbac016
|
[31]
|
Shao, K., Zhang, Y., Wen, Y., Zhang, Z., He, S. and Bo, X. (2022) DTI-HETA: Prediction of Drug-Target Interactions Based on GCN and GAT on Heterogeneous Graph. Briefings in Bioinformatics, 23, bbac109. https://doi.org/10.1093/bib/bbac109
|
[32]
|
Li, Y., Qiao, G., Wang, K. and Wang, G. (2021) Drug-Target Interaction Predication via Multi-Channel Graph Neural Networks. Briefings in Bioinformatics, 23, bbab346. https://doi.org/10.1093/bib/bbab346
|
[33]
|
Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., et al. (2012) Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29, 82-97. https://doi.org/10.1109/msp.2012.2205597
|
[34]
|
Yang, B., Yih, W., He, X., et al. (2014) Embedding Entities and Relations for Learning and Inference in Knowledge Bases. arXiv: 1412.6575.
|
[35]
|
Zhang, M. and Chen, Y. (2019) Inductive Matrix Completion Based on Graph Neural Networks. arXiv: 1904.12058.
|
[36]
|
Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., et al. (2017) A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information. Nature Communications, 8, Article No. 573. https://doi.org/10.1038/s41467-017-00680-8
|
[37]
|
Zheng, Y., Peng, H., Zhang, X., Gao, X. and Li, J. (2018) Predicting Drug Targets from Heterogeneous Spaces Using Anchor Graph Hashing and Ensemble Learning. 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, 8-13 July 2018, 1-7. https://doi.org/10.1109/ijcnn.2018.8489028
|
[38]
|
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. and Kanehisa, M. (2008) Prediction of Drug-Target Interaction Networks from the Integration of Chemical and Genomic Spaces. Bioinformatics, 24, i232-i240. https://doi.org/10.1093/bioinformatics/btn162
|