基于生物信息学分析肿瘤浸润免疫细胞与头颈部鳞癌预后的关系
Bioinformatics-Based Analysis of the Relationship between Tumor-Infiltrating Immune Cells and the Prognosis of Head and Neck Squamous Cell Carcinoma
DOI: 10.12677/hjbm.2024.144061, PDF, HTML, XML,    科研立项经费支持
作者: 杨禾怡:大理大学临床医学院,云南 大理;丁跃明*:大理大学第一附属医院耳鼻咽喉科,云南 大理
关键词: 头颈部鳞癌肿瘤浸润免疫细胞预后模型CIBERSORTHead and Neck Squamous Cell Carcinoma Tumor-Infiltrating Immune Cells Prognostic Model CIBERSORT
摘要: 目的:探究肿瘤浸润免疫细胞(TIICs)浸润程度与头颈部鳞状细胞癌(HNSCC)患者预后的关系,并基于多种免疫细胞构建预后模型。方法:从TCGA数据库中下载515例HNSCC样本和44例正常对照样本的基因表达谱和生存信息,利用CIBERSORT算法计算每个样本中不同免疫细胞的占比,进行免疫细胞浸润分析和Kaplan-Meier生存分析。通过LASSO回归、单因素和多因素Cox回归筛选HNSCC样本中免疫细胞并构建免疫细胞风险评分预后模型,采用Kaplan-Meier法和ROC曲线评估该模型。结果:在22种TIICs中,M0、M1和M2巨噬细胞具有相对高的百分比,约占40%。CD8+T细胞与活化CD4+记忆T细胞呈显著正相关(r = 0.55),而与M0巨噬细胞(r = −0.53)呈显著负相关。生存分析表明高表达的调节性T细胞(P < 0.05)和滤泡辅助性T细胞(P < 0.05)预后较好。多因素Cox分析显示调节性T细胞(P < 0.05)为HNSCC患者预后的独立因素。预后模型中低风险组患者的总生存期明显高于高风险组(P < 0.001)。结论:TIICs与HNSCC患者预后关系密切。调节性T细胞可考虑成为治疗HNSCC的靶标,本研究构建的预后模型有望为临床预后提供参考。
Abstract: Objective: This paper aims to investigate the relationship between the degree of tumor infiltrating immune cells (TIICs) and prognosis of head and neck squamous cell carcinoma (HNSCC) patients, and construct a prognostic model based on multiple immune cells. Methods: The gene expression profiles and survival information of 515 HNSCC samples and 44 normal control samples were downloaded from the TCGA database. The proportion of different immune cells in each sample was calculated using the CIBERSORT algorithm, and immune cell infiltration analysis and Kaplan-Meier survival analysis were performed. The immune cells in HNSCC samples were screened by LASSO regression, univariate and multivariate Cox regression, and an immune cell risk scoring prognostic model was constructed. The model was evaluated by Kaplan-Meier method and ROC curve. Results: Among the 22 TIICs, M0, M1, and M2 macrophages had relatively high percentages, accounting for about 40%. CD8+T cells were significantly positively correlated with activated CD4+ memory T cells (r = 0.55), while significantly negatively correlated with M0 macrophages (r = −0.53). Survival analysis showed that high expression of regulatory T cells (P < 0.05) and follicular helper T cells (P < 0.05) had better prognosis. Multivariate Cox analysis showed that regulatory T cells (P < 0.05) were an independent prognostic factor for HNSCC patients. The total survival period of the low-risk group was significantly longer than that of the high-risk group (P < 0.001). Conclusion: TIICs are closely related to the prognosis of HNSCC patients. Regulatory T cells may be considered as a target for treatment of HNSCC, and the prognostic model constructed in this study may provide reference for clinical prognosis.
文章引用:杨禾怡, 丁跃明. 基于生物信息学分析肿瘤浸润免疫细胞与头颈部鳞癌预后的关系[J]. 生物医学, 2024, 14(4): 573-582. https://doi.org/10.12677/hjbm.2024.144061

1. 引言

头颈部鳞状细胞癌(Head and neck squamous cell carcinoma, HNSCC)是一组起源于上呼吸消化道的黏膜上皮的具有高度侵袭性的异质性恶性肿瘤,是全球第六大常见癌症,每年造成超过300,000人死亡[1]。尽管采用了积极有效的传统治疗方案,但HNSCC的预后通常较差,5年总生存率仍仅为40%~50%,且多年几乎没有改善[2]。靶向免疫疗法提高了HNSCC患者的生存率,但只有不到20%的患者对这些治疗产生持久的反应[3]。随着免疫治疗的发展,肿瘤微环境受到越来越多的关注,其在疾病进展和治疗反应中起着重要作用。一项关于HNSCC微环境的研究揭示[4]肿瘤微环境中的癌症相关成纤维细胞可以通过与邻近的肿瘤细胞和浸润免疫细胞相互作用从而促进肿瘤生长、进展和转移,因此结合免疫检查点抑制剂与针对癌症相关成纤维细胞的治疗策略可能有助于改善HNSCC患者的预后。患者的高复发率和转移率是HNSCC治疗的一个主要阻碍因素,而这可能是由于构成肿瘤微环境的周围组织基质和免疫细胞的相互作用造成[5]。作为肿瘤微环境的重要成分,不同肿瘤浸润性免疫细胞(Tumor-infiltrating immune cells, TIICs)对肿瘤影响不同,如NK细胞和CD8+T细胞可监视和控制肿瘤生长,而肿瘤相关巨噬细胞会促进肿瘤的生长和进展[6]。有研究表明[7],TIICs的类型及浸润程度可有效预测肿瘤的预后和对免疫治疗的反应。本研究采集癌症基因组图谱(TCGA)数据库中HNSCC患者的RNA-seq基因表达谱和生存信息,通过CIBERSORT分析对HNSCC组织中22种TIICs进行量化并探讨它们与预后的相关性,用单因素、多因素Cox回归和LASSO回归构建免疫细胞风险评分预后模型,为HNSCC免疫治疗相关生物标志物的研究提供新见解。

2. 材料与方法

2.1. 数据来源

从癌症基因组图谱(TCGA, https://portal.gdc.cancer.gov/)数据库中获取HNSCC患者的RNA-seq基因表达数据和生存信息,包括515例HNSCC样本和44例正常对照样本。

2.2. CIBERSORT对TIICs的评估

CIBERSORT分析是一种基于基因表达的反卷积算法,它使用包含547个基因的基因特征矩阵(LM22)来评估大量癌症标本中免疫细胞成分的数据[8]。通过分析肿瘤组织样本中22种TIICs的组成和比例,将基因的表达转化为免疫细胞的水平。将排列数量设置为1000,对每个样本进行22种TIICs类型和CIBERSORT指标的量化。免疫细胞亚群的统计显著性用CIBERSORT P值表示,以P < 0.05为过滤标准,去除拟合精度不显著的反卷积。最终满足标准的有441例HNSCC样本和10例正常对照样本。

2.3. TIICs与生存分析

根据各免疫细胞浸润水平的中位数(作为截断值)将患者样本分为high组和low组,分析免疫细胞和生存情况的关系并绘制Kaplan-Meier生存曲线。

2.4. 构建预后模型

将HNSCC样本用CIBERSORT分析,之后得到的22种TIICs进行单因素Cox分析,同时通过LASSO回归进行免疫细胞筛选,将单因素Cox分析和LASSO回归筛选出来的免疫细胞纳入多因素Cox分析,并采用双向逐步回归法进行二次筛选。最终筛选出来的免疫细胞构建免疫细胞风险评分预后模型,并计算风险评分,根据风险评分中位数将患者分为高风险组和低风险组。

2.5. 统计数据

采用R软件4.3.3完成统计分析。使用barplot包绘制免疫细胞浸润情况的柱状图。使用pheatmap包绘制样本与免疫细胞表达关系的热图。使用corrplot包绘制免疫细胞相关性热图。使用vioplot包绘制小提琴图。采用Kaplan-Meier生存分析、LASSO回归、Cox单因素和多因素回归进行预后模型构建。采用timeROC包进行ROC曲线分析。P < 0.05被认为差异有统计学意义。

3. 结果

3.1. HNSCC样本和正常对照样本中的TIICs浸润情况

用CIBERSORT算法评估HNSCC样本中22种免疫细胞的丰度,每个样本中22种免疫细胞亚群的总和为100%。图1描述了每个样本(前441个为HNSCC样本,后10个为正常对照样本)中全部22种免疫细胞的比例,从图中可确定HNSCC样本中M0、M1和M2巨噬细胞具有相对高的百分比,约占整个免疫细胞亚群的40%。根据TIICs的分层聚类显示,在图2中M0、M1、M2巨噬细胞、静息CD4+记忆T细胞和CD8+T细胞的表达水平相对较高。M0巨噬细胞和静息NK细胞在HNSCC样本和正常对照样本中显示出明显的分布差异。

Figure 1. Immune infiltration in HNSCC samples and normal control samples

1. HNSCC样本和正常对照样本的免疫浸润情况

Figure 2. Heat maps of immune cell expression in HNSCC samples and normal control samples

2. HNSCC样本和正常对照样本中免疫细胞的表达热图

Figure 3. TIICs correlation heat map

3. TIICs相关性热图

3.2. HNSCC样本和正常对照样本中TIICs的相关程度

CD8+T细胞与活化CD4+记忆T细胞呈显著正相关(r = 0.55),而与M0巨噬细胞(r = −0.53)呈显著负相关,见图3

3.3. HNSCC样本和正常对照样本中的TIICs浸润差异

HNSCC样本中的M0巨噬细胞(P < 0.001)、静息NK细胞(P < 0.001)浸润程度明显高于正常样本,而在CD8+T细胞(P < 0.05)、活化NK细胞(P < 0.05)和静息肥大细胞(P < 0.05)中正常样本比HNSCC样本浸润程度高,见图4

Figure 4. Differences in immune cell infiltration between HNSCC sample and normal control sample

4. HNSCC样本和正常对照样本中免疫细胞浸润差异

3.4. 生存分析

调节性T细胞(P < 0.05)和滤泡辅助性T细胞(P < 0.05)高表达时患者的生存期更长,见图5。单因素分析表明,这两种TIICs与患者预后显著相关。

(a) (b)

Figure 5. Relationship between TIICs and prognosis of HNSCC patients

5. TIICs与HNSCC患者预后的关系

3.5. 免疫细胞风险评分预后模型的构建和评估

将22种TIICs进行单因素Cox分析得到6种免疫细胞。经过LASSO回归后,得到11种免疫细胞。将初步筛选得到的11种免疫细胞进一步用双向逐步回归法筛选,纳入多因素Cox回归后最终得到5种免疫细胞(幼稚B细胞、滤泡辅助性T细胞、调节性T细胞、静息NK细胞和静息肥大细胞),见图6。基于这5种免疫细胞风险评分中位数进行生存分析发现高风险组较低风险组的生存率低(P < 0.001),见图7。绘制ROC曲线来探讨模型的预后预测价值,计算1、3、5年AUC值分别为0.661、0.653和0.627,见图8。多因素Cox回归分析还显示调节性T细胞[HR (95% CI)= 0.001(0.000 − 0.523) P = 0.032]与预后显著相关,为HNSCC患者预后的独立因素。

(a) (b)

(c)

(d)

(e)

Figure 6. Construction of immune cell risk score prognostic model (LASSO regression and multivariate Cox regression)

6. 免疫细胞风险评分预后模型的构建(LASSO回归和多因素Cox回归)

Figure 7. Survival analysis of immune cell risk score prognostic model

7. 免疫细胞风险评分预后模型的生存分析

4. 讨论

HNSCC是一种发病率和死亡率都高的高度异质性恶性肿瘤。频繁地淋巴结转移和局部肿瘤复发是HNSCC患者的主要死因。已有研究证实免疫检查点抑制剂治疗是复发和转移性HNSCC患者有前景的治疗方法,这种免疫疗法涉及肿瘤微环境内的浸润免疫细胞对癌细胞的特异性识别和靶向,可显著影响患者治疗反应和临床结局[9]。Chen等[10]通过Meta分析发现在未经过治疗的HNSCC患者中,新辅助

Figure 8. ROC curve

8. ROC曲线

PD-1/PD-L1抑制剂联合化疗的客观缓解率高于单一免疫治疗(ORR: 61% vs 22%),且PD-L1抑制剂的1年总生存期良好(OS = 84%, 95% CI: 76%~93%)。因此,探讨TIICs与HNSCC患者预后的关系,有助于识别对HNSCC患者预后有影响的TIICs,寻找有效的治疗靶标。

本研究广泛评估了441个HNSCC样本和10个正常对照样本的TIICs,利用CIBERSORT算法分析TIICs的占比,发现在HNSCC样本中肿瘤相关巨噬细胞(Tumor-associated macrophages, TAM)的占比高,达到40%。TAM是位于肿瘤内或肿瘤附近的巨噬细胞,包括未激活的M0巨噬细胞、介导促炎及抗肿瘤反应的M1巨噬细胞和具有免疫抑制及促肿瘤特性的M2巨噬细胞[11]。M0巨噬细胞可极化为M1表型和M2表型。高浸润的TAM已被证明与淋巴结转移和晚期HNSCC相关,可能因为在HNSCC中TAM通常表现为M2极化状态,促进免疫逃避和肿瘤生长[12] [13]。研究表明[14],肿瘤细胞与M2巨噬细胞可形成正反馈环,将单核细胞转化为M2巨噬细胞,促进HNSCC的局部侵袭和远处转移。该团队还通过建立TAM和HNSCC细胞共培养系统发现TAM产生表皮生长因子,通过激活EGFR/ERK1/2信号通路诱导上皮-间充质转化,增强HNSCC的侵袭能力[12]。TAM在HNSCC中浸润程度高,可考虑靶向TAM与免疫检查点抑制剂联合治疗HNSCC患者[15]

T淋巴细胞在适应性免疫应答中发挥关键作用,分为CD4+和CD8+T细胞。幼稚CD4+T细胞在与MHC II类抗原相互作用后被激活,与CD8+T细胞协同发挥抗肿瘤免疫。本研究通过免疫细胞相关性分析发现活化CD4+记忆T细胞与CD8+T细胞呈显著正相关,CD8+T细胞与M0巨噬细胞呈显著负相关。对此,Church等[16]的研究解释,CD4+T细胞在促进CD8+T细胞增殖、分化,维持记忆性CD8+T细胞,并支持CD8+T细胞向肿瘤浸润方面具有关键作用。此外,一项关于HNSCC的肿瘤微环境研究表明较高水平的CD4+和CD8+T细胞浸润与良好的总生存期和无复发生存期相关[17]。最近研究[18]发现新抗原特异性CD4+T细胞和CD8+T细胞在肿瘤微环境局部可能存在合作,支持CD8+T细胞在肿瘤中的存活和募集。Dolina等[19]实验证实了连接的CD4/CD8+T细胞新抗原疫苗接种克服了免疫检查点阻断抗性,使肿瘤消退。而TAM不仅阻止T细胞消除癌细胞,而且分泌生长因子以促进癌细胞和癌症血管生成活性,从而导致癌细胞扩散[20]。调节性T细胞(Regulatory T cells, Treg)是CD4+T细胞的一个亚群,可以维持外周耐受性从而预防自身免疫反应和慢性炎症性疾病[21]。浸润程度高的Treg在多种癌症如宫颈癌、肾癌、黑色素瘤和乳腺癌中被证实与预后不良有关[22],但在HNSCC中则表现出相反的特性。与本研究结果一致,Seminerio等[21] [23]研究发现Treg的高浸润与HNSCC患者的总生存期和无复发生存期较长相关,可能因为肿瘤中高水平Treg的存在表现持续的强抗肿瘤免疫应答,这有助于抑制肿瘤生长。滤泡辅助性T细胞(T follicular helper cells, Tfh)是一种高度分化的CD4+T细胞亚群,与更好的抗癌免疫反应、改善的临床结果和增加的治疗反应性相关[24]。最近一项单细胞RNA测序数据表明Tfh可能通过激活B细胞和T细胞来促进抗肿瘤反应,并且它们的存在与HNSCC患者更好的预后显著相关[25]。深入研究T淋巴细胞的作用机制对HNSCC患者靶向免疫治疗的进展至关重要。

基于HNSCC中22种TIICs浸润情况,本研究通过单因素Cox回归、LASSO回归和多因素Cox回归筛选免疫细胞并构建包含5种免疫细胞类型的免疫风险评分预后模型。Kaplan-Meier生存曲线和ROC曲线分析显示,该模型在HNSCC患者中具有较高的预后价值。结合单因素和多因素分析显示,Treg是HNSCC患者的独立预后因素。目前已有研究探讨如何靶向Treg使其特异性地增强肿瘤免疫从而改善癌症预后[26]。因此,可考虑将Treg作为HNSCC免疫治疗靶标来改善患者的生存状态。

5. 结论

本研究分析了HNSCC中不同TIICs浸润的特点,表明了22种TIICs与HNSCC患者预后的关系,发现TIICs与HNSCC患者预后密切相关。基于建立的TIICs预后模型能很好的预测HNSCC患者的预后,为HNSCC免疫治疗的靶点选择提供了参考。

基金项目

云南省教育厅科学研究基金项目(2024Y901)。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Gormley, M., Creaney, G., Schache, A., Ingarfield, K. and Conway, D.I. (2022) Reviewing the Epidemiology of Head and Neck Cancer: Definitions, Trends and Risk Factors. British Dental Journal, 233, 780-786.
https://doi.org/10.1038/s41415-022-5166-x
[3] Ruffin, A.T., Li, H., Vujanovic, L., Zandberg, D.P., Ferris, R.L. and Bruno, T.C. (2022) Improving Head and Neck Cancer Therapies by Immunomodulation of the Tumour Microenvironment. Nature Reviews Cancer, 23, 173-188.
https://doi.org/10.1038/s41568-022-00531-9
[4] Utispan, K. and Koontongkaew, S. (2017) Fibroblasts and Macrophages: Key Players in the Head and Neck Cancer Microenvironment. Journal of Oral Biosciences, 59, 23-30.
https://doi.org/10.1016/j.job.2016.11.002
[5] Chen, S.M.Y., Krinsky, A.L., Woolaver, R.A., Wang, X., Chen, Z. and Wang, J.H. (2020) Tumor Immune Microenvironment in Head and Neck Cancers. Molecular Carcinogenesis, 59, 766-774.
https://doi.org/10.1002/mc.23162
[6] Yaping, W., Zhe, W., Zhuling, C., Ruolei, L., Pengyu, F., Lili, G., et al. (2022) The Soldiers Needed to Be Awakened: Tumor-Infiltrating Immune Cells. Frontiers in Genetics, 13, Article ID: 988703.
https://doi.org/10.3389/fgene.2022.988703
[7] Koll, F.J., Banek, S., Kluth, L., Köllermann, J., Bankov, K., Chun, F.K., et al. (2023) Tumor-Associated Macrophages and Tregs Influence and Represent Immune Cell Infiltration of Muscle-Invasive Bladder Cancer and Predict Prognosis. Journal of Translational Medicine, 21, Article No. 124.
https://doi.org/10.1186/s12967-023-03949-3
[8] Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., et al. (2015) Robust Enumeration of Cell Subsets from Tissue Expression Profiles. Nature Methods, 12, 453-457.
https://doi.org/10.1038/nmeth.3337
[9] Mungo, A.H. and David, E.A. (2023) Commentary: Another Win for Immunotherapy. The Journal of Thoracic and Cardiovascular Surgery, 165, 1575-1576.
https://doi.org/10.1016/j.jtcvs.2022.09.004
[10] Chen, S., Yang, Y., Wang, R. and Fang, J. (2023) Neoadjuvant PD-1/PD-L1 Inhibitors Combined with Chemotherapy Had a Higher ORR than Mono-Immunotherapy in Untreated HNSCC: Meta-Analysis. Oral Oncology, 145, Article ID: 106479.
https://doi.org/10.1016/j.oraloncology.2023.106479
[11] Lin, C., Chu, Y., Zheng, Y., Gu, S., Hu, Y., He, J., et al. (2024) Macrophages: Plastic Participants in the Diagnosis and Treatment of Head and Neck Squamous Cell Carcinoma. Frontiers in Immunology, 15, Article ID: 1337129.
https://doi.org/10.3389/fimmu.2024.1337129
[12] Gao, L., Zhang, W., Zhong, W., Liu, Z., Li, H., Yu, Z., et al. (2018) Tumor Associated Macrophages Induce Epithelial to Mesenchymal Transition via the EGFR/ERK1/2 Pathway in Head and Neck Squamous Cell Carcinoma. Oncology Reports, 40, 2558-2572.
https://doi.org/10.3892/or.2018.6657
[13] Li, B., Ren, M., Zhou, X., Han, Q. and Cheng, L. (2020) Targeting Tumor-Associated Macrophages in Head and Neck Squamous Cell Carcinoma. Oral Oncology, 106, Article ID: 104723.
https://doi.org/10.1016/j.oraloncology.2020.104723
[14] Gao, L., Wang, F., Li, H., Yang, J., Ren, J., He, K., et al. (2016) CCL2/EGF Positive Feedback Loop between Cancer Cells and Macrophages Promotes Cell Migration and Invasion in Head and Neck Squamous Cell Carcinoma. Oncotarget, 7, 87037-87051.
https://doi.org/10.18632/oncotarget.13523
[15] Kondoh, N., Mizuno-Kamiya, M., Umemura, N., Takayama, E., Kawaki, H., Mitsudo, K., et al. (2019) Immunomodulatory Aspects in the Progression and Treatment of Oral Malignancy. Japanese Dental Science Review, 55, 113-120.
https://doi.org/10.1016/j.jdsr.2019.09.001
[16] Church, S.E., Jensen, S.M., Antony, P.A., Restifo, N.P. and Fox, B.A. (2013) Tumor‐Specific CD4+ T Cells Maintain Effector and Memory Tumor‐Specific CD8+ T Cells. European Journal of Immunology, 44, 69-79.
https://doi.org/10.1002/eji.201343718
[17] Nguyen, N., Bellile, E., Thomas, D., McHugh, J., Rozek, L., Virani, S., et al. (2016) Tumor Infiltrating Lymphocytes and Survival in Patients with Head and Neck Squamous Cell Carcinoma. Head & Neck, 38, 1074-1084.
https://doi.org/10.1002/hed.24406
[18] Brightman, S.E., Becker, A., Thota, R.R., Naradikian, M.S., Chihab, L., Zavala, K.S., et al. (2023) Neoantigen-Specific Stem Cell Memory-Like CD4+ T Cells Mediate CD8+ T Cell-Dependent Immunotherapy of MHC Class II-Negative Solid Tumors. Nature Immunology, 24, 1345-1357.
https://doi.org/10.1038/s41590-023-01543-9
[19] Dolina, J.S., Lee, J., Brightman, S.E., McArdle, S., Hall, S.M., Thota, R.R., et al. (2023) Linked CD4+/CD8+ T Cell Neoantigen Vaccination Overcomes Immune Checkpoint Blockade Resistance and Enables Tumor Regression. Journal of Clinical Investigation, 133, e164258.
https://doi.org/10.1172/jci164258
[20] Cassetta, L. and Pollard, J.W. (2018) Targeting Macrophages: Therapeutic Approaches in Cancer. Nature Reviews Drug Discovery, 17, 887-904.
https://doi.org/10.1038/nrd.2018.169
[21] Seminerio, I., Descamps, G., Dupont, S., de Marrez, L., Laigle, J., Lechien, J.R., et al. (2019) Infiltration of Foxp3+ Regulatory T Cells Is a Strong and Independent Prognostic Factor in Head and Neck Squamous Cell Carcinoma. Cancers, 11, Article No. 227.
https://doi.org/10.3390/cancers11020227
[22] Shang, B., Liu, Y., Jiang, S. and Liu, Y. (2015) Prognostic Value of Tumor-Infiltrating FoxP3+ Regulatory T Cells in Cancers: A Systematic Review and Meta-Analysis. Scientific Reports, 5, Article No. 15179.
https://doi.org/10.1038/srep15179
[23] de Ruiter, E.J., Ooft, M.L., Devriese, L.A. and Willems, S.M. (2017) The Prognostic Role of Tumor Infiltrating T-Lymphocytes in Squamous Cell Carcinoma of the Head and Neck: A Systematic Review and Meta-Analysis. OncoImmunology, 6, e1356148.
https://doi.org/10.1080/2162402x.2017.1356148
[24] Gutiérrez-Melo, N. and Baumjohann, D. (2023) T Follicular Helper Cells in Cancer. Trends in Cancer, 9, 309-325.
https://doi.org/10.1016/j.trecan.2022.12.007
[25] Tian, Y., Liu, C., Yang, W., Li, X., Zhang, M., Xiong, Y., et al. (2024) Highlighting Immune Features of the Tumor Ecosystem and Prognostic Value of Tfh and Th17 Cell Infiltration in Head and Neck Squamous Cell Carcinoma by Single-Cell RNA-seq. Cancer Immunology, Immunotherapy, 73, Article No. 187.
https://doi.org/10.1007/s00262-024-03767-6
[26] Kang, J.H. and Zappasodi, R. (2023) Modulating Treg Stability to Improve Cancer Immunotherapy. Trends in Cancer, 9, 911-927.
https://doi.org/10.1016/j.trecan.2023.07.015