[1]
|
Millar, R.P., Lu, Z., Pawson, A.J., Flanagan, C.A., Morgan, K. and Maudsley, S.R. (2004) Gonadotropin-Releasing Hormone Receptors. Endocrine Reviews, 25, 235-275. https://doi.org/10.1210/er.2003-0002
|
[2]
|
Weltzien, F., Andersson, E., Andersen, Ø., Shalchian-Tabrizi, K. and Norberg, B. (2004) The Brain-Pituitary-Gonad Axis in Male Teleosts, with Special Emphasis on Flatfish (Pleuronectiformes). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 137, 447-477. https://doi.org/10.1016/j.cbpb.2003.11.007
|
[3]
|
林浩然. 硬骨鱼类促性腺激素的分泌及其调节机制[J]. 水生生物学集刊, 1982(4): 551-562.
|
[4]
|
林浩然. 鱼类促性腺激素分泌的调节机理和高效新型鱼类催产剂[J]. 生物科学信息, 1991(1): 24-25.
|
[5]
|
Gillet, C. (1991) Egg Production in an Arctic Charr (Salvelinus alpinus L.) Brood Stock: Effects of Temperature on the Timing of Spawning and the Quality of Eggs. Aquatic Living Resources, 4, 109-116. https://doi.org/10.1051/alr:1991010
|
[6]
|
Sekine, S., Saito, A., Itoh, H., Kawauchi, H. and Itoh, S. (1989) Molecular Cloning and Sequence Analysis of Chum Salmon Gonadotropin cDNAs. Proceedings of the National Academy of Sciences, 86, 8645-8649. https://doi.org/10.1073/pnas.86.22.8645
|
[7]
|
Idler, D.R. and Ng, T.B. (1979) Studies on Two Types of Gonadotropins from Both Salmon and Carp Pituitaries. General and Comparative Endocrinology, 38, 421-440. https://doi.org/10.1016/0016-6480(79)90150-3
|
[8]
|
Kawauchi, H., Suzuki, K., Itoh, H., Swanson, P., Naito, N., Nagahama, Y., et al. (1989) The Duality of Teleost Gonadotropins. Fish Physiology and Biochemistry, 7, 29-38. https://doi.org/10.1007/bf00004687
|
[9]
|
Bousfield, G.R., Butnev, V.Y., Gotschall, R.R., Baker, V.L. and Moore, W.T. (1996) Structural Features of Mammalian Gonadotropins. Molecular and Cellular Endocrinology, 125, 3-19. https://doi.org/10.1016/s0303-7207(96)03945-7
|
[10]
|
Maruska, K.P. and Fernald, R.D. (2011) Social Regulation of Gene Expression in the Hypothalamic-Pituitary-Gonadal Axis. Physiology, 26, 412-423. https://doi.org/10.1152/physiol.00032.2011
|
[11]
|
Levavi-Sivan, B., Bogerd, J., Mañanós, E.L., Gómez, A. and Lareyre, J.J. (2010) Perspectives on Fish Gonadotropins and Their Receptors. General and Comparative Endocrinology, 165, 412-437. https://doi.org/10.1016/j.ygcen.2009.07.019
|
[12]
|
吕绍巾, 张天民, 赵文. 鱼类促性腺激素基因研究进展[J]. 生物学杂志, 2017, 34(3): 82-86.
|
[13]
|
Nyuji, M., Selvaraj, S., Kitano, H., Ohga, H., Yoneda, M., Shimizu, A., et al. (2011) Changes in the Expression of Pituitary Gonadotropin Subunits during Reproductive Cycle of Multiple Spawning Female Chub Mackerel Scomber japonicus. Fish Physiology and Biochemistry, 38, 883-897. https://doi.org/10.1007/s10695-011-9576-y
|
[14]
|
Imanaga, Y., Nyuji, M., Amano, M., Takahashi, A., Kitano, H., Yamaguchi, A., et al. (2014) Characterization of Gonadotropin-Releasing Hormone and Gonadotropin in Jack Mackerel (Trachurus japonicus): Comparative Gene Expression Analysis with Respect to Reproductive Dysfunction in Captive and Wild Fish. Aquaculture, 428, 226-235. https://doi.org/10.1016/j.aquaculture.2014.03.003
|
[15]
|
Suzuki, K., Nagahama, Y. and Kawauchi, H. (1988) Steroidogenic Activities of Two Distinct Salmon Gonadotropins. General and Comparative Endocrinology, 71, 452-458. https://doi.org/10.1016/0016-6480(88)90274-2
|
[16]
|
Ge, W. (2000) Roles of the Activin Regulatory System in Fish Reproduction. Canadian Journal of Physiology and Pharmacology, 78, 1077-1085. https://doi.org/10.1139/y00-102
|
[17]
|
Lejeune, H., Chuzel, F., Thomas, T., et al. (1996) Paracrine Regulation of Leydig Cells. Annales d’Endocrinologie, 57, 55-63.
|
[18]
|
Zirkin, B.R. (1998) Spermatogenesis: Its Regulation by Testosterone and FSH. Seminars in Cell & Developmental Biology, 9, 417-421. https://doi.org/10.1006/scdb.1998.0253
|
[19]
|
Yaron, Z., Gur, G., Melamed, P., Rosenfeld, H., Elizur, A. and Levavi-Sivan, B. (2003) Regulation of Fish Gonadotropins. International Review of Cytology, 225, 131-185. https://doi.org/10.1016/s0074-7696(05)25004-0
|
[20]
|
Kandel-Kfir, M., Gur, G., Melamed, P., Zilberstein, Y., Cohen, Y., Zmora, N., et al. (2002) Gonadotropin Response to GnRH during Sexual Ontogeny in the Common Carp, Cyprinus carpio. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132, 17-26. https://doi.org/10.1016/s1096-4959(01)00526-7
|
[21]
|
Hassin, S., Gothilf, Y., Blaise, O. and Zohar, Y. (1998) Gonadotropin-l and-II Subunit Gene Expression of Male Striped Bass (Morone saxatilis) after Gonadotropin-Releasing Hormone Analogue Injection: Quantitation Using an Optimized Ribonuclease Protection Assay. Biology of Reproduction, 58, 1233-1240. https://doi.org/10.1095/biolreprod58.5.1233
|
[22]
|
Klausen, C., Chang, J.P. and Habibi, H.R. (2001) The Effect of Gonadotropin-Releasing Hormone on Growth Hormone and Gonadotropin Subunit Gene Expression in the Pituitary of Goldfish, Carassius Auratus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129, 511-516. https://doi.org/10.1016/s1096-4959(01)00351-7
|
[23]
|
Aizen, J., Kasuto, H., Golan, M., Zakay, H. and Levavi-Sivan, B. (2007) Tilapia Follicle-Stimulating Hormone (FSH): Immunochemistry, Stimulation by Gonadotropin-Releasing Hormone, and Effect of Biologically Active Recombinant FSH on Steroid Secretion. Biology of Reproduction, 76, 692-700. https://doi.org/10.1095/biolreprod.106.055822
|
[24]
|
Powell, J.F., Zohar, Y., Elizur, A., Park, M., Fischer, W.H., Craig, A.G., et al. (1994) Three Forms of Gonadotropin-Releasing Hormone Characterized from Brains of One Species. Proceedings of the National Academy of Sciences, 91, 12081-12085. https://doi.org/10.1073/pnas.91.25.12081
|
[25]
|
Zohar, Y., Elizur, A., Sherwood, N.M., Powell, J.F.F., Rivier, J.E. and Zmora, N. (1995) Gonadotropin-Releasing Activities of the Three Native Forms of Gonadotropin-Releasing Hormone Present in the Brain of Gilthead Seabream, Sparus aurata. General and Comparative Endocrinology, 97, 289-299. https://doi.org/10.1006/gcen.1995.1029
|
[26]
|
Chang, J.P. and Pemberton, J.G. (2018) Comparative Aspects of GnRH-Stimulated Signal Transduction in the Vertebrate Pituitary—Contributions from Teleost Model Systems. Molecular and Cellular Endocrinology, 463, 142-167. https://doi.org/10.1016/j.mce.2017.06.002
|
[27]
|
Richard, E.P., John, P.C., Carol, S.N., Robert, J.O., Sokolowska, M., Stephen, H.S., et al. (1986) Interactions of Catecholamines and GnRH in Regulation of Gonadotropin Secretion in Teleost Fish. In: Greep, R.O., Ed., Proceedings of the 1985 Laurentian Hormone Conference, Elsevier, 513-548. https://doi.org/10.1016/b978-0-12-571142-5.50016-1
|
[28]
|
Kraak, G.V.D., Donaldson, E.M. and Chang, J.P. (1986) Dopamine Involvement in the Regulation of Gonadotropin Secretion in Coho Salmon. Canadian Journal of Zoology, 64, 1245-1248. https://doi.org/10.1139/z86-185
|
[29]
|
Linard, B., Bennani, S. and Saligaut, C. (1995) Involvement of Estradiol in a Catecholamine Inhibitory Tone of Gonadotropin Release in the Rainbow Trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 99, 192-196. https://doi.org/10.1006/gcen.1995.1101
|
[30]
|
Vacher, C., Ferrière, F., Marmignon, M., Pellegrini, E. and Saligaut, C. (2002) Dopamine D2 Receptors and Secretion of FSH and LH: Role of Sexual Steroids on the Pituitary of the Female Rainbow Trout. General and Comparative Endocrinology, 127, 198-206. https://doi.org/10.1016/s0016-6480(02)00046-1
|
[31]
|
Vidal, B., Pasqualini, C., Le Belle, N., Holland, M.C.H., Sbaihi, M., Vernier, P., et al. (2004) Dopamine Inhibits Luteinizing Hormone Synthesis and Release in the Juvenile European Eel: A Neuroendocrine Lock for the Onset of Puberty. Biology of Reproduction, 71, 1491-1500. https://doi.org/10.1095/biolreprod.104.030627
|
[32]
|
Pavlick, R.J. and Moberg, G.P. (1997) Dopaminergic Influence on Gonadotropin Secretion in White Sturgeon (Acipenser transmontanus). Fish Physiology and Biochemistry, 16, 35-43. https://doi.org/10.1007/bf00004539
|
[33]
|
Gissis, A., Levavi-Sivan, B., Rubin-Kedem, H., Ofir, M. and Yaron, Z. (1991) The Effect of Gonadotropin Releasing Hormone Superactive Analog and Dopamine Antagonists on Gonadotropin Level and Ovulation in Tilapai Hybrids. Israeli Journal of Aquaculture—Bamidgeh, 43, 123-136.
|
[34]
|
林浩然. 神经内分泌学调控鱼类生殖和生长的相互作用[J]. 动物学研究, 2000, 21(1): 12-16.
|
[35]
|
林浩然. 激素和人工诱导鱼类繁殖[J]. 生物学通报, 1999, 34(8): 1-3.
|
[36]
|
Wang, R., Wen, L., Ma, H., Lv, M., Chen, Z., Du, X., et al. (2021) Effects of Gonadotropin-Releasing Hormone Analog (GnRHa) Immunization on the Gonadal Transcriptome and Proteome of Tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 37, Article 100780. https://doi.org/10.1016/j.cbd.2020.100780
|
[37]
|
Kamei, H., Ohira, T., Yoshiura, Y., Uchida, N., Nagasawa, H. and Aida, K. (2003) Expression of a Biologically Active Recombinant Follicle Stimulating Hormone of Japanese Eel Anguilla Japonica Using Methylotropic Yeast, Pichia Pastoris. General and Comparative Endocrinology, 134, 244-254. https://doi.org/10.1016/s0016-6480(03)00259-4
|
[38]
|
Vischer, H., Granneman, J., Linskens, M., Schulz, R. and Bogerd, J. (2003) Both Recombinant African Catfish LH and FSH Are Able to Activate the African Catfish FSH Receptor. Journal of Molecular Endocrinology, 31, 133-140. https://doi.org/10.1677/jme.0.0310133
|
[39]
|
de Marco, A. (2009) Strategies for Successful Recombinant Expression of Disulfide Bond-Dependent Proteins in Escherichia coli. Microbial Cell Factories, 8, Article No. 26. https://doi.org/10.1186/1475-2859-8-26
|
[40]
|
Structural Genomics Consortium, Architecture et Fonction des Macromolécules Biologiques, Berkeley Structural Genomics Center, et al. (2008) Protein Production and Purification. Nature Methods, 5, 135-146. https://doi.org/10.1038/nmeth.f.202
|
[41]
|
Lozano‐Terol, G., Gallego‐Jara, J., Sola‐Martínez, R.A., Ortega, Á., Martínez Vivancos, A., Cánovas Díaz, M., et al. (2022) Regulation of the Pyrimidine Biosynthetic Pathway by Lysine Acetylation of E. coli OPRTase. The FEBS Journal, 290, 442-464. https://doi.org/10.1111/febs.16598
|
[42]
|
Hausjell, J., Weissensteiner, J., Molitor, C., Halbwirth, H. and Spadiut, O. (2018) E. coli HMS174(DE3) Is a Sustainable Alternative to Bl21(DE3). Microbial Cell Factories, 17, Article No. 169. https://doi.org/10.1186/s12934-018-1016-6
|
[43]
|
Singh, S.M. and Panda, A.K. (2005) Solubilization and Refolding of Bacterial Inclusion Body Proteins. Journal of Bioscience and Bioengineering, 99, 303-310. https://doi.org/10.1263/jbb.99.303
|
[44]
|
Humer, D. and Spadiut, O. (2018) Wanted: More Monitoring and Control during Inclusion Body Processing. World Journal of Microbiology and Biotechnology, 34, Article No. 158. https://doi.org/10.1007/s11274-018-2541-5
|
[45]
|
de Marco, A. (2017) Acting on Folding Effectors to Improve Recombinant Protein Yields and Functional Quality. In: Burgess-Brown, N., Ed., Heterologous Gene Expression in E. coli, Humana Press, 197-210. https://doi.org/10.1007/978-1-4939-6887-9_12
|
[46]
|
Rosano, G.L., Morales, E.S. and Ceccarelli, E.A. (2019) New Tools for Recombinant Protein Production in Escherichia coli: A 5‐Year Update. Protein Science, 28, 1412-1422. https://doi.org/10.1002/pro.3668
|
[47]
|
Karyolaimos, A. and de Gier, J. (2021) Strategies to Enhance Periplasmic Recombinant Protein Production Yields in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 9, Article 797334. https://doi.org/10.3389/fbioe.2021.797334
|
[48]
|
Royes, J., Talbot, P., Le Bon, C., Moncoq, K., Uzan, M., Zito, F., et al. (2022) Membrane Protein Production in Escherichia coli: Protocols and Rules. In: Mus-Veteau, I., Ed., Heterologous Expression of Membrane Proteins, Humana, 19-39. https://doi.org/10.1007/978-1-0716-2368-8_2
|
[49]
|
Rong, Y., Jensen, S.I., Lindorff-Larsen, K. and Nielsen, A.T. (2023) Folding of Heterologous Proteins in Bacterial Cell Factories: Cellular Mechanisms and Engineering Strategies. Biotechnology Advances, 63, Article 108079. https://doi.org/10.1016/j.biotechadv.2022.108079
|
[50]
|
Cao, H., Zhou, L., Zhang, Y., Wei, Q., Chen, X. and Gui, J. (2009) Molecular Characterization of Chinese Sturgeon Gonadotropins and Cellular Distribution in Pituitaries of Mature and Immature Individuals. Molecular and Cellular Endocrinology, 303, 34-42. https://doi.org/10.1016/j.mce.2009.01.015
|
[51]
|
Kim, D., Park, C., Kim, D., Park, H., Byambaragchaa, M., Lee, N., et al. (2016) Production and Characterization of Monoclonal Antibodies against Recombinant Tethered Follicle-Stimulating Hormone from Japanese Eel Anguilla Japonica. General and Comparative Endocrinology, 233, 8-15. https://doi.org/10.1016/j.ygcen.2016.04.030
|
[52]
|
Ina-Salwany, M.Y., Zulperi, Z., Christianus, A. and Md Yusoff, F. (2019) Recombinant Luteinizing Hormone Development to Improve the Reproductive Performance of Female Malaysia Catfish, Hemibagrus nemurus (Valenciennes, 1840). Turkish Journal of Fisheries and Aquatic Sciences, 19, 689-697. https://doi.org/10.4194/1303-2712-v19_8_07
|
[53]
|
Patra, P., Das, M., Kundu, P. and Ghosh, A. (2021) Recent Advances in Systems and Synthetic Biology Approaches for Developing Novel Cell-Factories in Non-Conventional Yeasts. Biotechnology Advances, 47, Article 107695. https://doi.org/10.1016/j.biotechadv.2021.107695
|
[54]
|
Yom-Din, S., Hollander-Cohen, L., Aizen, J., Boehm, B., Shpilman, M., Golan, M., et al. (2016) Gonadotropins in the Russian Sturgeon: Their Role in Steroid Secretion and the Effect of Hormonal Treatment on Their Secretion. PLOS ONE, 11, e0162344. https://doi.org/10.1371/journal.pone.0162344
|
[55]
|
Kamei, H., Kaneko, T. and Aida, K. (2006) In vivo Gonadotropic Effects of Recombinant Japanese Eel Follicle-Stimulating Hormone. Aquaculture, 261, 771-775. https://doi.org/10.1016/j.aquaculture.2006.08.039
|
[56]
|
Hollander-Cohen, L., Golan, M., Aizen, J., Shpilman, M. and Levavi-Sivan, B. (2018) Characterization of Carp Gonadotropins: Structure, Annual Profile, and Carp and Zebrafish Pituitary Topographic Organization. General and Comparative Endocrinology, 264, 28-38. https://doi.org/10.1016/j.ygcen.2017.11.022
|
[57]
|
Hollander-Cohen, L., Böhm, B., Hausken, K. and Levavi-Sivan, B. (2019) Ontogeny of the Specificity of Gonadotropin Receptors and Gene Expression in Carp. Endocrine Connections, 8, 1433-1446. https://doi.org/10.1530/ec-19-0389
|
[58]
|
Yu, X., Lin, S., Kobayashi, M. and Ge, W. (2008) Expression of Recombinant Zebrafish Follicle-Stimulating Hormone (FSH) in Methylotropic Yeast Pichia Pastoris. Fish Physiology and Biochemistry, 36, 273-281. https://doi.org/10.1007/s10695-008-9244-z
|
[59]
|
Kesidis, A., Depping, P., Lodé, A., Vaitsopoulou, A., Bill, R.M., Goddard, A.D., et al. (2020) Expression of Eukaryotic Membrane Proteins in Eukaryotic and Prokaryotic Hosts. Methods, 180, 3-18. https://doi.org/10.1016/j.ymeth.2020.06.006
|
[60]
|
Pieprzyk, J., Pazicky, S. and Löw, C. (2018) Transient Expression of Recombinant Membrane-eGFP Fusion Proteins in HEK293 Cells. In: Hacker, D., Ed., Recombinant Protein Expression in Mammalian Cells, Humana Press, 17-31. https://doi.org/10.1007/978-1-4939-8730-6_2
|
[61]
|
Delafosse, L., Xu, P. and Durocher, Y. (2016) Comparative Study of Polyethylenimines for Transient Gene Expression in Mammalian HEK293 and CHO Cells. Journal of Biotechnology, 227, 103-111. https://doi.org/10.1016/j.jbiotec.2016.04.028
|
[62]
|
Lin, Y., Boone, M., Meuris, L., Lemmens, I., Van Roy, N., Soete, A., et al. (2014) Genome Dynamics of the Human Embryonic Kidney 293 Lineage in Response to Cell Biology Manipulations. Nature Communications, 5, Article No. 4767. https://doi.org/10.1038/ncomms5767
|
[63]
|
Caro, L.N., Li, Z., Balo, A.R., Van Eps, N., Rini, J.M. and Ernst, O.P. (2015) Rapid and Facile Recombinant Expression of Bovine Rhodopsin in HEK293S GNTI− Cells Using a PiggyBac Inducible System. Methods in Enzymology, 556, 307-330. https://doi.org/10.1016/bs.mie.2015.01.005
|
[64]
|
Smith, G.E., Ju, G., Ericson, B.L., Moschera, J., Lahm, H.W., Chizzonite, R., et al. (1985) Modification and Secretion of Human Interleukin 2 Produced in Insect Cells by a Baculovirus Expression Vector. Proceedings of the National Academy of Sciences, 82, 8404-8408. https://doi.org/10.1073/pnas.82.24.8404
|
[65]
|
Le, L.T.M., Nyengaard, J.R., Golas, M.M. and Sander, B. (2017) Vectors for Expression of Signal Peptide-Dependent Proteins in Baculovirus/Insect Cell Systems and Their Application to Expression and Purification of the High-Affinity Immunoglobulin Gamma Fc Receptor I in Complex with Its Gamma Chain. Molecular Biotechnology, 60, 31-40. https://doi.org/10.1007/s12033-017-0041-8
|
[66]
|
Wang, Y., Mao, Y., Xu, X., Tao, S. and Chen, H. (2015) Codon Usage in Signal Sequences Affects Protein Expression and Secretion Using Baculovirus/Insect Cell Expression System. PLOS ONE, 10, e0145887. https://doi.org/10.1371/journal.pone.0145887
|
[67]
|
Ailor, E. and Betenbaugh, M.J. (1999) Modifying Secretion and Post-Translational Processing in Insect Cells. Current Opinion in Biotechnology, 10, 142-145. https://doi.org/10.1016/s0958-1669(99)80024-x
|
[68]
|
Silverman, A.D., Karim, A.S. and Jewett, M.C. (2019) Cell-Free Gene Expression: An Expanded Repertoire of Applications. Nature Reviews Genetics, 21, 151-170. https://doi.org/10.1038/s41576-019-0186-3
|
[69]
|
Foshag, D., Henrich, E., Hiller, E., Schäfer, M., Kerger, C., Burger-Kentischer, A., et al. (2018) The E. coli S30 Lysate Proteome: A Prototype for Cell-Free Protein Production. New Biotechnology, 40, 245-260. https://doi.org/10.1016/j.nbt.2017.09.005
|
[70]
|
Kögler, L.M., Stichel, J. and Beck-Sickinger, A.G. (2019) Structural Investigations of Cell-Free Expressed G Protein-Coupled Receptors. Biological Chemistry, 401, 97-116. https://doi.org/10.1515/hsz-2019-0292
|
[71]
|
Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., et al. (2001) Cell-Free Translation Reconstituted with Purified Components. Nature Biotechnology, 19, 751-755. https://doi.org/10.1038/90802
|