感染新型冠状病毒的糖尿病患者的预后新预测模型开发及其预测价值评估
Development of a New Model for Predicting the Prognosis of Diabetic Patients Infected with SARS-CoV-2 and Its Predictive Value
DOI: 10.12677/acm.2024.14102681, PDF, HTML, XML,    科研立项经费支持
作者: 谢 玲, 唐 瑞, 王导新, 赵 燕*:重庆医科大学附属第二医院呼吸内科,重庆;陈中秋:重庆医科大学附属第二医院信息中心,重庆
关键词: 糖尿病新型冠状病毒预后预测模型死亡率Diabetes SARS-CoV-2 Prognostic Prediction Model Mortality
摘要: 目的:探讨基于风险因素构建的预测模型,预测糖尿病患者感染SARS-CoV-2 (新型冠状病毒)的预后。方法:回顾性分析了239例2022年12月至2023年1月重庆医科大学附属第二医院收治的确诊为SARS-CoV-2感染的糖尿病住院患者。通过电子病历系统收集患者的相关资料。其中死亡43例,好转出院196例。将患者分为死亡组及存活组,采用单因素Logistic回归分析筛选相关候选因子,再通过多因素Logistic回归分析构建预测模型,使用Bootstrap方法进行内部验证,利用校准曲线、DCA曲线对模型性能进行评估。结果:通过Logistic回归分析,最终有5个因素纳入预测模型,分别为C反应蛋白(CRP) [OR 1.01 (95% CI 1.02)]、白介素6 [OR 1.01 (95% CI 1.01)]、白介素10 [OR 1.04 (95% CI 1.08)]、血氯[OR 0.87 (95% CI 0.99)]、血钠[OR 1.31 (95% CI 1.55)]。经验证该模型在内部验证队列中表现良好。结论:我们通过Logistic回归分析构建的糖尿病患者感染SARS-CoV-2的预后预测模型能够可视化预测结果,并且具有较好的预测效能,对临床制定干预决策有指导意义。
Abstract: Objective: To explore a predictive model based on risk factors to predict the prognosis of diabetic patients infected with SARS-CoV-2. Methods: 239 diabetic inpatients with SARS-CoV-2 infection admitted to the Second Affiliated Hospital of Chongqing Medical University from December 2022 to January 2023 were analyzed retrospectively. The relevant data of the patients was collected by the electronic medical record system. The patients were divided into a death group and a survival group, and the relevant candidate factors were screened using univariate logistic regression analysis, and then the prediction model was constructed by multi-factor logistic regression analysis. The model was internally verified by the Bootstrap method, and the performance of the model was evaluated by the calibration curve and DCA curve. Results: Through logistic regression analysis, five factors were included in the prediction model: C-reactive protein (CRP) [OR 1.01 (95% CI 1.02)], IL-6 [OR 1.01 (95% CI 1.01)], IL-10 [OR 1.04 (95% CI 1.08)], and blood chlorine [OR 0.87 (95% CI 0.99)] and serum sodium [OR 1.31 (95% CI 1.55)]. It is proved that the model performs well in the internal verification queue. Conclusion: The prognosis prediction model of diabetic patients infected with SARS-CoV-2 constructed by Logistic regression analysis can visually predict the results, and has a good predictive efficiency, which is of guiding significance for clinical intervention decision-making.
文章引用:谢玲, 唐瑞, 陈中秋, 王导新, 赵燕. 感染新型冠状病毒的糖尿病患者的预后新预测模型开发及其预测价值评估[J]. 临床医学进展, 2024, 14(10): 471-480. https://doi.org/10.12677/acm.2024.14102681

1. 引言

在2022年12月至2023年1月的以奥密克戎变异株(Omicron)为主要流行株的新型冠状病毒肺炎(Corona Virus Disease 2019, COVID-19)流行期间,重庆市因有力的疫情防控措施,使得疫情得到有效控制。奥密克戎变异株是SARS-CoV-2的一种变异株类别[1],具有极强的传染性,传播能力是德尔塔变异株(Delta)的2.8倍,可通过飞沫和接触传播。作为SARS-CoV-2的易感人群,合并基础疾病的人群一旦感染后发生重症肺炎以及死亡的风险较未合并基础疾病的人群更高[2]-[7]。已有研究表明糖尿病、心血管疾病、高血压、哮喘和慢阻肺是重症新冠肺炎患者最常见的慢性合并症,其中合并糖尿病的患者较多,且患者死亡风险较高[7]-[9],在COVID-19大流行期间死亡的COVID-19患者中,约有35%患有糖尿病。因此本研究旨在通过比较合并糖尿病的SARS-CoV-2感染患者的人口统计学资料、临床指标,探讨影响此类患者死亡的危险因素,建立预测模型,并绘制列线图,以指导临床筛选出死亡风险较高的患者,进行重点关注,减少患者死亡。

2. 资料与方法

2.1. 研究对象

回顾分析2022年12月至2023年1月重庆医科大学附属第二医院收治住院的SARS-CoV-2感染的糖尿病患者。纳入标准:1. 符合根据《新型冠状病毒肺炎诊疗方案(试行第九版)》[10]中对新型冠状病毒感染的定义:(1) 有新型冠状病毒核酸或抗原测定的确切感染者;(2) 临床表现(呼吸道症状、肺部影像学检查、实验室检测等)。2. 符合根据1999年世界卫生组织的糖尿病诊断标准。排除标准:(1) 妊娠期患者;(2) 年龄小于等于18岁;(3) 临床数据缺失>10%。经以上纳入和排除标准,最终纳入研究共239例,其中死亡43例,好转出院196例。本研究对上述患者临床资料进行统计分析,获得了重庆医科大学附属第二医院伦理委员会批准。本研究依据《世界医学协会赫尔辛基宣言》(修正版)进行,数据的收集及报道依据STROBE声明进行。

2.2. 观察指标

从重庆医科大学附属第二医院电子病历系统中收集患者入院基本资料(性别、年龄、体重、身高)、基础疾病史(高血压、糖尿病、冠心病、慢性阻塞性肺病、慢性肝病、慢性肾病)、实验室检查指标[包括白细胞计数(White blood cell count, WBC)、淋巴细胞计数(Lymphocyte count, LYM)、淋巴细胞百分比(Lymphocyte percentage, LYM%)、中性粒细胞计数(Neutrophil count, NEUT)、中性粒细胞百分比(Neutrophil percentage, NUE%)、血小板计数(Platelet count, PLT)、C反应蛋白(C-reactive protein, CRP)、细胞因子[白细胞介素-6 (Interleukin-6, IL-6)、白细胞介素-10 (Interleukin-10,IL-10)]、天门冬氨酸氨基转移酶(Aspartate aminotransferase, AST)、肌酐(Creatinine, Cr)、血氯(Cl)、血钠(Na)等]及预后情况。

2.3. 统计学方法

使用R软件4.0.2进行统计学分析。为了避免离群值对结果产生较大影响,我们使用Winsor法以2.5%及97.5%为截点,对离群值进行处理。对于符合连续性变量正态分布数据以均数 ± 标准差(x ± s)表示,两组间比较分析采用独立样本t检验进行。不符合正态分布的数据则以中位数 ± 四分位数间距表示,两组间数据差异比较采用独立样本Mann-Whitney U检验,计数资料以n(%)表示,比较采用χ2检验。将单因素回归中P < 0.1的变量纳入多因素Logistic回归分析筛选独立危险因素,使用Bootstrap法对回归模型进行校准。采用决策分析曲线(DAC)评价模型的预测效能;模型1纳入变量的是CRP,预后模型2纳入变量的是CRP、Na及Cl,预后模型3纳入的是变量CRP、Na、Cl、IL-6及IL-10。

3. 结果

3.1. 一般资料分析(见表1)

研究共纳入239例患者,其中男性159例,女性80例;中位年龄为71.9 ± 11.9岁;合并症以高血压和冠心病为主(分别占64.9%和36.4%)。临床分型为死亡组43例(占35.96%),存活组196例(占64.04%)。死亡组年龄普遍高于存活组年龄(P < 0.05);两组之间BMI无统计学意义(P > 0.05);合并症方面,死亡组冠心病患者的比率明显高于存活组(53.5%比32.7%,P < 0.05),而慢性阻塞性肺疾病(COPD)患者的比率在两组中的差异无统计学意义(14.0%比19.4%,P > 0.05)。此外死亡组中进行抗真菌感染比例更高(24.5% VS 44.2%, P = 0.016),这可能提示新冠合并糖尿病的患者,更可能出现真菌感染。

3.2. 实验室检查指标分析(见表2)

死亡组患者的AST、Cr、CRP、NEU、NEU%、血钠、IL-6、IL-10较存活组显著升高,PLT、LYP%、LYP较存活组显著降低,差异均有统计学意义(均P < 0.05);两组患者WBC差异未见统计学意义(P > 0.05)。

3.3. 风险因素分析(见表3)

将存活组与死亡组临床特征比较有统计学差异的指标(P < 0.1)纳入多因素Logistic回归分析筛选危险

Table 1. Comparison of general data between two groups of SARS-CoV-2 infected diabetic patients with different clinical types

1. 不同临床分型两组SARS-CoV-2感染糖尿病患者的一般资料比较

共计

存活组

死亡组

P值

性别[例(%)]

0.75

男性

159 (66.5%)

129 (65.8%)

30 (69.8%)

女性

80 (33.5%)

67 (34.2%)

13 (30.2%)

年龄(岁)

71.9 (11.9)

71.2 (12.2)

75.2 (10.2)

0.029

BMI (kg/m2)

24.0 (3.60)

24.0 (3.56)

23.6 (3.81)

0.514

基础疾病[例(%)]

COPD

44 (18.4%)

38 (19.4%)

6 (14.0%)

0.538

高血压

155 (64.9%)

128 (65.3%)

27 (62.8%)

0.891

冠心病

87 (36.4%)

64 (32.7%)

23 (53.5%)

0.017

慢性肝病

47 (19.7%)

11 (25.6%)

36 (18.4%)

0.387

慢性肾病

26 (10.9%)

23 (11.7%)

3 (6.98%)

0.588

哮喘

4 (1.67%)

4 (2.04%)

0 (0.00%)

1

肿瘤

41 (17.2%)

35 (17.9%)

6 (14.0%)

0.695

心力衰竭

30 (12.6%)

9 (20.9%)

21 (10.7%)

0.115

真菌感染

67 (28.0%)

48 (24.5%)

19 (44.2%)

0.016

Table 2. Comparison of laboratory parameters between two groups of SARS-CoV-2 infected diabetic patients with different clinical types

2. 不同临床分型两组SARS-CoV-2感染糖尿病患者的实验室指标比较

指标

存活组

死亡组

P值

WBC (×109/L)

6.31 [4.39; 8.92]

7.45 [4.56; 12.2]

0.062

LYM (×109/L)

0.74 [0.47; 1.03]

0.47 [0.29; 0.86]

0.004

LYP% (%)

13.0 [7.50; 19.1]

6.90 [3.90; 13.3]

<0.001

NEUT (×109/L)

5.46 (3.36)

8.22 (6.67)

0.011

NEU% (%)

76.4 (13.3)

82.7 (12.2)

0.004

PLT (×109/L)

178 (100.0)

143 (94.2)

0.035

CRP (mg/L)

50.0 [20.7; 119]

137 [84.1; 164]

<0.001

IL-6 (mmol/L)

39.7 (67.5)

59.4 (98.5)

<0.001

IL-10 (mmol/L)

14.5 (16.4)

6.14 (9.65)

0.002

AST (U/L)

27.0 [20.0; 38.0]

33.0 [25.0; 50.5]

0.011

Cr (μmol/L)

76.7 [61.7; 99.2]

98.6 [75.5; 124]

0.001

Cl (mmol/L)

102 (5.03)

104 (6.19)

0.05

Na (mmol/L)

136 (4.27)

139 (5.67)

0.005

Table 3. Logistic regression analysis of risk factors for death in two groups of patients with diabetes infected with new SARS-CoV-2 according to different clinical types

3. 不同临床分型两组新SARS-CoV-2感染糖尿病患者死亡风险因素的Logistic回归分析

指标

OR

OR (2.5% CI)

OR (97.5% CI)

P值

Age (years)

1.02

0.97

1.07

0.40

Coronary [例(%)]

1.88

0.70

5.20

0.21

Antifungal [例(%)]

1.86

0.72

4.81

0.20

AST (U/L)

1.00

0.99

1.02

0.68

Cr (μmol/L)

1.00

0.99

1.01

0.68

Na (mmol/L)

1.31

1.13

1.55

<0.01

Cl (mmol/L)

0.87

0.77

0.99

0.03

CRP (mg/L)

1.01

1.00

1.02

0.02

WBC (×109/L)

0.58

0.16

1.16

0.40

LYM (×109/L)

1.70

0.34

13.99

0.62

NEUT (×109/L)

1.87

0.97

7.07

0.33

PLT (×109/L)

0.99

0.99

1.00

0.06

CRP (mg/L)

1.01

1.00

1.02

0.02

IL-6 (mmol/L)

1.01

1.00

1.01

<0.01

IL-10 (mmol/L)

1.04

1.01

1.08

0.01

因素,以确定最佳预测模型,最终纳入的风险因素包括CRP、IL-6、IL-10、Cl、Na。

3.4. 死亡风险预测列线图(见图1)

Figure 1. Nomogram for predicting mortality risk in diabetic patients infected with SARS-CoV-2

1. 糖尿病患者感染SARS-CoV-2的死亡风险预测列线图

根据多因素Logistic回归分析结果,构建基于CRP、IL-6、IL-10、Cl、Na的联合预测模型,并绘制联合模型的列线图。根据本研究绘制的列线表中各变量对应的分值来看,影响患者死亡风险权重从高至低的因素依次为:Na,IL-6,IL-10,Cl,CRP。

3.5. 预后预测模型的评价

在校准度方面,我们绘制了校准曲线,可见我们的模型校准度较好(见图2)。其次我们绘制了模型的DCA曲线,曲线中预测模型3相较于其他预测模型具有更高的预测效能(见图3)。

Figure 2. Calibration curve of the mortality risk prediction model for diabetic patients infected with SARS-CoV-2

2. 糖尿病患者感染SARS-CoV-2的死亡风险预测模型校准曲线

Figure 3. Decision analysis curve of the mortality risk prediction model for diabetic patients infected with SARS-CoV-2

3. 糖尿病患者感染SARS-CoV-2的死亡风险预测模型决策分析曲线

模型1纳入变量的是CRP,预后模型2纳入变量的是CRP、Na及Cl,预后模型3纳入的是变量CRP、Na、Cl、IL-6及IL-10。

4. 讨论

2022年底,随着我国疫情防控的全面放开,COVID-19流行达到了第一次高峰,虽然本次的新冠疫情高峰已经结束,但我们发现在日常的临床工作中SARS-CoV-2感染仍然存在反复发生的情况,且再次暴发疫情高峰的可能性仍然存在。SARS-CoV-2具有传播能力强、传播速度快、隐匿性强的特点,给人们的健康造成了巨大压力,给社会带来了极大负担[11] [12]。在本次COVID-19流行期间,合并糖尿病的患者感染SARS-CoV-2后进展为重症肺炎的可能性更高,死亡率也更高,因此对合并糖尿病的SARS-CoV-2感染患者,及早进行预后评估以及干预,对降低患者的死亡率具有重要的意义。

血液相关指标可反映患者病情的严重程度[13] [14]。在本研究中,大多数患者的血液学指标在正常范围内,或者稍有异常。这可能与奥密克戎变异株的致病力较弱、我国强力的疫情防控措施以及高疫苗接种率密切相关[15]。通过分析,本研究发现CRP、IL-6、IL-10、Cl、Na是糖尿病患者感染SARS-CoV-2后发生死亡的独立危险因素。患者病情进展与机体的炎症反应以及免疫系统功能紊乱所导致的细胞因子风暴有关[16]-[19]。感染SARS-CoV-2后,机体可迅速作出免疫应答,释放免疫炎症因子,如IL-6、IL-10、TNF-α、CRP、INF-α、INF-β等,其中CRP、IL-6及IL-10在促进机体炎症反应、急性期免疫反应和适应性免疫应答中起到了关键作用。然而过度活跃的免疫炎症反应,可导致机体出现严重的继发感染或败血症,引发多器官功能衰竭的风险,甚至威胁患者生命。SARS-CoV-2感染的患者,常常会出现电解质平衡紊乱[20],主要表现为低钠血症、低氯血症、低钙血症等。研究表明,SARS-CoV-2可与血管紧张素转换酶2 (angiotensin converting enzyme 2, ACE2)结合,胃肠道、肾脏及肾上腺高度表达ACE2,因此患者可能表现为相关器官功能失调。肾上腺损伤后,肾素-血管紧张素-醛固酮系统的功能下调,导致醛固酮合成减少,影响肾小球滤过率及肾小管重吸收功能等,从而造成钠的重吸收和钾的排出减少。同时,胃肠道损伤的患者可出现腹泻、呕吐等症状,进而导致电解质的丢失[21]。在本研究中,大多数SARS-CoV-2感染患者的血钠虽在正常值范围内,但处于较低水平。与既往研究不同的是,本研究中死亡组患者的血钠水平较存活组更高,这可能与重症患者严重的肾功能衰竭导致水钠潴留有关。然而,本研究对象相对较少,因此还需进一步的研究来证实血钠水平与患者病情严重程度的关系。

从本研究数据来看高龄是导致糖尿病患者感染SARS-CoV-2后发生死亡的危险因素,相关研究已证实这一点[22]-[24]。老年患者大多合并基础疾病如高血压、糖尿病、心血管疾病、脑血管疾病等,而有两种及以上合并症的患者感染SARS-CoV-2后发生死亡的风险显著增加。两组患者体质量指数(Body mass index, BMI)比较差异无统计学意义,与既往多数研究结果不一致,这可能与肥胖和营养不良对患者发生死亡的风险均有影响有关。较多研究指出高BMI与患者病情的危险程度有关[22] [25]。肥胖患者的炎症细胞因子水平较高,一旦感染SARS-CoV-2,发生细胞因子风暴的可能性更大,且绝大多数肥胖人群相较于BMI正常的人群肺功能下降,病毒可造成患者肺组织损伤,因此他们更难以获得良好的肺通气[26]。另一方面,SARS-CoV-2感染导致的并发症可影响患者的代谢和营养,使患者出现明显的体重减轻和恶病质[27]。因此,对于BMI明显降低或通过评估存在营养风险的患者,应尽早进行营养支持和康复锻炼[28]

两组患者中合并冠心病的患病率较高,且本研究结果提示合并冠心病的糖尿病患者感染SARS-CoV-2后死亡风险更大,这与国内外的多项临床研究结果相一致[2] [4] [29]。不稳定性心绞痛和心肌梗死患者较于其他患者而言,心功能储备相对较差。SARS-CoV-2对心脏具有毒性作用,可能导致患者心功能进一步下降,增加死亡风险。SARS-CoV-2对心脏的损害是多方面的[30],包括直接损害心肌细胞、影响肺功能而间接损伤心肌细胞。因此临床工作者们在诊治患者的同时也应警惕心肌的损伤。本研究结果中,并未观察到因呼吸道疾病而住院的患者人数明显增加,而且死亡组中慢性阻塞性肺疾病(Chronic obstructive pulmonary disease, COPD)的患病率略低于非死亡组。这与大多数研究结果存在差异,但部分研究也表明在COVID-19流行期间,COPD患者的住院率有所下降[31]。这可能是因为我国采取了有效的疫情防控措施,在一定程度上避免了COPD患者病情的急性加重[32]。糖皮质激素作为调节因子,可抑制细胞因子风暴。COPD患者长期使用吸入性糖皮质激素(Inhaled corticosteroid, ICS)作为维持治疗,可能在一定程度上抑制了SARS-CoV-2造成的肺部炎症反应[33]-[36]。然而,关于ICS对患者的影响机制还尚待进一步研究。

综上所述,年龄、BMI和基础疾病可影响合并糖尿病的SARS-CoV-2感染患者的预后,而CRP、IL-6、IL-10、Cl、Na作为预测该类患者发生死亡的危险因素,可用来预测该类患者发生重症COVID-19的风险,为患者提供一个精确的数字化的生存风险概率。以往的相关文献已对C0VID-19患者的死亡风险因素进行了研究[37] [38],本研究旨在通过列线图将Logistic回归分析的结果可视化,更方便对感染奥密克戎变异株的糖尿病患者的病情进行解读,在临床中可更加直观地预测个体疾病风险。但本研究存在诸多局限,首先本研究未对疫苗接种这一对预后可能有重要影响的因素进行分析;其次,本研究纳入的样本量较小,筛选出的变量覆盖范围不全面,获得的列线图具有一定的局限性,还需要后期研究及外部验证加以证实。

利益冲突

所有作者声明无利益冲突。

致 谢

感谢本次科研及论文协作过程中医院及科室同事的指导和大力支持。

基金项目

2022年度新冠病毒感染救治应急专项(2023IITxG14);重庆医科大学附属第二医院宽仁优青人才项目(kryc-yq-2213)。

NOTES

*通讯作者。

参考文献

[1] 张佳琦, 刘国华, 黄建安. 新冠病毒奥密克戎变异株的特点与防控措施[J]. 中国感染控制杂志, 2022, 8(21): 816-822.
[2] Li, B., Yang, J., Zhao, F., et al. (2023) Prevalence and Impact of Cardiovascular Metabolic Diseases on COVID-19 in China. Nature Public Health Emergency Collection.
[3] Buscemi, S., Corleo, D. and Randazzo, C. (2021) Risk Factors for COVID-19: Diabetes, Hypertension, and Obesity. In: Asea, A.A.A. and Kaur, P., Eds., Coronavirus TherapeuticsVolume II, Springer International Publishing, 115-129.
https://doi.org/10.1007/978-3-030-85113-2_7
[4] Liang, C., Zhang, W., Li, S. and Qin, G. (2021) Coronary Heart Disease and COVID-19: A Meta-Analysis. Medicina Clínica, 156, 547-554.
https://doi.org/10.1016/j.medcli.2020.12.017
[5] Petrilli, C.M., Jones, S.A., Yang, J., Rajagopalan, H., O’Donnell, L., Chernyak, Y., et al. (2020) Factors Associated with Hospital Admission and Critical Illness among 5279 People with Coronavirus Disease 2019 in New York City: Prospective Cohort Study. BMJ, 369, m1966.
https://doi.org/10.1136/bmj.m1966
[6] Bode, B., Garrett, V., Messler, J., McFarland, R., Crowe, J., Booth, R., et al. (2020) Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. Journal of Diabetes Science and Technology, 14, 813-821.
https://doi.org/10.1177/1932296820924469
[7] Holman, N., Knighton, P., Kar, P., O’Keefe, J., Curley, M., Weaver, A., et al. (2020) Risk Factors for Covid-19-Related Mortality in People with Type 1 and Type 2 Diabetes in England: A Population-Based Cohort Study. The Lancet Diabetes & Endocrinology, 8, 823-833.
https://doi.org/10.1016/s2213-8587(20)30271-0
[8] Holman, N. (2020) Associations of Type 1 and Type 2 Diabetes with COVID-19-Related Mortality in England: A Whole-Population Study. The Lancet Diabetes & Endocrinology, 8, 813-822.
[9] 彭俊男, 迪戚, 宋玉燕, 等. 重庆市新型冠状病毒肺炎患者并发急性呼吸窘迫综合征风险预测模型的建立[J]. 重庆医科大学学报, 2020, 45(7): 853-857.
[10] 中国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第九版) [J]. 国际流行病学传染病学杂志, 2022, 49(2): 73-80.
[11] Tessema, S.K. and Nkengasong, J.N. (2021) Understanding COVID-19 in Africa. Nature Reviews Immunology, 21, 469-470.
https://doi.org/10.1038/s41577-021-00579-y
[12] Organization WH (2022) Enhancing Response to Omicron SARS-CoV-2 Variant: Technical Brief and Priority Actions for Member States. Health and Safety, 13-14.
[13] Soraya, G.V. and Ulhaq, Z.S. (2020) Crucial Laboratory Parameters in COVID-19 Diagnosis and Prognosis: An Updated Meta-Analysis. Medicina Clínica, 155, 143-151.
https://doi.org/10.1016/j.medcli.2020.05.017
[14] Rahman, M.A., Shanjana, Y., Tushar, M.I., Mahmud, T., Rahman, G.M.S., Milan, Z.H., et al. (2021) Hematological Abnormalities and Comorbidities Are Associated with COVID-19 Severity among Hospitalized Patients: Experience from Bangladesh. PLOS ONE, 16, e0255379.
https://doi.org/10.1371/journal.pone.0255379
[15] 吴俣, 刘珏, 刘民, 等. 新型冠状病毒Omicron变异株的流行病学特征及防控研究[J]. 中国全科医学, 2022, 25(1): 14-19.
[16] Ye, Q., Wang, B. and Mao, J. (2020) The Pathogenesis and Treatment of the “Cytokine Storm” in COVID-19. Journal of Infection, 80, 607-613.
https://doi.org/10.1016/j.jinf.2020.03.037
[17] Coomes, E.A. and Haghbayan, H. (2020) Interleukin-6 in COVID-19: A Systematic Review and Meta-Analysis. Reviews in Medical Virology, 30, 1-9.
https://doi.org/10.1002/rmv.2141
[18] Ramasamy, S. and Subbian, S. (2021) Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clinical Microbiology Reviews, 34, 607-613.
https://doi.org/10.1128/cmr.00299-20
[19] Li, X. and Ma, X. (2020) Acute Respiratory Failure in COVID-19: Is It “Typical” ARDS? Critical Care, 24, Article No. 198.
https://doi.org/10.1186/s13054-020-02911-9
[20] Pourfridoni, M., Abbasnia, S.M., Shafaei, F., Razaviyan, J. and Heidari-Soureshjani, R. (2021) Fluid and Electrolyte Disturbances in COVID-19 and Their Complications. BioMed Research International, 2021, Article ID: 6667047.
https://doi.org/10.1155/2021/6667047
[21] Taci Hoca, N. and Berktaş, B.M. (2022) Baseline Electrolyte Disorders Predict Disease Severity and Mortality in Patients with COVID-19. Medicine, 101, e32397.
https://doi.org/10.1097/md.0000000000032397
[22] Hur, K., Price, C.P.E., Gray, E.L., Gulati, R.K., Maksimoski, M., Racette, S.D., et al. (2020) Factors Associated with Intubation and Prolonged Intubation in Hospitalized Patients with COVID-19. OtolaryngologyHead and Neck Surgery, 163, 170-178.
https://doi.org/10.1177/0194599820929640
[23] Lu, G., Zhang, Y., Zhang, H., Ai, J., He, L., Yuan, X., et al. (2022) Geriatric Risk and Protective Factors for Serious COVID-19 Outcomes among Older Adults in Shanghai Omicron Wave. Emerging Microbes & Infections, 11, 2045-2054.
https://doi.org/10.1080/22221751.2022.2109517
[24] Kim, L., Garg, S., O’Halloran, A., Whitaker, M., Pham, H., Anderson, E.J., et al. (2020) Risk Factors for Intensive Care Unit Admission and In-Hospital Mortality among Hospitalized Adults Identified through the US Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-Net). Clinical Infectious Diseases, 72, e206-e214.
https://doi.org/10.1093/cid/ciaa1012
[25] Dietz, W. and Santos-Burgoa, C. (2020) Obesity and Its Implications for COVID-19 Mortality. Obesity, 28, 1005-1005.
https://doi.org/10.1002/oby.22818
[26] 陆钦菊, 王进京, 傅小云. COVID-19相关ARDS: 从病理, 病理生理到临床管理[J]. 遵义医科大学学报, 2021(4): 545-549.
[27] Anker, M.S., Landmesser, U., von Haehling, S., Butler, J., Coats, A.J.S. and Anker, S.D. (2020) Weight Loss, Malnutrition, and Cachexia in COVID-19: Facts and Numbers. Journal of Cachexia, Sarcopenia and Muscle, 12, 9-13.
https://doi.org/10.1002/jcsm.12674
[28] Burgos, R., García-Almeida, J.M., Matía-Martín, P., Palma, S., Sanz-Paris, A., Zugasti, A., et al. (2022) Malnutrition Management of Hospitalized Patients with Diabetes/Hyperglycemia and COVID-19 Infection. Reviews in Endocrine and Metabolic Disorders, 23, 205-213.
https://doi.org/10.1007/s11154-022-09714-z
[29] Yu, C., Wong, R.S., Wu, E.B., Kong, S., Wong, J., Yip, G.W., et al. (2006) Cardiovascular Complications of Severe Acute Respiratory Syndrome. Postgraduate Medical Journal, 82, 140-144.
https://doi.org/10.1136/pgmj.2005.037515
[30] Tajbakhsh, A., Gheibi Hayat, S.M., Taghizadeh, H., Akbari, A., inabadi, M., Savardashtaki, A., et al. (2020) COVID-19 and Cardiac Injury: Clinical Manifestations, Biomarkers, Mechanisms, Diagnosis, Treatment, and Follow-Up. Expert Review of Anti-Infective Therapy, 19, 345-357.
https://doi.org/10.1080/14787210.2020.1822737
[31] Huh, K., Kim, Y., Ji, W., Kim, D.W., Lee, E., Kim, J., et al. (2021) Decrease in Hospital Admissions for Respiratory Diseases during the COVID-19 Pandemic: A Nationwide Claims Study. Thorax, 76, 939-941.
https://doi.org/10.1136/thoraxjnl-2020-216526
[32] Alsallakh, M.A., Sivakumaran, S., Kennedy, S., Vasileiou, E., Lyons, R.A., Robertson, C., et al. (2021) Impact of COVID-19 Lockdown on the Incidence and Mortality of Acute Exacerbations of Chronic Obstructive Pulmonary Disease: National Interrupted Time Series Analyses for Scotland and Wales. BMC Medicine, 19, Article No. 124.
https://doi.org/10.1186/s12916-021-02000-w
[33] Aveyard, P., Gao, M., Lindson, N., Hartmann-Boyce, J., Watkinson, P., Young, D., et al. (2021) Association between Pre-Existing Respiratory Disease and Its Treatment, and Severe COVID-19: A Population Cohort Study. The Lancet Respiratory Medicine, 9, 909-923.
https://doi.org/10.1016/s2213-2600(21)00095-3
[34] Heinen, N., Meister, T.L., Klöhn, M., Steinmann, E., Todt, D. and Pfaender, S. (2021) Antiviral Effect of Budesonide against SARS-CoV-2. Viruses, 13, Article No. 1411.
https://doi.org/10.3390/v13071411
[35] Ramakrishnan, S., Nicolau, D.V., Langford, B., Mahdi, M., Jeffers, H., Mwasuku, C., et al. (2021) Inhaled Budesonide in the Treatment of Early COVID-19 (STOIC): A Phase 2, Open-Label, Randomised Controlled Trial. The Lancet Respiratory Medicine, 9, 763-772.
https://doi.org/10.1016/s2213-2600(21)00160-0
[36] Yu, L.M., Bafadhel, M. and Dorward, J. (2021) Inhaled Budesonide for COVID-19 in People at High Risk of Complications in the Community in the UK (PRINCIPLE): A Randomised, Controlled, Open-Label, Adaptive Platform Trial (vol. 398, pg 843, 2021). The Lancet, 398, E12.
[37] Gozdas, H.T., Kayis, S.A., Damarsoy, T., Ozsari, E., Turkoglu, M., Yildiz, I., et al. (2022) Multi-Inflammatory Index as a Novel Mortality Predictor in Critically Ill COVID-19 Patients. Journal of Intensive Care Medicine, 37, 1480-1485.
https://doi.org/10.1177/08850666221100411
[38] Alharthy, A., Aletreby, W., Faqihi, F., Balhamar, A., Alaklobi, F., Alanezi, K., et al. (2020) Clinical Characteristics and Predictors of 28-Day Mortality in 352 Critically Ill Patients with COVID-19: A Retrospective Study. Journal of Epidemiology and Global Health, 11, 98-104.
https://doi.org/10.2991/jegh.k.200928.001