|
[1]
|
Min, J.K., Taylor, C.A., Achenbach, S., Koo, B.K., Leipsic, J., Nørgaard, B.L., et al. (2015) Noninvasive Fractional Flow Reserve Derived from Coronary CT Angiography: Clinical Data and Scientific Principles. JACC: Cardiovascular Imaging, 8, 1209-1222. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Pijls, N.H.J. and De Bruyne, B. (1998) Coronary Pressure Measurement and Fractional Flow Reserve. Heart, 80, 539-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
De Bruyne, B., Pijls, N.H.J., Kalesan, B., Barbato, E., Tonino, P.A.L., Piroth, Z., et al. (2012) Fractional Flow Reserve-Guided PCI versus Medical Therapy in Stable Coronary Disease. New England Journal of Medicine, 367, 991-1001. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Johnson, N.P., Tóth, G.G., Lai, D., Zhu, H., Açar, G., Agostoni, P., et al. (2014) Prognostic Value of Fractional Flow Reserve: Linking Physiologic Severity to Clinical Outcomes. Journal of the American College of Cardiology, 64, 1641-1654. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fearon, W.F., Nishi, T., De Bruyne, B., Boothroyd, D.B., Barbato, E., Tonino, P., et al. (2018) Clinical Outcomes and Cost-Effectiveness of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients with Stable Coronary Artery Disease: Three-Year Follow-Up of the FAME 2 Trial (Fractional Flow Reserve versus Angiography for Multivessel Evaluation). Circulation, 137, 480-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sivertsen, J., Jensen, J., Galatius, S., Raunsø, J., and Rosenmeier, J. (2014) Comparison of the Novel Vasodilator Uridine Triphosphate and Adenosine for the Measurement of Fractional Flow Reserve. Journal of Invasive Cardiology, 26, 512-518.
|
|
[7]
|
Michail, M., Ihdayhid, A., Comella, A., Thakur, U., Cameron, J.D., McCormick, L.M., et al. (2021) Feasibility and Validity of Computed Tomography-Derived Fractional Flow Reserve in Patients with Severe Aortic Stenosis: The CAST-FFR Study. Circulation: Cardiovascular Interventions, 14, e009586. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, Y., Xiong, T., Li, Y., Huang, F., Peng, Y., Li, Q., et al. (2021) Variation of Computed Tomographic Angiography-based Fractional Flow Reserve after Transcatheter Aortic Valve Implantation. European Radiology, 31, 6220-6229. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Baumgartner, H., Falk, V., Bax, J.J., De Bonis, M., Hamm, C., Holm, P.J., et al. (2017) 2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. European Heart Journal, 38, 2739-2791. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Patterson, T., Prendergast, B.D. and Redwood, S. (2018) PCI in TAVI Patients: Who, Why and When? EuroIntervention, 14, e1160-e1162. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Karlsen, S., Melichova, D., Dahlslett, T., Grenne, B., Sjøli, B., Smiseth, O., et al. (2022) Increased Deformation of the Left Ventricle during Exercise Test Measured by Global Longitudinal Strain Can Rule out Significant Coronary Artery Disease in Patients with Suspected Unstable Angina Pectoris. Echocardiography, 39, 233-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Vasiljevic, Z., Krljanac, G., Zdravkovic, M., Lasica, R., Trifunovic, D. and Asanin, M. (2018) Coronary Microcirculation in Heart Failure with Preserved Systolic Function. Current Pharmaceutical Design, 24, 2960-2966. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Anastasius, M., Maggiore, P., Huang, A., Blanke, P., Patel, M.R., Nørgaard, B.L., et al. (2021) The Clinical Utility of FFRCT Stratified by Age. Journal of Cardiovascular Computed Tomography, 15, 121-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mejia-Renteria, H., Faria, D., Lee, J.M., Lee, S.H., Jung, J., Doh, J., et al. (2022) Association between Patient Age, Microcirculation, and Coronary Stenosis Assessment with Fractional Flow Reserve and Instantaneous Wave-Free Ratio. Catheterization and Cardiovascular Interventions, 99, 1104-1114. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Faria, D.C., Lee, J.M., van der Hoef, T., Mejía-Rentería, H., Echavarría-Pinto, M., Baptista, S.B., et al. (2021) Age and Functional Relevance of Coronary Stenosis: A Post Hoc Analysis of the ADVISE II Trial. EuroIntervention, 17, 757-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Faria, D., Mejia-Renteria, H., Lee, J.M., Lee, S.H., Travieso, A., Jung, J., et al. (2022) Age-Related Changes in the Coronary Microcirculation Influencing the Diagnostic Performance of Invasive Pressure-Based Indices and Long-Term Patient Prognosis. Catheterization and Cardiovascular Interventions, 100, 1195-1205. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zasada, W., Zdzierak, B., Rakowski, T., Bobrowska, B., Krawczyk-Ożóg, A., Surowiec, S., et al. (2023) The Impact of Age on the Physiological Assessment of Borderline Coronary Stenoses. Medicina, 59, Article No. 1863. [Google Scholar] [CrossRef] [PubMed]
|