|
[1]
|
Cementon, C., Ramireddy, T., Dewar, D., Brennan, M. and Glushenkov, A.M. (2024) We May Be Underestimating the Power Capabilities of Lithium-Ion Capacitors. Journal of Power Sources, 591, Article ID: 233857. [Google Scholar] [CrossRef]
|
|
[2]
|
Kreth, F.A., Köps, L., Leibing, C., Darlami Magar, S., Hermesdorf, M., Schutjajew, K., et al. (2024) Enabling Fluorine‐free Lithium‐Ion Capacitors and Lithium‐Ion Batteries for High‐Temperature Applications by the Implementation of Lithium Bis(oxalato)borate and Ethyl Isopropyl Sulfone as Electrolyte. Advanced Energy Materials, 14, Article ID: 2303909. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhao, C., Yao, S., Li, C., An, Y., Zhao, S., Sun, X., et al. (2024) Recent Advances in Transition Metal Oxides as Anode Materials for High-Performance Lithium-Ion Capacitors. Chemical Engineering Journal, 497, Article ID: 154535. [Google Scholar] [CrossRef]
|
|
[4]
|
Hossain Lipu, M.S., Rahman, M.S.A., Mansor, M., Rahman, T., Ansari, S., Fuad, A.M., et al. (2024) Data Driven Health and Life Prognosis Management of Supercapacitor and Lithium-Ion Battery Storage Systems: Developments, Implementation Aspects, Limitations, and Future Directions. Journal of Energy Storage, 98, Article ID: 113172. [Google Scholar] [CrossRef]
|
|
[5]
|
Zhao, S., Li, G., Zhang, B., Li, T., Luo, M., Sun, B., et al. (2024) Technological Roadmap for Potassium-Ion Hybrid Capacitors. Joule, 8, 922-943. [Google Scholar] [CrossRef]
|
|
[6]
|
Liu, W., Sun, X., Yan, X., Gao, Y., Zhang, X., Wang, K., et al. (2024) Review of Energy Storage Capacitor Technology. Batteries, 10, Article No. 271. [Google Scholar] [CrossRef]
|
|
[7]
|
Soltani, M. and Beheshti, S.H. (2021) A Comprehensive Review of Lithium-Ion Capacitor: Development, Modelling, Thermal Management and Applications. Journal of Energy Storage, 34, Article ID: 102019. [Google Scholar] [CrossRef]
|
|
[8]
|
Al-Zareer, M., Dincer, I. and Rosen, M.A. (2018) A Novel Phase Change Based Cooling System for Prismatic Lithium-Ion Batteries. International Journal of Refrigeration, 86, 203-217. [Google Scholar] [CrossRef]
|
|
[9]
|
Ganesan, N., Basu, S., Hariharan, K.S., Kolake, S.M., Song, T., Yeo, T., et al. (2016) Physics Based Modeling of a Series Parallel Battery Pack for Asymmetry Analysis, Predictive Control and Life Extension. Journal of Power Sources, 322, 57-67. [Google Scholar] [CrossRef]
|
|
[10]
|
Schmidt, A.P., Bitzer, M., Imre, Á.W. and Guzzella, L. (2010) Lumped Parameter Modeling of Electrochemical and Thermal Dynamics in Lithium-Ion Batteries. IFAC Proceedings Volumes, 43, 198-203. [Google Scholar] [CrossRef]
|
|
[11]
|
Mele, I., Pačnik, I., Zelič, K., Moškon, J. and Katrašnik, T. (2020) Advanced Porous Electrode Modelling Framework Based on More Consistent Virtual Representation of the Electrode Topology. Journal of The Electrochemical Society, 167, Article ID: 060531. [Google Scholar] [CrossRef]
|
|
[12]
|
Seaman, A., Dao, T. and McPhee, J. (2014) A Survey of Mathematics-Based Equivalent-Circuit and Electrochemical Battery Models for Hybrid and Electric Vehicle Simulation. Journal of Power Sources, 256, 410-423. [Google Scholar] [CrossRef]
|
|
[13]
|
Sun, B., Liu, J., Ruan, H., Zhang, W., Li, H. and Wang, J. (2021) Study on Fractional Order Modeling and Equivalent Stress of AC-DC Superposition Condition for Lithium-Ion Batteries. In: Chen, W., Yang, Q., Wang, L., Liu, D., Han, X. and Meng, G., Eds., The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering, Springer, 115-127. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhang, Y., Liu, Y., Wang, J. and Zhang, T. (2022) State-of-Health Estimation for Lithium-Ion Batteries by Combining Model-Based Incremental Capacity Analysis with Support Vector Regression. Energy, 239, Article ID: 121986. [Google Scholar] [CrossRef]
|
|
[15]
|
Cao, W.J., Shih, J., Zheng, J.P. and Doung, T. (2014) Development and Characterization of Li-Ion Capacitor Pouch Cells. Journal of Power Sources, 257, 388-393. [Google Scholar] [CrossRef]
|
|
[16]
|
Omar, N., Gualous, H., Salminen, J., Mulder, G., Samba, A., Firouz, Y., et al. (2013) Electrical Double-Layer Capacitors: Evaluation of Ageing Phenomena during Cycle Life Testing. Journal of Applied Electrochemistry, 44, 509-522. [Google Scholar] [CrossRef]
|
|
[17]
|
El Ghossein, N., Sari, A. and Venet, P. (2019) Effects of the Hybrid Composition of Commercial Lithium-Ion Capacitors on Their Floating Aging. IEEE Transactions on Power Electronics, 34, 2292-2299. [Google Scholar] [CrossRef]
|
|
[18]
|
Huang, F., Ma, J., Xia, H., Huang, Y., Zhao, L., Su, S., et al. (2019) Capacity Loss Mechanism of the Li4Ti5O12 Microsphere Anode of Lithium-Ion Batteries at High Temperature and Rate Cycling Conditions. ACS Applied Materials & Interfaces, 11, 37357-37364. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Smart, M.C., Ratnakumar, B.V., Whitacre, J.F., Whitcanack, L.D., Chin, K.B., Rodriguez, M.D., et al. (2005) Effect of Electrolyte Type Upon the High-Temperature Resilience of Lithium-Ion Cells. Journal of The Electrochemical Society, 152, A1096. [Google Scholar] [CrossRef]
|
|
[20]
|
Handel, P., Fauler, G., Kapper, K., Schmuck, M., Stangl, C., Fischer, R., et al. (2014) Thermal Aging of Electrolytes Used in Lithium-Ion Batteries—An Investigation of the Impact of Protic Impurities and Different Housing Materials. Journal of Power Sources, 267, 255-259. [Google Scholar] [CrossRef]
|
|
[21]
|
Torregrossa, D. and Paolone, M. (2016) Modelling of Current and Temperature Effects on Supercapacitors Ageing. Part I: Review of Driving Phenomenology. Journal of Energy Storage, 5, 85-94. [Google Scholar] [CrossRef]
|
|
[22]
|
Wang, Q., Huang, P., Ping, P., Du, Y., Li, K. and Sun, J. (2017) Combustion Behavior of Lithium Iron Phosphate Battery Induced by External Heat Radiation. Journal of Loss Prevention in the Process Industries, 49, 961-969. [Google Scholar] [CrossRef]
|
|
[23]
|
Wei, L., Wu, M., Yan, M., Liu, S., Cao, Q. and Wang, H. (2019) A Review on Electrothermal Modeling of Supercapacitors for Energy Storage Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7, 1677-1690. [Google Scholar] [CrossRef]
|
|
[24]
|
Behi, H., Karimi, D., Behi, M., Jaguemont, J., Ghanbarpour, M., Behnia, M., et al. (2020) Thermal Management Analysis Using Heat Pipe in the High Current Discharging of Lithium-Ion Battery in Electric Vehicles. Journal of Energy Storage, 32, Article ID: 101893. [Google Scholar] [CrossRef]
|
|
[25]
|
Bernardi, D., Pawlikowski, E. and Newman, J. (1985) A General Energy Balance for Battery Systems. Journal of the Electrochemical Society, 132, 5-12. [Google Scholar] [CrossRef]
|
|
[26]
|
Sun, F., Gao, J., Liu, X., Wang, L., Yang, Y., Pi, X., et al. (2016) High-Energy Li-Ion Hybrid Supercapacitor Enabled by a Long-Life N-Rich Carbon-Based Anode. Electrochimica Acta, 213, 626-632. [Google Scholar] [CrossRef]
|
|
[27]
|
Cao, W.J. and Zheng, J.P. (2012) Li-Ion Capacitors with Carbon Cathode and Hard Carbon/Stabilized Lithium Metal Powder Anode Electrodes. Journal of Power Sources, 213, 180-185. [Google Scholar] [CrossRef]
|
|
[28]
|
Jin, L., Guo, X., Shen, C., Qin, N., Zheng, J., Wu, Q., et al. (2019) A Universal Matching Approach for High Power-Density and High Cycling-Stability Lithium-Ion Capacitor. Journal of Power Sources, 441, Article ID: 227211. [Google Scholar] [CrossRef]
|
|
[29]
|
Aida, T., Yamada, K. and Morita, M. (2006) An Advanced Hybrid Electrochemical Capacitor That Uses a Wide Potential Range at the Positive Electrode. Electrochemical and Solid-State Letters, 9, A534. [Google Scholar] [CrossRef]
|
|
[30]
|
Tsuda, T., Ando, N., Haruki, Y., Tanabe, T., Gunji, T., Itagaki, K., et al. (2018) Study on Li Metal Deposition, SEI Formation on Anodes and Cathode Potential Change during the Pre-Lithiation Process in a Cell Prepared with Laminated Porous Anodes and Cathodes. ECS Transactions, 85, 1507-1515. [Google Scholar] [CrossRef]
|
|
[31]
|
Tsuda, T., Ando, N., Mitsuhashi, N., Tanabe, T., Itagaki, K., Soma, N., et al. (2017) Fabrication of Porous Graphite Anodes with Pico-Second Pulse Laser and Enhancement of Pre-Doping of Li+ Ions to Laminated Graphite Anodes with Micrometre-Sized Holes Formed on the Porous Graphite Anodes. ECS Transactions, 77, 1897-1903. [Google Scholar] [CrossRef]
|
|
[32]
|
Sun, X., Zhang, X., Zhang, H., Xu, N., Wang, K. and Ma, Y. (2014) High Performance Lithium-Ion Hybrid Capacitors with Pre-Lithiated Hard Carbon Anodes and Bifunctional Cathode Electrodes. Journal of Power Sources, 270, 318-325. [Google Scholar] [CrossRef]
|
|
[33]
|
Shellikeri, A., Watson, V., Adams, D., Kalu, E.E., Read, J.A., Jow, T.R., et al. (2017) Investigation of Pre-Lithiation in Graphite and Hard-Carbon Anodes Using Different Lithium Source Structures. Journal of The Electrochemical Society, 164, A3914-A3924. [Google Scholar] [CrossRef]
|
|
[34]
|
Holtstiege, F., Schmuch, R., Winter, M., Brunklaus, G. and Placke, T. (2018) New Insights into Pre-Lithiation Kinetics of Graphite Anodes via Nuclear Magnetic Resonance Spectroscopy. Journal of Power Sources, 378, 522-526. [Google Scholar] [CrossRef]
|
|
[35]
|
Zhang, S.S. (2017) Eliminating Pre-Lithiation Step for Making High Energy Density Hybrid Li-Ion Capacitor. Journal of Power Sources, 343, 322-328. [Google Scholar] [CrossRef]
|