[1]
|
Lane, L. and Bullough, P. (1980) Age-Related Changes in the Thickness of the Calcified Zone and the Number of Tidemarks in Adult Human Articular Cartilage. The Journal of Bone and Joint Surgery, 62, 372-375. https://doi.org/10.1302/0301-620x.62b3.7410471
|
[2]
|
Weiger, M. and Pruessmann, K.P. (2019) Short-T2 MRI: Principles and Recent Advances. Progress in Nuclear Magnetic Resonance Spectroscopy, 114, 237-270. https://doi.org/10.1016/j.pnmrs.2019.07.001
|
[3]
|
Lu, A., Gorny, K.R. and Ho, M.-L. (2019) Zero TE MRI for Craniofacial Bone Imaging. American Journal of Neuroradiology, 40, 1562-1566. https://doi.org/10.3174/ajnr.a6175
|
[4]
|
de Mello, R.A.F., Ma, Y., Ashir, A., Jerban, S., Hoenecke, H., Carl, M., et al. (2020) Three-Dimensional Zero Echo Time Magnetic Resonance Imaging versus 3-Dimensional Computed Tomography for Glenoid Bone Assessment. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 36, 2391-2400. https://doi.org/10.1016/j.arthro.2020.05.042
|
[5]
|
Hou, B., Liu, C., Li, Y., Xiong, Y., Wang, J., Zhang, P., et al. (2022) Evaluation of the Degenerative Lumbar Osseous Morphology Using Zero Echo Time Magnetic Resonance Imaging (ZTE-MRI). European Spine Journal, 31, 792-800. https://doi.org/10.1007/s00586-021-07099-2
|
[6]
|
Ilbey, S., Jungmann, P.M., Fischer, J., Jung, M., Bock, M. and Özen, A.C. (2022) Single Point Imaging with Radial Acquisition and Compressed Sensing. Magnetic Resonance in Medicine, 87, 2685-2696. https://doi.org/10.1002/mrm.29156
|
[7]
|
樊红星, 孟祥虹, 王植. 功能MRI对关节软骨和骨软骨交界区定量评估的研究进展[J]. 国际医学放射学杂志, 2023, 46(2): 27-32.
|
[8]
|
Ma, Y., Jerban, S., Carl, M., Wan, L., Guo, T., Jang, H., et al. (2019) Imaging of the Region of the Osteochondral Junction (OCJ) Using a 3D Adiabatic Inversion Recovery Prepared Ultrashort Echo Time Cones (3D IR-UTE-Cones) Sequence at 3 T. NMR in Biomedicine, 32, e4080. https://doi.org/10.1002/nbm.4080
|
[9]
|
Lombardi, A.F., Jang, H., Wei, Z., Jerban, S., Wallace, M., Masuda, K., et al. (2021) High-Contrast Osteochondral Junction Imaging Using a 3D Dual Adiabatic Inversion Recovery-Prepared Ultrashort Echo Time Cones Sequence. NMR in Biomedicine, 34, e4559. https://doi.org/10.1002/nbm.4559
|
[10]
|
Bharadwaj, U.U., Coy, A., Motamedi, D., Sun, D., Joseph, G.B., Krug, R., et al. (2022) CT-Like MRI: A Qualitative Assessment of ZTE Sequences for Knee Osseous Abnormalities. Skeletal Radiology, 51, 1585-1594. https://doi.org/10.1007/s00256-021-03987-2
|
[11]
|
Wolharn, L., Guggenberger, R., Higashigaito, K., Sartoretti, T., Winklhofer, S., Chung, C.B., et al. (2022) Detailed Bone Assessment of the Sacroiliac Joint in a Prospective Imaging Study: Comparison between Computed Tomography, Zero Echo Time, and Black Bone Magnetic Resonance Imaging. Skeletal Radiology, 51, 2307-2315. https://doi.org/10.1007/s00256-022-04097-3
|
[12]
|
Wu, M., Ma, Y., Liu, M., Xue, Y., Gong, L., Wei, Z., et al. (2022) Quantitative Assessment of Articular Cartilage Degeneration Using 3D Ultrashort Echo Time Cones Adiabatic T1ρ (3D UTE-Cones-AdiabT1ρ) Imaging. European Radiology, 32, 6178-6186. https://doi.org/10.1007/s00330-022-08722-6
|
[13]
|
Ma, Y., Carl, M., Tang, Q., Moazamian, D., Athertya, J.S., Jang, H., et al. (2023) Whole Knee Joint Mapping Using a Phase Modulated UTE Adiabatic T1ρ (PM-UTE-AdiabT1ρ) Sequence. Magnetic Resonance in Medicine, 91, 896-910. https://doi.org/10.1002/mrm.29871
|
[14]
|
Imamura, R., Teramoto, A., Murahashi, Y., Okada, Y., Okimura, S., Akatsuka, Y., et al. (2023) Ultra-Short Echo Time-MRI T2* Mapping of Articular Cartilage Layers Is Associated with Histological Early Degeneration. CARTILAGE. https://doi.org/10.1177/19476035231205685
|
[15]
|
Xue, Y., Ma, Y., Wu, M., Jerban, S., Wei, Z., Chang, E.Y., et al. (2021) Quantitative 3D Ultrashort Echo Time Magnetization Transfer Imaging for Evaluation of Knee Cartilage Degeneration in vivo. Journal of Magnetic Resonance Imaging, 54, 1294-1302. https://doi.org/10.1002/jmri.27659
|
[16]
|
Su, X., Wang, Y., Chen, J., Liang, Z., Wan, L. and Tang, G. (2024) A Feasibility Study of in vivo Quantitative Ultra-Short Echo Time-MRI for Detecting Early Cartilage Degeneration. Insights into Imaging, 15, Article No. 162. https://doi.org/10.1186/s13244-024-01734-4
|
[17]
|
Villarreal, C.X., Shen, X., Alhulail, A.A., Buffo, N.M., Zhou, X., Pogue, E., et al. (2024) An Accelerated PETALUTE MRI Sequence for in vivo Quantification of Sodium Content in Human Articular Cartilage at 3T. Skeletal Radiology. https://doi.org/10.1007/s00256-024-04774-5
|
[18]
|
Bae, W.C., Tadros, A.S., Finkenstaedt, T., Du, J., Statum, S. and Chung, C.B. (2021) Quantitative Magnetic Resonance Imaging of Meniscal Pathology ex vivo. Skeletal Radiology, 50, 2405-2414. https://doi.org/10.1007/s00256-021-03808-6
|
[19]
|
Wu, Z., Zaylor, W., Sommer, S., Xie, D., Zhong, X., Liu, K., et al. (2023) Assessment of Ultrashort Echo Time (UTE) T2* Mapping at 3T for the Whole Knee: Repeatability, the Effects of Fat Suppression, and Knee Position. Quantitative Imaging in Medicine and Surgery, 13, 7893-7909. https://doi.org/10.21037/qims-23-459
|
[20]
|
Jerban, S., Ma, Y., Kasibhatla, A., Wu, M., Szeverenyi, N., Guma, M., et al. (2021) Ultrashort Echo Time Adiabatic T1ρ (UTE-Adiab-T1ρ) Is Sensitive to Human Cadaveric Knee Joint Deformation Induced by Mechanical Loading and Unloading. Magnetic Resonance Imaging, 80, 98-105. https://doi.org/10.1016/j.mri.2021.04.014
|
[21]
|
Jerban, S., Kasibhatla, A., Ma, Y., Wu, M., Chen, Y., Guo, T., et al. (2020) Detecting Articular Cartilage and Meniscus Deformation Effects Using Magnetization Transfer Ultrashort Echo Time (MT-UTE) Modeling during Mechanical Load Application: Ex vivo Feasibility Study. CARTILAGE, 13, 665S-673S. https://doi.org/10.1177/1947603520976771
|
[22]
|
Foreman, S.C., Gersing, A.S., von Schacky, C.E., Joseph, G.B., Neumann, J., Lane, N.E., et al. (2020) Chondrocalcinosis Is Associated with Increased Knee Joint Degeneration over 4 Years: Data from the Osteoarthritis Initiative. Osteoarthritis and Cartilage, 28, 201-207. https://doi.org/10.1016/j.joca.2019.10.003
|
[23]
|
Germann, C., Galley, J., Falkowski, A.L., Fucentese, S.F., Pfirrmann, C.W.A., Nanz, D., et al. (2021) Ultra-High Resolution 3D MRI for Chondrocalcinosis Detection in the Knee—A Prospective Diagnostic Accuracy Study Comparing 7-Tesla and 3-Tesla MRI with CT. European Radiology, 31, 9436-9445. https://doi.org/10.1007/s00330-021-08062-x
|
[24]
|
Finkenstaedt, T., Biswas, R., Abeydeera, N.A., Siriwanarangsun, P., Healey, R., Statum, S., et al. (2019) Ultrashort Time to Echo Magnetic Resonance Evaluation of Calcium Pyrophosphate Crystal Deposition in Human Menisci. Investigative Radiology, 54, 349-355. https://doi.org/10.1097/rli.0000000000000547
|
[25]
|
陈继鑫, 周沁心, 郭天赐, 等. 白细胞介素-1受体拮抗剂与骨关节炎及亚型的孟德尔随机化研究[J]. 医学研究杂志, 2024, 53(4): 46-51.
|
[26]
|
唐金烁, 周忠圣, 肖建林, 等. 骨性关节炎发病机制的研究进展[J]. 中国骨伤, 2021, 34(10): 985-990.
|
[27]
|
李佳佳. MR mapping成像和软骨分割技术评估血友病膝关节软骨损伤的研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2021.
|
[28]
|
Jang, H., von Drygalski, A., Wong, J., Zhou, J.Y., Aguero, P., Lu, X., et al. (2020) Ultrashort Echo Time Quantitative Susceptibility Mapping (UTE-QSM) for Detection of Hemosiderin Deposition in Hemophilic Arthropathy: A Feasibility Study. Magnetic Resonance in Medicine, 84, 3246-3255. https://doi.org/10.1002/mrm.28388
|
[29]
|
Athertya, J.S., Akers, J., Sedaghat, S., Wei, Z., Moazamian, D., Dwek, S., et al. (2023) Detection of Iron Oxide Nanoparticle (IONP)-Labeled Stem Cells Using Quantitative Ultrashort Echo Time Imaging: A Feasibility Study. Quantitative Imaging in Medicine and Surgery, 13, 585-597. https://doi.org/10.21037/qims-22-654
|