microRNAs对脑出血后神经炎症影响的研究进展
Research Progress of the Effect of microRNAs on Neuroinflammation after Intracerebral Hemorrhage
DOI: 10.12677/acm.2024.14102708, PDF, HTML, XML,   
作者: 李 铃:黑龙江中医药大学第二临床医学院,黑龙江 哈尔滨;孔 莹*:黑龙江中医药大学附属第二医院针灸七科,黑龙江 哈尔滨
关键词: 脑出血microRNA神经炎症Intracerebral Hemorrhage microRNA Neuroinflammation
摘要: 脑出血后所释放的大量内源性物质和血液中的毒性成分可加剧炎性反应和神经缺损,严重影响脑出血患者预后。microRNAs水平在脑出血后发生变化,可通过多种机制调控神经炎症的功能。文章综述归纳总结了microRNAs对脑出血后神经炎症影响的研究进展,旨在为出血性中风患者发现更有效的治疗方法。
Abstract: A large number of endogenous substances and toxic components in blood released after intracerebral hemorrhage can aggravate inflammatory reaction and neurological damage, which seriously affect the prognosis of patients with intracerebral hemorrhage. The level of microRNAs changes after intracerebral hemorrhage, which can regulate the function of neuroinflammation through various mechanisms. This review summarizes the research progress of the effect of microRNAs on neuroinflammation after intracerebral hemorrhage in order to find more effective treatment methods for patients with hemorrhagic stroke.
文章引用:李铃, 孔莹. microRNAs对脑出血后神经炎症影响的研究进展[J]. 临床医学进展, 2024, 14(10): 646-653. https://doi.org/10.12677/acm.2024.14102708

1. 引言

脑出血(intracerebral hemorrhage, ICH)是指脑实质中血液自发性外渗,占全球所有脑卒中病例的10%~20%,在幸存者中死亡率高、功能结局差、后遗症多[1]。ICH通常会导致严重的脑损伤,分为原发性和继发性脑损伤。原发性损伤主要是由于血管破裂血肿快速形成和占位效应对大脑造成的物理损伤[2]。继发性损伤由血液成分外渗和相关神经毒性引起,例如神经炎症、氧化应激、细胞凋亡和血脑屏障(BBB)破坏等[3]。其中,越来越多的证据表明,靶向神经炎症的治疗有可能调节脑损伤和ICH后的修复[4],例如,Pan [5]等人在实验研究中表明,熊果酸可通过NF-κB/NLRP3/GSDMD通路抑制小胶质细胞焦亡,减轻ICH后的神经炎症反应,改善继发性脑损伤。本文总结了ICH后微小RNAs (microRNAs)对神经炎症影响的研究进展,以期为ICH临床诊疗及预防带来更多新的治疗思路。

2. ICH对神经炎症的影响

神经炎症在血肿形成后立即开始,是ICH后继发性脑损伤的重要防御反应[6]。ICH后脑组织周围病灶缺血缺氧导致神经细胞损伤,大量促炎因子释放,包括肿瘤坏死因子(TNF)-α、白细胞介素(IL)-1β、髓过氧化物酶(MPO),加重继发性损伤,引起神经功能障碍。它的发病机制与小胶质细胞活化、中性粒细胞浸润等关系密切[7]-[9]

3. microRNA概述

microRNA (miRNA、miR)一类高度保守的,长度约为22个核苷酸的单链非编码RNA。通过与特定靶基因mRNA的3'-非翻译区(UTR)结合以抑制mRNA翻译或诱导mRNA降解,从而在转录后水平上沉默基因表达。单个miRNA可以调控数百个具有相同短识别区域的靶mRNA,并影响许多基因的表达。有研究表明,miRNA可以调节约60%的人类基因组中的蛋白质编码基因的表达,这些基因对人类生存和发育至关重要[10]。通过调控靶基因,miRNA参与多种信号通路,调节细胞增殖[11]、转移[12]、细胞凋亡[13]、衰老[14]、分化[15]、自噬[16]和免疫反应[17]等生物过程。miRNA生物发生过程从细胞核开始,在细胞质中结束。它们通常由RNA聚合酶II或III转录miRNA,然后加帽、剪接和多聚腺苷酸化,形成具有一个或多个发夹结构的初级miRNA (pri-miRNA) [18]。miRNA符合成为首选生物标志物的几个标准,即高特异性、易于获取和灵敏度,因此,miRNA被认为是许多人类疾病的有前途的生物标志物。有研究表明[19],miRNA存在于许多高度稳定的生物体液中,包括血液,其对组织或细胞类型也具有很高的特异性。miRNA的敏感性已经得到证实,其水平可以根据疾病进展或对治疗的反应而变化。因此miRNA可用于准确诊断、预测疾病进展、指导治疗以及评估对治疗的反应性。

4. microRNA对ICH后神经炎症的影响

与其他器官相比,哺乳动物大脑表达的microRNA数量最多[20]。不同microRNA在促进ICH后神经炎症的修复、减轻继发性脑损伤方面起促进或抑制作用。microRNA因其在神经炎症下可能具有独特的细胞或组织表达谱,是治疗各种神经炎症性疾病的理想候选者[21]。现就ICH后神经炎症反应中发挥作用的microRNA进行概述。

4.1. miR-144

miR-144表达改变与细胞自噬[22]、炎症反应[23]、神经元损伤[24]密切相关。实验研究表明[25],自体血注射造模ICH小鼠后ICH血肿周围脑组织miR-144表达显著提高。Wang [26]等人在研究中发现miR-144/451簇的基因敲除显著促进了ICH小鼠TNF-α和IL-1β的分泌以及周围血肿区的氧化应激,miR-144/451的耗竭则抑制ICH小鼠中miR-451-14-3-3ζ-FoxO3的调节轴活性,表明miR-144/451可能通过靶向miR-451-14-3-3ζ-FoxO3保护ICH小鼠免受神经炎症和氧化应激的影响。此外,甲酰肽受体2型(FPR2)作为PI3K/AKT信号传导和炎症的关键调节因子,miRNA-144-3p可通过靶向及下调FPR2可加重ICH继发性损伤,促进神经功能障碍和神经凋亡[27]。罗[28]等人在研究中表明,ICH后miR-144-3p的表达与基质金属蛋白酶-9 (MMP-9)和核因子-κB (NF-κB)的表达水平呈正相关关系、与核因子红系2-相关因子2 (Nrf2)的表达负相关,抑制miR-144-3p的表达可降低血脑屏障的通透性,减轻神经炎症等继发性脑损害。白[29]等人发现,人参皂苷Rg1可能通过调控miR-144-3p/FPR2/p38轴进而减轻ICH大鼠神经炎症和BBB损伤。因此,抑制miR-144表达可能作为减轻ICH后神经炎症的一个新的治疗靶点。

4.2. miR-155

miR-155具有广泛的生物学功能,在调节免疫和炎症的发生发展过程中具有重要的作用。研究[30]表明,miRNA-155是炎症的主要调节因子,对TNF-α、IL-1β、干扰素等炎症刺激极其敏感。巨噬细胞分为促炎M1型和抗炎M2型,影响细胞因子信号传导,不同极化状态之间的转变受几类分子的调节,miR-155可促进M1型、抑制M2型巨噬细胞极化和活化[31]。miR-155通过下调细胞因子信号转导1 (SOCS-1)蛋白表达水平和促进促炎细胞因子IFN-β、TNF-α和IL-6的产生,加剧ICH小鼠诱导的炎症产生及发展[32]。Zhang [33]等人表明顶叶皮层和海马体中的miR-155信号参与ICH期间的神经损伤过程,阻断中枢miR-155通路可通过减少促炎细胞因子(PICs)和氧化应激产物在调节神经功能中发挥有益作用,并增强血管内皮生长因子(VEGF)的水平。脑和肌肉Arnt样蛋白1 (BMAL1)参与调节炎症、氧化应激和BBB完整性等病理过程[34] [35],Yan [36]等人在动物实验研究结果中证实抑制miR-155上调BMAL1可通过调节核因子红系2相关因子2 (Nrf2)信号通路来减弱ICH后氧化应激、血脑屏障损伤、脑水肿、炎症及神经功能缺损等继发性脑损伤(SBI)。另有研究[37]表明miRNA-155的表达量与ICH出血量以及中性粒细胞、淋巴细胞等炎症细胞呈现正相关关系,ICH后炎症介质明显升高,患者血清中miR-155的表达增加,miR-155加重炎症过程并引起SBI。

4.3. miR-124

miR-124是成年哺乳动物大脑中最丰富的miRNA之一,在心血管系统疾病、神经系统疾病及各类肿瘤疾病中具有重要调控作用[38]-[40]。研究表明[41],活化小胶质细胞(MG)可促进小鼠炎症反应并加剧ICH的继发性脑损伤,过表达miR-124可以促进小胶质细胞从促炎M1型转变为抗炎M2型,以此改善ICH诱导的炎症损伤。Chen [42]等人通过蛛网膜下腔出血(SAH)模型大鼠实验证明,CX3CL1/CX3CR1轴可能通过促进外泌体miR-124递送至MG并抑制MG激活和神经炎症反应,在SAH中发挥保护作用。然而,Wen [43]等人发现,血清miR124过表达会抑制Fpn信号转导从而在老年ICH小鼠模型中铁代谢和神经元死亡中的关键作用,暗示miR-124具有潜在的神经毒性。因此,需进一步确认miR-124的调节机制以期为ICH的治疗策略提供新的临床思路。

4.4. miR-7

microRNA-7 (miR-7)是miRNAs家族的重要成员,通过调控不同的靶分子参与各种组织器官生理及病理过程。以往大多数研究发现,miR-7的异常表达与肿瘤的发生密切相[44] [45]。然而最近许多研究表明,miR-7与神经炎症相关,Yue [46]等人在诊断为脑组织炎症(BTI)小鼠模型中发现,miR-7可通过与其靶基因RAR相关孤儿受体α (RORα)协同控制体内外神经元细胞的炎症反应。Luo [47]等人研究发现,miR-7模拟物给药显著降低ICH血肿附近的小胶质细胞/巨噬细胞中Nod样受体蛋白3 (NLRP3)表达,并有效降低了促炎细胞因子的表达水平。钱[48] [49]等人研究发现,过表达miR-7可能通过抑制EGFR/STAT3信号通路拮抗星形胶质细胞活化,而活化状态的星形胶质细胞可分泌TNF-α、IL-6等多种促炎细胞因子,进而发挥抗大鼠脑出血后脑损伤作用。

4.5. miR-132

miR-132在免疫反应和神经元功能中具有双重作用,故被命名为“NeurimmiR”[50],其表达水平受神经元迁移、突触生成、炎症及细胞凋亡等调节[51]。据报道,miR-132通过靶向乙酰胆碱酯酶(AChE)增强对炎症反应的胆碱能阻断并防止缺血诱导的神经元细胞死亡,miR-132还通过调节炎症在脑出血中发挥着关键作用,Zhang [52]等人在研究中发现miR-132在ICH小鼠大脑中的过表达可减轻神经功能缺损和脑水肿,有效抑制AChE,增强抗炎作用。胥[53]等人通过研究表明,过表达miR-132可能加重ICH后神经炎症、氧化应激反应,促进高血压性ICH的发生发展,并且与患者预后密切相关。总之,miR-132在ICH小鼠模型中的作用为治疗干预提供了新的机会。

4.6. miR-146a

miR-146a是位于5号染色体长臂上的miR-146家族的一员,其失调与多种神经病理状况有关,miR-146a可有效调节炎症反应[54] [55],减轻ICH后神经损伤[56]。据报道[57]过表达miR-146a在ICH大鼠中抑制氧化应激、促炎因子释放,发挥神经保护作用,其作用机制可能与TRAF6/NF-κB通路相关。NF-κB作为关键靶点,miR-146a [58]在ICH大鼠中抑制TLR4/NF-κB信号通路发挥抗炎作用。甘氨酰-l-组氨酸-l-赖氨酸(GHK)治疗可通过PI3K/Akt通路上调miR-146a-3p从而下调水通道蛋白4 (AQP4)表达并减少星形胶质细胞损伤,减轻脑水肿,改善神经功能恢复,缓解ICH大鼠模型的炎症[59]。Wang [60]等人研究结果显示,miR-146a可下调ICH大鼠模型血肿周围组织中的IL-1β、IL-6、IL-8、IRAK1和TNF-α的表达,减轻ICH后小胶质细胞的继发性炎症反应。

4.7. miR-223

miR-223是miRNA家族的重要成员,在炎症过程中具有多种调节功能[61]。过表达miR-223可促进巨噬细胞向抗炎表型极化[62],NLRP3作为炎性小体,ICH后miR-223可直接靶向NLRP3发挥抑制小胶质细胞活化、减轻炎症反应和神经元损伤的作用[63]。Martinez [64]等人通过研究表明,miR-223过表达显著抑制ICH后脑组织中caspase-1 p20、NLRP3、TNF-α、IL-1β和IL-6的表达,减轻体内炎症反应,缓解脑水肿,改善神经功能。

4.8. miR-21

miR-21在ICH患者的外周血和脑组织中显著下调,是病情诊断及预后评估的重要因子[65] [66]。Zhang [67]等人在研究中表明,过表达miR-21显著提高ICH中间充质干细胞(MSCs)的存活率,有效降低ICH大鼠血肿面积和细胞凋亡,保护神经元。Wang [60]等人证明,miR-21可以通过下调炎性细胞因子的表达并上调TIMP3的表达,在体内外负向调节ICH后小胶质细胞的继发性炎症反应,减轻ICH后水肿并改善神经功能。朴[68]等发现,miR-21可以抑制ICH大鼠小胶质细胞活化,减轻炎症反应,发挥神经保护作用。然而,在老年大鼠动物实验过程中[69],miR-21-5p敲低显著减轻神经功能损伤、神经元凋亡,降低BBB通透性,加速血肿吸收,并且与健康个体相比,患者血清miR-21-5p水平显著升高,表明miR-21-5p是ICH诱导的脑损伤的原因之一。因此需要进一步的研究来验证miR-21作为治疗靶点的潜力,并确定衰老是否调节ICH后miR-21的功能作用。

5. 总结与展望

脑出血后导致神经炎症的原因很多,miRNA可有效调节信号通路从而抑制ICH继发性脑损伤。从上述研究进展可以得出,过表达miR-124、miR-7、miR-146a、miR-223和敲减miR-144、miR-155等microRNA可能通过减轻神经炎症反应,改善ICH后继发性脑损伤。鉴于miRNA作为可行的治疗靶点的潜力,需要进一步的研究以充分推断靶向miRNA改善ICH后神经炎症的疗效。

NOTES

*通讯作者。

参考文献

[1] Garg, R. and Biller, J. (2019) Recent Advances in Spontaneous Intracerebral Hemorrhage. F1000Research, 8, 302.
https://doi.org/10.12688/f1000research.16357.1
[2] Chen, S., Li, L., Peng, C., Bian, C., Ocak, P.E., Zhang, J.H., et al. (2022) Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxidants & Redox Signaling, 37, 115-134.
https://doi.org/10.1089/ars.2021.0072
[3] Wu, X., Luo, J., Liu, H., Cui, W., Guo, K., Zhao, L., et al. (2020) Recombinant Adiponectin Peptide Ameliorates Brain Injury Following Intracerebral Hemorrhage by Suppressing Astrocyte-Derived Inflammation via the Inhibition of Drp1-Mediated Mitochondrial Fission. Translational Stroke Research, 11, 924-939.
https://doi.org/10.1007/s12975-019-00768-x
[4] Tschoe, C., Bushnell, C.D., Duncan, P.W., Alexander-Miller, M.A. and Wolfe, S.Q. (2020) Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. Journal of Stroke, 22, 29-46.
https://doi.org/10.5853/jos.2019.02236
[5] Lei, P., Li, Z., Hua, Q., Song, P., Gao, L., Zhou, L., et al. (2023) Ursolic Acid Alleviates Neuroinflammation after Intracerebral Hemorrhage by Mediating Microglial Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway. International Journal of Molecular Sciences, 24, Article 14771.
https://doi.org/10.3390/ijms241914771
[6] Wang, T., Nowrangi, D., Yu, L., Lu, T., Tang, J., Han, B., et al. (2018) Activation of Dopamine D1 Receptor Decreased NLRP3-Mediated Inflammation in Intracerebral Hemorrhage Mice. Journal of Neuroinflammation, 15, Article No. 2.
https://doi.org/10.1186/s12974-017-1039-7
[7] Xu, P., Hong, Y., Xie, Y., Yuan, K., Li, J., Sun, R., et al. (2020) TREM-1 Exacerbates Neuroinflammatory Injury via NLRP3 Inflammasome-Mediated Pyroptosis in Experimental Subarachnoid Hemorrhage. Translational Stroke Research, 12, 643-659.
https://doi.org/10.1007/s12975-020-00840-x
[8] Zhou, K., Shi, L., Wang, Y., Chen, S. and Zhang, J. (2016) Recent Advances of the NLRP3 Inflammasome in Central Nervous System Disorders. Journal of Immunology Research, 2016, Article ID: 9238290.
https://doi.org/10.1155/2016/9238290
[9] Zhou, Y., Wang, Y., Wang, J., Anne Stetler, R. and Yang, Q. (2014) Inflammation in Intracerebral Hemorrhage: From Mechanisms to Clinical Translation. Progress in Neurobiology, 115, 25-44.
https://doi.org/10.1016/j.pneurobio.2013.11.003
[10] Lin, P., Yu, S. and Yang, P. (2010) MicroRNA in Lung Cancer. British Journal of Cancer, 103, 1144-1148.
https://doi.org/10.1038/sj.bjc.6605901
[11] 丁敬健, 张升涛, 郭永锋, 等. 微RNA-196a-1-3p靶向Ras响应元件结合蛋白调控胆管癌细胞增殖的机制研究[J]. 安徽医药, 2024(7): 1399-1403+1488.
[12] Zhang, H., Liu, S., Chen, L., Sheng, Y., Luo, W. and Zhao, G. (2021) MicroRNA miR-509-3p Inhibit Metastasis and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Bioengineered, 12, 2263-2273.
https://doi.org/10.1080/21655979.2021.1932210
[13] 罗皓珑, 陈梦圆, 骈雅婧, 等. 微小RNA-221-3p通过DDIT4抑制镉诱导的TM3细胞凋亡机制[J]. 卫生研究, 2024, 53(3): 478-486.
[14] Fariyike, B., Singleton, Q., Hunter, M., Hill, W.D., Isales, C.M., Hamrick, M.W., et al. (2019) Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mechanisms of Ageing and Development, 178, 9-15.
https://doi.org/10.1016/j.mad.2018.12.001
[15] Lin, Z., He, H., Wang, M. and Liang, J. (2019) MicroRNA-130a Controls Bone Marrow Mesenchymal Stem Cell Differentiation Towards the Osteoblastic and Adipogenic Fate. Cell Proliferation, 52, e12688.
https://doi.org/10.1111/cpr.12688
[16] 刘筱蔼, 罗友根. MiRNA调控脑缺血/再灌注诱导的自噬信号通路研究进展[J]. 中山大学学报(医学科学版), 2024, 45(1): 21-27.
[17] Dong, W., Geng, S., Cui, J., Gao, W., Sun, Y. and Xu, T. (2022) Microrna-103 and Microrna-190 Negatively Regulate Nf-Κb-Mediated Immune Responses by Targeting IL-1R1 in Miichthys Miiuy. Fish & Shellfish Immunology, 123, 94-101.
https://doi.org/10.1016/j.fsi.2022.02.043
[18] Treiber, T., Treiber, N. and Meister, G. (2018) Regulation of MicroRNA Biogenesis and Its Crosstalk with Other Cellular Pathways. Nature Reviews Molecular Cell Biology, 20, 5-20.
https://doi.org/10.1038/s41580-018-0059-1
[19] Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article 7167.
https://doi.org/10.3390/ijms23137167
[20] Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E. and Ambros, V. (2004) Expression Profiling of Mammalian MicroRNAs Uncovers a Subset of Brain-Expressed MicroRNAs with Possible Roles in Murine and Human Neuronal Differentiation. Genome Biology, 5, Article No. R13.
https://doi.org/10.1186/gb-2004-5-3-r13
[21] Freilich, R.W., Woodbury, M.E. and Ikezu, T. (2013) Integrated Expression Profiles of mRNA and miRNA in Polarized Primary Murine Microglia. PLOS ONE, 8, e79416.
https://doi.org/10.1371/journal.pone.0079416
[22] Liu, F., Wang, J., Fu, Q., Zhang, X., Wang, Y., Liu, J., et al. (2015) VEGF-Activated miR-144 Regulates Autophagic Survival of Prostate Cancer Cells against Cisplatin. Tumor Biology, 37, 15627-15633.
https://doi.org/10.1007/s13277-015-4383-1
[23] Wang, Z., Yuan, B., Fu, F., Huang, S. and Yang, Z. (2017) Hemoglobin Enhances miRNA-144 Expression and Autophagic Activation Mediated Inflammation of Microglia via mTOR Pathway. Scientific Reports, 7, Article No. 11861.
https://doi.org/10.1038/s41598-017-12067-2
[24] Li, Y., Zhao, Y., Cheng, M., Qiao, Y., Wang, Y., Xiong, W., et al. (2018) Suppression of MicroRNA-144-3p Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury by Promoting Brg1/Nrf2/Are Signaling. Journal of Biochemical and Molecular Toxicology, 32, e22044.
https://doi.org/10.1002/jbt.22044
[25] Yu, A., Zhang, T., Zhong, W., Duan, H., Wang, S., Ye, P., et al. (2017) MiRNA-144 Induces Microglial Autophagy and Inflammation Following Intracerebral Hemorrhage. Immunology Letters, 182, 18-23.
https://doi.org/10.1016/j.imlet.2017.01.002
[26] Wang, X., Hong, Y., Wu, L., Duan, X., Hu, Y., Sun, Y., et al. (2021) Deletion of MicroRNA-144/451 Cluster Aggravated Brain Injury in Intracerebral Hemorrhage Mice by Targeting 14-3-3ζ. Frontiers in Neurology, 11, Article ID: 551411.
https://doi.org/10.3389/fneur.2020.551411
[27] Fan, W., Li, X., Zhang, D., Li, H., Shen, H., Liu, Y., et al. (2018) Detrimental Role of MiRNA-144-3p in Intracerebral Hemorrhage Induced Secondary Brain Injury Is Mediated by Formyl Peptide Receptor 2 Downregulation Both in Vivo and in Vitro. Cell Transplantation, 28, 723-738.
https://doi.org/10.1177/0963689718817219
[28] 罗腾. 调控MicroRNA-144-3p对大鼠脑出血后血脑屏障、血肿周围炎症因子及抗氧化能力的影响[D]: [硕士学位论文]. 贵阳: 贵州医科大学, 2023.
[29] 白雅林, 方占海, 丁晨哲, 等. 人参皂苷Rg1调节miR-144-3p/FPR2/p38信号通路对实验性脑出血大鼠血脑屏障损伤和神经炎症的影响[J]. 中国免疫学杂志, 2023, 39(12): 2534-2539.
[30] Mahesh, G. and Biswas, R. (2019) MicroRNA-155: A Master Regulator of Inflammation. Journal of Interferon & Cytokine Research, 39, 321-330.
https://doi.org/10.1089/jir.2018.0155
[31] Jafarzadeh, A., Naseri, A., Shojaie, L., Nemati, M., Jafarzadeh, S., Bannazadeh Baghi, H., et al. (2021) MicroRNA-155 and Antiviral Immune Responses. International Immunopharmacology, 101, Article ID: 108188.
https://doi.org/10.1016/j.intimp.2021.108188
[32] Xu, H., Fang, X., Zhu, S., Xu, X., Zhang, Z., Wang, Z., et al. (2016) Glucocorticoid Treatment Inhibits Intracerebral Hemorrhage-Induced Inflammation by Targeting the MicroRNA-155/SOCS-1 Signaling Pathway. Molecular Medicine Reports, 14, 3798-3804.
https://doi.org/10.3892/mmr.2016.5716
[33] Zhang, W., Wang, L., Wang, R., Duan, Z. and Wang, H. (2020) A Blockade of MicroRNA-155 Signal Pathway Has a Beneficial Effect on Neural Injury after Intracerebral Haemorrhage via Reduction in Neuroinflammation and Oxidative Stress. Archives of Physiology and Biochemistry, 128, 1235-1241.
https://doi.org/10.1080/13813455.2020.1764047
[34] Chhunchha, B., Kubo, E. and Singh, D.P. (2020) Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6. Cells, 9, Article 1861.
https://doi.org/10.3390/cells9081861
[35] Nakazato, R., Kawabe, K., Yamada, D., Ikeno, S., Mieda, M., Shimba, S., et al. (2017) Disruption of Bmal1 Impairs Blood-Brain Barrier Integrity via Pericyte Dysfunction. The Journal of Neuroscience, 37, 10052-10062.
https://doi.org/10.1523/jneurosci.3639-16.2017
[36] Gong, Y., Zhang, G., Li, B., Cao, C., Cao, D., Li, X., et al. (2021) BMAL1 Attenuates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats by Regulating the Nrf2 Signaling Pathway. Annals of Translational Medicine, 9, 1617-1617.
https://doi.org/10.21037/atm-21-1863
[37] 买买江∙阿不力孜. MicroRNA-155在急性脑出血患者血清中表达及其临床意义研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2019.
[38] Lv, L., Shen, J., Xu, J., Wu, X., Zeng, C., Lin, L., et al. (2020) MiR-124-3p Reduces Angiotensin II-Dependent Hypertension by Down-Regulating EGR1. Journal of Human Hypertension, 35, 696-708.
https://doi.org/10.1038/s41371-020-0381-x
[39] 陈曦, 李玉姣, 赵岚. MicroRNA-124在阿尔兹海默症中的作用及针刺干预研究进展[J]. 天津中医药大学学报, 2024, 43(1): 64-70.
[40] 江典存, 李晓治, 倪良诚, 等. 微小RNA-124对肾癌细胞的自噬和增强顺铂敏感性的影响[J]. 中国临床药理学杂志, 2021, 37(20): 2766-2769.
[41] Periyasamy, P., Liao, K., Kook, Y.H., Niu, F., Callen, S.E., Guo, M., et al. (2017) Cocaine-Mediated Downregulation of MiR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Molecular Neurobiology, 55, 3196-3210.
https://doi.org/10.1007/s12035-017-0584-5
[42] Chen, X., Jiang, M., Li, H., Wang, Y., Shen, H., Li, X., et al. (2020) CX3CL1/CX3CR1 Axis Attenuates Early Brain Injury via Promoting the Delivery of Exosomal MicroRNA-124 from Neuron to Microglia after Subarachnoid Hemorrhage. Journal of Neuroinflammation, 17, Article No. 209.
https://doi.org/10.1186/s12974-020-01882-6
[43] Bao, W., Zhou, X., Zhou, L., Wang, F., Yin, X., Lu, Y., et al. (2020) Targeting MiR-124/Ferroportin Signaling Ameliorated Neuronal Cell Death through Inhibiting Apoptosis and Ferroptosis in Aged Intracerebral Hemorrhage Murine Model. Aging Cell, 19, e13235.
https://doi.org/10.1111/acel.13235
[44] Morales-Martínez, M. and Vega, M.I. (2022) Role of MicroRNA-7 (miR-7) in Cancer Physiopathology. International Journal of Molecular Sciences, 23, Article 9091.
https://doi.org/10.3390/ijms23169091
[45] 秦小静, 范会利, 林旭, 等. MicroRNA-7-5p在甲状腺乳头状癌中的表达及机制[J]. 实用医学杂志, 2022, 38(5): 565-570.
[46] Yue, D., Zhao, J., Chen, H., Guo, M., Chen, C., Zhou, Y., et al. (2020) MicroRNA-7, Synergizes with RORα, Negatively Controls the Pathology of Brain Tissue Inflammation. Journal of Neuroinflammation, 17, Article No. 28.
https://doi.org/10.1186/s12974-020-1710-2
[47] Luo, B., Li, L., Song, X., Chen, H., Yun, D., Wang, L., et al. (2024) MicroRNA-7 Attenuates Secondary Brain Injury Following Experimental Intracerebral Hemorrhage via Inhibition of NLRP3. Journal of Stroke and Cerebrovascular Diseases, 33, Article ID: 107670.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107670
[48] 钱红, 胡柯, 刘理静, 等. miR-7靶向沉默EGFR抑制大鼠星形胶质细胞活化[J]. 中国药理学通报, 2018, 34(3): 376-382.
[49] 钱红, 胡柯, 谢明, 等. 侧脑室注射miR-7通过EGFR/STAT3途径抑制大鼠脑出血后脑损伤[J]. 细胞与分子免疫学杂志, 2018, 34(2): 141-147.
[50] Soreq, H. and Wolf, Y. (2011) NeurimmiRs: MicroRNAs in the Neuroimmune Interface. Trends in Molecular Medicine, 17, 548-555.
https://doi.org/10.1016/j.molmed.2011.06.009
[51] Mu, C., Gao, M., Xu, W., Sun, X., Chen, T., Xu, H., et al. (2024) Mechanisms of MicroRNA-132 in Central Neurodegenerative Diseases: A Comprehensive Review. Biomedicine & Pharmacotherapy, 170, Article ID: 116029.
https://doi.org/10.1016/j.biopha.2023.116029
[52] Zhang, Y., Han, B., He, Y., Li, D., Ma, X., Liu, Q., et al. (2017) MicroRNA-132 Attenuates Neurobehavioral and Neuropathological Changes Associated with Intracerebral Hemorrhage in Mice. Neurochemistry International, 107, 182-190.
https://doi.org/10.1016/j.neuint.2016.11.011
[53] 胥成朗, 李强, 谭承睿, 等. 高血压性脑出血患者血清miR-132、miR-34a水平及其与预后的关系[J]. 疑难病杂志, 2023, 22(9): 897-901.
[54] 杨永祥, 崔效玮, 叶玉勤, 等. 外泌体miR-146a对N9型小胶质细胞介导炎症反应的作用[J]. 中华神经外科疾病研究杂志, 2018, 17(6): 500-503.
[55] 李矜, 张晨, 辛竞妍, 等. 糖络宁通过调控miR-146a减轻高糖诱导的大鼠背根神经节细胞炎症反应机制研究[J]. 环球中医药, 2022, 15(11): 2059-2063.
[56] 陆超明, 虞大为, 徐东升, 等. 微小RNA-146a保护脑出血大鼠神经的调控机制[J]. 实用临床医药杂志, 2024, 28(13): 30-35.
[57] Qu, X., Wang, N., Cheng, W., Xue, Y., Chen, W. and Qi, M. (2019) MicroRNA-146a Protects against Intracerebral Hemorrhage by Inhibiting Inflammation and Oxidative Stress. Experimental and Therapeutic Medicine, 18, 3920-3928.
https://doi.org/10.3892/etm.2019.8060
[58] 吴俊波, 杨杰, 肖锋, 等. miR-146a调控TLR4/NF-κB通路对脑出血模型大鼠的保护作用及机制研究[J]. 中国免疫学杂志, 2024, 40(1): 82-85.
[59] Zhang, H., Wang, Y., Lian, L., Zhang, C. and He, Z. (2020) Glycine-Histidine-Lysine (GHK) Alleviates Astrocytes Injury of Intracerebral Hemorrhage via the Akt/MiR-146a-3p/AQP4 Pathway. Frontiers in Neuroscience, 14, Article 576389.
https://doi.org/10.3389/fnins.2020.576389
[60] Wang, M., Mungur, R., Lan, P., et al. (2018) MicroRNA-21 and MicroRNA-146a Negatively Regulate the Secondary Inflammatory Response of Microglia after Intracerebral Hemorrhage. International Journal of Clinical and Experimental Pathology, 11, 3348-3356.
[61] Jeffries, J., Zhou, W., Hsu, A.Y. and Deng, Q. (2019) MiRNA-223 at the Crossroads of Inflammation and Cancer. Cancer Letters, 451, 136-141.
https://doi.org/10.1016/j.canlet.2019.02.051
[62] Nguyen, M., Hoang, H., Rasheed, A., Duchez, A., Wyatt, H., Cottee, M.L., et al. (2022) MiR-223 Exerts Translational Control of Proatherogenic Genes in Macrophages. Circulation Research, 131, 42-58.
https://doi.org/10.1161/circresaha.121.319120
[63] Yang, Z., Zhong, L., Xian, R. and Yuan, B. (2015) MicroRNA-223 Regulates Inflammation and Brain Injury via Feedback to NLRP3 Inflammasome after Intracerebral Hemorrhage. Molecular Immunology, 65, 267-276.
https://doi.org/10.1016/j.molimm.2014.12.018
[64] Peplow, P. and Martinez, B. (2017) Blood MicroRNAs as Potential Diagnostic Markers for Hemorrhagic Stroke. Neural Regeneration Research, 12, 13-18.
https://doi.org/10.4103/1673-5374.198965
[65] Wang, J., Zhu, Y., Jin, F., Tang, L., He, Z. and He, Z. (2016) Differential Expression of Circulating MicroRNAs in Blood and Haematoma Samples from Patients with Intracerebral Haemorrhage. Journal of International Medical Research, 44, 419-432.
https://doi.org/10.1177/0300060516630852
[66] 王加璐, 胡畔, 何振巍, 等. miR-21在脑出血患者外周血中表达特点的研究[J]. 解剖科学进展, 2018, 24(4): 339-343.
[67] Zhang, H., Wang, Y., Lv, Q., Gao, J., Hu, L. and He, Z. (2018) MicroRNA-21 Overexpression Promotes the Neuroprotective Efficacy of Mesenchymal Stem Cells for Treatment of Intracerebral Hemorrhage. Frontiers in Neurology, 9, Article 931.
https://doi.org/10.3389/fneur.2018.00931
[68] 朴金伟, 杨忠庆, 张卫东. 大鼠脑出血后MicroRNA-21抑制小胶质细胞激活产生炎症反应的机制[J]. 解剖学研究, 2018, 40(6): 461-464, 469.
[69] Ouyang, Y., Li, D., Wang, H., Wan, Z., Luo, Q., Zhong, Y., et al. (2019) MiR-21-5p/Dual-Specificity Phosphatase 8 Signalling Mediates the Anti-Inflammatory Effect of Haem Oxygenase-1 in Aged Intracerebral Haemorrhage Rats. Aging Cell, 18, e13022.
https://doi.org/10.1111/acel.13022