[1]
|
Garg, R. and Biller, J. (2019) Recent Advances in Spontaneous Intracerebral Hemorrhage. F1000Research, 8, 302. https://doi.org/10.12688/f1000research.16357.1
|
[2]
|
Chen, S., Li, L., Peng, C., Bian, C., Ocak, P.E., Zhang, J.H., et al. (2022) Targeting Oxidative Stress and Inflammatory Response for Blood-Brain Barrier Protection in Intracerebral Hemorrhage. Antioxidants & Redox Signaling, 37, 115-134. https://doi.org/10.1089/ars.2021.0072
|
[3]
|
Wu, X., Luo, J., Liu, H., Cui, W., Guo, K., Zhao, L., et al. (2020) Recombinant Adiponectin Peptide Ameliorates Brain Injury Following Intracerebral Hemorrhage by Suppressing Astrocyte-Derived Inflammation via the Inhibition of Drp1-Mediated Mitochondrial Fission. Translational Stroke Research, 11, 924-939. https://doi.org/10.1007/s12975-019-00768-x
|
[4]
|
Tschoe, C., Bushnell, C.D., Duncan, P.W., Alexander-Miller, M.A. and Wolfe, S.Q. (2020) Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. Journal of Stroke, 22, 29-46. https://doi.org/10.5853/jos.2019.02236
|
[5]
|
Lei, P., Li, Z., Hua, Q., Song, P., Gao, L., Zhou, L., et al. (2023) Ursolic Acid Alleviates Neuroinflammation after Intracerebral Hemorrhage by Mediating Microglial Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway. International Journal of Molecular Sciences, 24, Article 14771. https://doi.org/10.3390/ijms241914771
|
[6]
|
Wang, T., Nowrangi, D., Yu, L., Lu, T., Tang, J., Han, B., et al. (2018) Activation of Dopamine D1 Receptor Decreased NLRP3-Mediated Inflammation in Intracerebral Hemorrhage Mice. Journal of Neuroinflammation, 15, Article No. 2. https://doi.org/10.1186/s12974-017-1039-7
|
[7]
|
Xu, P., Hong, Y., Xie, Y., Yuan, K., Li, J., Sun, R., et al. (2020) TREM-1 Exacerbates Neuroinflammatory Injury via NLRP3 Inflammasome-Mediated Pyroptosis in Experimental Subarachnoid Hemorrhage. Translational Stroke Research, 12, 643-659. https://doi.org/10.1007/s12975-020-00840-x
|
[8]
|
Zhou, K., Shi, L., Wang, Y., Chen, S. and Zhang, J. (2016) Recent Advances of the NLRP3 Inflammasome in Central Nervous System Disorders. Journal of Immunology Research, 2016, Article ID: 9238290. https://doi.org/10.1155/2016/9238290
|
[9]
|
Zhou, Y., Wang, Y., Wang, J., Anne Stetler, R. and Yang, Q. (2014) Inflammation in Intracerebral Hemorrhage: From Mechanisms to Clinical Translation. Progress in Neurobiology, 115, 25-44. https://doi.org/10.1016/j.pneurobio.2013.11.003
|
[10]
|
Lin, P., Yu, S. and Yang, P. (2010) MicroRNA in Lung Cancer. British Journal of Cancer, 103, 1144-1148. https://doi.org/10.1038/sj.bjc.6605901
|
[11]
|
丁敬健, 张升涛, 郭永锋, 等. 微RNA-196a-1-3p靶向Ras响应元件结合蛋白调控胆管癌细胞增殖的机制研究[J]. 安徽医药, 2024(7): 1399-1403+1488.
|
[12]
|
Zhang, H., Liu, S., Chen, L., Sheng, Y., Luo, W. and Zhao, G. (2021) MicroRNA miR-509-3p Inhibit Metastasis and Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Bioengineered, 12, 2263-2273. https://doi.org/10.1080/21655979.2021.1932210
|
[13]
|
罗皓珑, 陈梦圆, 骈雅婧, 等. 微小RNA-221-3p通过DDIT4抑制镉诱导的TM3细胞凋亡机制[J]. 卫生研究, 2024, 53(3): 478-486.
|
[14]
|
Fariyike, B., Singleton, Q., Hunter, M., Hill, W.D., Isales, C.M., Hamrick, M.W., et al. (2019) Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mechanisms of Ageing and Development, 178, 9-15. https://doi.org/10.1016/j.mad.2018.12.001
|
[15]
|
Lin, Z., He, H., Wang, M. and Liang, J. (2019) MicroRNA-130a Controls Bone Marrow Mesenchymal Stem Cell Differentiation Towards the Osteoblastic and Adipogenic Fate. Cell Proliferation, 52, e12688. https://doi.org/10.1111/cpr.12688
|
[16]
|
刘筱蔼, 罗友根. MiRNA调控脑缺血/再灌注诱导的自噬信号通路研究进展[J]. 中山大学学报(医学科学版), 2024, 45(1): 21-27.
|
[17]
|
Dong, W., Geng, S., Cui, J., Gao, W., Sun, Y. and Xu, T. (2022) Microrna-103 and Microrna-190 Negatively Regulate Nf-Κb-Mediated Immune Responses by Targeting IL-1R1 in Miichthys Miiuy. Fish & Shellfish Immunology, 123, 94-101. https://doi.org/10.1016/j.fsi.2022.02.043
|
[18]
|
Treiber, T., Treiber, N. and Meister, G. (2018) Regulation of MicroRNA Biogenesis and Its Crosstalk with Other Cellular Pathways. Nature Reviews Molecular Cell Biology, 20, 5-20. https://doi.org/10.1038/s41580-018-0059-1
|
[19]
|
Ho, P.T.B., Clark, I.M. and Le, L.T.T. (2022) MicroRNA-Based Diagnosis and Therapy. International Journal of Molecular Sciences, 23, Article 7167. https://doi.org/10.3390/ijms23137167
|
[20]
|
Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E. and Ambros, V. (2004) Expression Profiling of Mammalian MicroRNAs Uncovers a Subset of Brain-Expressed MicroRNAs with Possible Roles in Murine and Human Neuronal Differentiation. Genome Biology, 5, Article No. R13. https://doi.org/10.1186/gb-2004-5-3-r13
|
[21]
|
Freilich, R.W., Woodbury, M.E. and Ikezu, T. (2013) Integrated Expression Profiles of mRNA and miRNA in Polarized Primary Murine Microglia. PLOS ONE, 8, e79416. https://doi.org/10.1371/journal.pone.0079416
|
[22]
|
Liu, F., Wang, J., Fu, Q., Zhang, X., Wang, Y., Liu, J., et al. (2015) VEGF-Activated miR-144 Regulates Autophagic Survival of Prostate Cancer Cells against Cisplatin. Tumor Biology, 37, 15627-15633. https://doi.org/10.1007/s13277-015-4383-1
|
[23]
|
Wang, Z., Yuan, B., Fu, F., Huang, S. and Yang, Z. (2017) Hemoglobin Enhances miRNA-144 Expression and Autophagic Activation Mediated Inflammation of Microglia via mTOR Pathway. Scientific Reports, 7, Article No. 11861. https://doi.org/10.1038/s41598-017-12067-2
|
[24]
|
Li, Y., Zhao, Y., Cheng, M., Qiao, Y., Wang, Y., Xiong, W., et al. (2018) Suppression of MicroRNA-144-3p Attenuates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury by Promoting Brg1/Nrf2/Are Signaling. Journal of Biochemical and Molecular Toxicology, 32, e22044. https://doi.org/10.1002/jbt.22044
|
[25]
|
Yu, A., Zhang, T., Zhong, W., Duan, H., Wang, S., Ye, P., et al. (2017) MiRNA-144 Induces Microglial Autophagy and Inflammation Following Intracerebral Hemorrhage. Immunology Letters, 182, 18-23. https://doi.org/10.1016/j.imlet.2017.01.002
|
[26]
|
Wang, X., Hong, Y., Wu, L., Duan, X., Hu, Y., Sun, Y., et al. (2021) Deletion of MicroRNA-144/451 Cluster Aggravated Brain Injury in Intracerebral Hemorrhage Mice by Targeting 14-3-3ζ. Frontiers in Neurology, 11, Article ID: 551411. https://doi.org/10.3389/fneur.2020.551411
|
[27]
|
Fan, W., Li, X., Zhang, D., Li, H., Shen, H., Liu, Y., et al. (2018) Detrimental Role of MiRNA-144-3p in Intracerebral Hemorrhage Induced Secondary Brain Injury Is Mediated by Formyl Peptide Receptor 2 Downregulation Both in Vivo and in Vitro. Cell Transplantation, 28, 723-738. https://doi.org/10.1177/0963689718817219
|
[28]
|
罗腾. 调控MicroRNA-144-3p对大鼠脑出血后血脑屏障、血肿周围炎症因子及抗氧化能力的影响[D]: [硕士学位论文]. 贵阳: 贵州医科大学, 2023.
|
[29]
|
白雅林, 方占海, 丁晨哲, 等. 人参皂苷Rg1调节miR-144-3p/FPR2/p38信号通路对实验性脑出血大鼠血脑屏障损伤和神经炎症的影响[J]. 中国免疫学杂志, 2023, 39(12): 2534-2539.
|
[30]
|
Mahesh, G. and Biswas, R. (2019) MicroRNA-155: A Master Regulator of Inflammation. Journal of Interferon & Cytokine Research, 39, 321-330. https://doi.org/10.1089/jir.2018.0155
|
[31]
|
Jafarzadeh, A., Naseri, A., Shojaie, L., Nemati, M., Jafarzadeh, S., Bannazadeh Baghi, H., et al. (2021) MicroRNA-155 and Antiviral Immune Responses. International Immunopharmacology, 101, Article ID: 108188. https://doi.org/10.1016/j.intimp.2021.108188
|
[32]
|
Xu, H., Fang, X., Zhu, S., Xu, X., Zhang, Z., Wang, Z., et al. (2016) Glucocorticoid Treatment Inhibits Intracerebral Hemorrhage-Induced Inflammation by Targeting the MicroRNA-155/SOCS-1 Signaling Pathway. Molecular Medicine Reports, 14, 3798-3804. https://doi.org/10.3892/mmr.2016.5716
|
[33]
|
Zhang, W., Wang, L., Wang, R., Duan, Z. and Wang, H. (2020) A Blockade of MicroRNA-155 Signal Pathway Has a Beneficial Effect on Neural Injury after Intracerebral Haemorrhage via Reduction in Neuroinflammation and Oxidative Stress. Archives of Physiology and Biochemistry, 128, 1235-1241. https://doi.org/10.1080/13813455.2020.1764047
|
[34]
|
Chhunchha, B., Kubo, E. and Singh, D.P. (2020) Clock Protein Bmal1 and Nrf2 Cooperatively Control Aging or Oxidative Response and Redox Homeostasis by Regulating Rhythmic Expression of Prdx6. Cells, 9, Article 1861. https://doi.org/10.3390/cells9081861
|
[35]
|
Nakazato, R., Kawabe, K., Yamada, D., Ikeno, S., Mieda, M., Shimba, S., et al. (2017) Disruption of Bmal1 Impairs Blood-Brain Barrier Integrity via Pericyte Dysfunction. The Journal of Neuroscience, 37, 10052-10062. https://doi.org/10.1523/jneurosci.3639-16.2017
|
[36]
|
Gong, Y., Zhang, G., Li, B., Cao, C., Cao, D., Li, X., et al. (2021) BMAL1 Attenuates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats by Regulating the Nrf2 Signaling Pathway. Annals of Translational Medicine, 9, 1617-1617. https://doi.org/10.21037/atm-21-1863
|
[37]
|
买买江∙阿不力孜. MicroRNA-155在急性脑出血患者血清中表达及其临床意义研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2019.
|
[38]
|
Lv, L., Shen, J., Xu, J., Wu, X., Zeng, C., Lin, L., et al. (2020) MiR-124-3p Reduces Angiotensin II-Dependent Hypertension by Down-Regulating EGR1. Journal of Human Hypertension, 35, 696-708. https://doi.org/10.1038/s41371-020-0381-x
|
[39]
|
陈曦, 李玉姣, 赵岚. MicroRNA-124在阿尔兹海默症中的作用及针刺干预研究进展[J]. 天津中医药大学学报, 2024, 43(1): 64-70.
|
[40]
|
江典存, 李晓治, 倪良诚, 等. 微小RNA-124对肾癌细胞的自噬和增强顺铂敏感性的影响[J]. 中国临床药理学杂志, 2021, 37(20): 2766-2769.
|
[41]
|
Periyasamy, P., Liao, K., Kook, Y.H., Niu, F., Callen, S.E., Guo, M., et al. (2017) Cocaine-Mediated Downregulation of MiR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling. Molecular Neurobiology, 55, 3196-3210. https://doi.org/10.1007/s12035-017-0584-5
|
[42]
|
Chen, X., Jiang, M., Li, H., Wang, Y., Shen, H., Li, X., et al. (2020) CX3CL1/CX3CR1 Axis Attenuates Early Brain Injury via Promoting the Delivery of Exosomal MicroRNA-124 from Neuron to Microglia after Subarachnoid Hemorrhage. Journal of Neuroinflammation, 17, Article No. 209. https://doi.org/10.1186/s12974-020-01882-6
|
[43]
|
Bao, W., Zhou, X., Zhou, L., Wang, F., Yin, X., Lu, Y., et al. (2020) Targeting MiR-124/Ferroportin Signaling Ameliorated Neuronal Cell Death through Inhibiting Apoptosis and Ferroptosis in Aged Intracerebral Hemorrhage Murine Model. Aging Cell, 19, e13235. https://doi.org/10.1111/acel.13235
|
[44]
|
Morales-Martínez, M. and Vega, M.I. (2022) Role of MicroRNA-7 (miR-7) in Cancer Physiopathology. International Journal of Molecular Sciences, 23, Article 9091. https://doi.org/10.3390/ijms23169091
|
[45]
|
秦小静, 范会利, 林旭, 等. MicroRNA-7-5p在甲状腺乳头状癌中的表达及机制[J]. 实用医学杂志, 2022, 38(5): 565-570.
|
[46]
|
Yue, D., Zhao, J., Chen, H., Guo, M., Chen, C., Zhou, Y., et al. (2020) MicroRNA-7, Synergizes with RORα, Negatively Controls the Pathology of Brain Tissue Inflammation. Journal of Neuroinflammation, 17, Article No. 28. https://doi.org/10.1186/s12974-020-1710-2
|
[47]
|
Luo, B., Li, L., Song, X., Chen, H., Yun, D., Wang, L., et al. (2024) MicroRNA-7 Attenuates Secondary Brain Injury Following Experimental Intracerebral Hemorrhage via Inhibition of NLRP3. Journal of Stroke and Cerebrovascular Diseases, 33, Article ID: 107670. https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107670
|
[48]
|
钱红, 胡柯, 刘理静, 等. miR-7靶向沉默EGFR抑制大鼠星形胶质细胞活化[J]. 中国药理学通报, 2018, 34(3): 376-382.
|
[49]
|
钱红, 胡柯, 谢明, 等. 侧脑室注射miR-7通过EGFR/STAT3途径抑制大鼠脑出血后脑损伤[J]. 细胞与分子免疫学杂志, 2018, 34(2): 141-147.
|
[50]
|
Soreq, H. and Wolf, Y. (2011) NeurimmiRs: MicroRNAs in the Neuroimmune Interface. Trends in Molecular Medicine, 17, 548-555. https://doi.org/10.1016/j.molmed.2011.06.009
|
[51]
|
Mu, C., Gao, M., Xu, W., Sun, X., Chen, T., Xu, H., et al. (2024) Mechanisms of MicroRNA-132 in Central Neurodegenerative Diseases: A Comprehensive Review. Biomedicine & Pharmacotherapy, 170, Article ID: 116029. https://doi.org/10.1016/j.biopha.2023.116029
|
[52]
|
Zhang, Y., Han, B., He, Y., Li, D., Ma, X., Liu, Q., et al. (2017) MicroRNA-132 Attenuates Neurobehavioral and Neuropathological Changes Associated with Intracerebral Hemorrhage in Mice. Neurochemistry International, 107, 182-190. https://doi.org/10.1016/j.neuint.2016.11.011
|
[53]
|
胥成朗, 李强, 谭承睿, 等. 高血压性脑出血患者血清miR-132、miR-34a水平及其与预后的关系[J]. 疑难病杂志, 2023, 22(9): 897-901.
|
[54]
|
杨永祥, 崔效玮, 叶玉勤, 等. 外泌体miR-146a对N9型小胶质细胞介导炎症反应的作用[J]. 中华神经外科疾病研究杂志, 2018, 17(6): 500-503.
|
[55]
|
李矜, 张晨, 辛竞妍, 等. 糖络宁通过调控miR-146a减轻高糖诱导的大鼠背根神经节细胞炎症反应机制研究[J]. 环球中医药, 2022, 15(11): 2059-2063.
|
[56]
|
陆超明, 虞大为, 徐东升, 等. 微小RNA-146a保护脑出血大鼠神经的调控机制[J]. 实用临床医药杂志, 2024, 28(13): 30-35.
|
[57]
|
Qu, X., Wang, N., Cheng, W., Xue, Y., Chen, W. and Qi, M. (2019) MicroRNA-146a Protects against Intracerebral Hemorrhage by Inhibiting Inflammation and Oxidative Stress. Experimental and Therapeutic Medicine, 18, 3920-3928. https://doi.org/10.3892/etm.2019.8060
|
[58]
|
吴俊波, 杨杰, 肖锋, 等. miR-146a调控TLR4/NF-κB通路对脑出血模型大鼠的保护作用及机制研究[J]. 中国免疫学杂志, 2024, 40(1): 82-85.
|
[59]
|
Zhang, H., Wang, Y., Lian, L., Zhang, C. and He, Z. (2020) Glycine-Histidine-Lysine (GHK) Alleviates Astrocytes Injury of Intracerebral Hemorrhage via the Akt/MiR-146a-3p/AQP4 Pathway. Frontiers in Neuroscience, 14, Article 576389. https://doi.org/10.3389/fnins.2020.576389
|
[60]
|
Wang, M., Mungur, R., Lan, P., et al. (2018) MicroRNA-21 and MicroRNA-146a Negatively Regulate the Secondary Inflammatory Response of Microglia after Intracerebral Hemorrhage. International Journal of Clinical and Experimental Pathology, 11, 3348-3356.
|
[61]
|
Jeffries, J., Zhou, W., Hsu, A.Y. and Deng, Q. (2019) MiRNA-223 at the Crossroads of Inflammation and Cancer. Cancer Letters, 451, 136-141. https://doi.org/10.1016/j.canlet.2019.02.051
|
[62]
|
Nguyen, M., Hoang, H., Rasheed, A., Duchez, A., Wyatt, H., Cottee, M.L., et al. (2022) MiR-223 Exerts Translational Control of Proatherogenic Genes in Macrophages. Circulation Research, 131, 42-58. https://doi.org/10.1161/circresaha.121.319120
|
[63]
|
Yang, Z., Zhong, L., Xian, R. and Yuan, B. (2015) MicroRNA-223 Regulates Inflammation and Brain Injury via Feedback to NLRP3 Inflammasome after Intracerebral Hemorrhage. Molecular Immunology, 65, 267-276. https://doi.org/10.1016/j.molimm.2014.12.018
|
[64]
|
Peplow, P. and Martinez, B. (2017) Blood MicroRNAs as Potential Diagnostic Markers for Hemorrhagic Stroke. Neural Regeneration Research, 12, 13-18. https://doi.org/10.4103/1673-5374.198965
|
[65]
|
Wang, J., Zhu, Y., Jin, F., Tang, L., He, Z. and He, Z. (2016) Differential Expression of Circulating MicroRNAs in Blood and Haematoma Samples from Patients with Intracerebral Haemorrhage. Journal of International Medical Research, 44, 419-432. https://doi.org/10.1177/0300060516630852
|
[66]
|
王加璐, 胡畔, 何振巍, 等. miR-21在脑出血患者外周血中表达特点的研究[J]. 解剖科学进展, 2018, 24(4): 339-343.
|
[67]
|
Zhang, H., Wang, Y., Lv, Q., Gao, J., Hu, L. and He, Z. (2018) MicroRNA-21 Overexpression Promotes the Neuroprotective Efficacy of Mesenchymal Stem Cells for Treatment of Intracerebral Hemorrhage. Frontiers in Neurology, 9, Article 931. https://doi.org/10.3389/fneur.2018.00931
|
[68]
|
朴金伟, 杨忠庆, 张卫东. 大鼠脑出血后MicroRNA-21抑制小胶质细胞激活产生炎症反应的机制[J]. 解剖学研究, 2018, 40(6): 461-464, 469.
|
[69]
|
Ouyang, Y., Li, D., Wang, H., Wan, Z., Luo, Q., Zhong, Y., et al. (2019) MiR-21-5p/Dual-Specificity Phosphatase 8 Signalling Mediates the Anti-Inflammatory Effect of Haem Oxygenase-1 in Aged Intracerebral Haemorrhage Rats. Aging Cell, 18, e13022. https://doi.org/10.1111/acel.13022
|