[1]
|
McInnes, I.B. and Schett, G. (2011) The Pathogenesis of Rheumatoid Arthritis. New England Journal of Medicine, 365, 2205-2219. https://doi.org/10.1056/nejmra1004965
|
[2]
|
Boutet, M., Courties, G., Nerviani, A., Le Goff, B., Apparailly, F., Pitzalis, C., et al. (2021) Novel Insights into Macrophage Diversity in Rheumatoid Arthritis Synovium. Autoimmunity Reviews, 20, Article ID: 102758. https://doi.org/10.1016/j.autrev.2021.102758
|
[3]
|
高甜甜, 郭锦晨. 巨噬细胞极化在类风湿关节炎中的作用及中医药干预研究进展[J]. 风湿病与关节炎, 2024, 13(7): 55-61.
|
[4]
|
Han, C., Yang, Y., Sheng, Y., Wang, J., Zhou, X., Li, W., et al. (2021) Glaucocalyxin B Inhibits Cartilage Inflammatory Injury in Rheumatoid Arthritis by Regulating M1 Polarization of Synovial Macrophages through NF-κB Pathway. Aging, 13, 22544-22555. https://doi.org/10.18632/aging.203567
|
[5]
|
Kung, C., Dai, S., Chiang, H., Huang, H. and Sun, W. (2020) Temporal Expression Patterns of Distinct Cytokines and M1/M2 Macrophage Polarization Regulate Rheumatoid Arthritis Progression. Molecular Biology Reports, 47, 3423-3437. https://doi.org/10.1007/s11033-020-05422-6
|
[6]
|
Van Raemdonck, K., Umar, S., Palasiewicz, K., Volkov, S., Volin, M.V., Arami, S., et al. (2019) CCL21/CCR7 Signaling in Macrophages Promotes Joint Inflammation and Th17-Mediated Osteoclast Formation in Rheumatoid Arthritis. Cellular and Molecular Life Sciences, 77, 1387-1399. https://doi.org/10.1007/s00018-019-03235-w
|
[7]
|
Xuan, W., Qu, Q., Zheng, B., Xiong, S. and Fan, G. (2014) The Chemotaxis of M1 and M2 Macrophages Is Regulated by Different Chemokines. Journal of Leukocyte Biology, 97, 61-69. https://doi.org/10.1189/jlb.1a0314-170r
|
[8]
|
Tian, Y., Xu, Y., Fu, Q., Chang, M., Wang, Y., Shang, X., et al. (2015) Notch Inhibits Chondrogenic Differentiation of Mesenchymal Progenitor Cells by Targeting Twist1. Molecular and Cellular Endocrinology, 403, 30-38. https://doi.org/10.1016/j.mce.2015.01.015
|
[9]
|
Sun, W., Zhang, H., Wang, H., Chiu, Y.G., Wang, M., Ritchlin, C.T., et al. (2017) Targeting Notch-Activated M1 Macrophages Attenuates Joint Tissue Damage in a Mouse Model of Inflammatory Arthritis. Journal of Bone and Mineral Research, 32, 1469-1480. https://doi.org/10.1002/jbmr.3117
|
[10]
|
Liu, C., Zhang, X., Tan, Q., Xu, W., Zhou, C., Luo, M., et al. (2017) NF-κB Pathways Are Involved in M1 Polarization of RAW 264.7 Macrophage by Polyporus Polysaccharide in the Tumor Microenvironment. PLOS ONE, 12, e0188317. https://doi.org/10.1371/journal.pone.0188317
|
[11]
|
Ivashkiv, L.B. (2018) IFNγ: Signalling, Epigenetics and Roles in Immunity, Metabolism, Disease and Cancer Immunotherapy. Nature Reviews Immunology, 18, 545-558. https://doi.org/10.1038/s41577-018-0029-z
|
[12]
|
Haydar, D., Cory, T.J., Birket, S.E., Murphy, B.S., Pennypacker, K.R., Sinai, A.P., et al. (2019) Azithromycin Polarizes Macrophages to an M2 Phenotype via Inhibition of the STAT1 and NF-κB Signaling Pathways. The Journal of Immunology, 203, 1021-1030. https://doi.org/10.4049/jimmunol.1801228
|
[13]
|
Chang, J., Liu, S., Lin, Y., He, X., Wu, Y., Su, C., et al. (2023) Nesfatin-1 Stimulates CCL2-Dependent Monocyte Migration and M1 Macrophage Polarization: Implications for Rheumatoid Arthritis Therapy. International Journal of Biological Sciences, 19, 281-293. https://doi.org/10.7150/ijbs.77987
|
[14]
|
陈迎, 焦宁. 钩藤碱通过上调SOCS3抑制NOD2/NF-κB信号通路调节巨噬细胞极化影响类风湿性关节炎进展[J]. 解剖科学进展, 2024(9): 1-6.
|
[15]
|
Wan, L., Liu, J., Huang, C., Wang, K., Zhu, Z. and Li, F. (2023) A Novel Pharmaceutical Preparation of Tripterygium wilfordii Hook. F. Regulates Macrophage Polarization to Alleviate Inflammation in Rheumatoid Arthritis. Journal of Pharmacy and Pharmacology, 75, 1442-1457. https://doi.org/10.1093/jpp/rgad078
|
[16]
|
Han, J., Wang, J., Wang, Y., Zhu, Z., Zhang, S., Wu, B., et al. (2023) Sesquiterpene Lactones-Enriched Fractions from Xanthium Mongolicum kitag Alleviate RA by Regulating M1 Macrophage Polarization via NF-κB and MAPK Signaling Pathway. Frontiers in Pharmacology, 14, Article 1104153. https://doi.org/10.3389/fphar.2023.1104153
|
[17]
|
Yang, X., Qian, H., Meng, J., Jiang, H., Yuan, T., Yang, S., et al. (2023) Lonicerin Alleviates the Progression of Experimental Rheumatoid Arthritis by Downregulating m1 Macrophages through the NF-κB Signaling Pathway. Phytotherapy Research, 37, 3939-3950. https://doi.org/10.1002/ptr.7853
|
[18]
|
Lin, W., Shen, P., Huang, Y., Han, L., Ba, X., Huang, Y., et al. (2023) Wutou Decoction Attenuates the Synovial Inflammation of Collagen-Induced Arthritis Rats via Regulating Macrophage M1/M2 Type Polarization. Journal of Ethnopharmacology, 301, Article ID: 115802. https://doi.org/10.1016/j.jep.2022.115802
|
[19]
|
Yang, Y., Guo, L., Wang, Z., Liu, P., Liu, X., Ding, J., et al. (2021) Targeted Silver Nanoparticles for Rheumatoid Arthritis Therapy via Macrophage Apoptosis and Re-Polarization. Biomaterials, 264, Article ID: 120390. https://doi.org/10.1016/j.biomaterials.2020.120390
|
[20]
|
Ma, W., Zhan, Y., Zhang, Y., Mao, C., Xie, X. and Lin, Y. (2021) The Biological Applications of DNA Nanomaterials: Current Challenges and Future Directions. Signal Transduction and Targeted Therapy, 6, Article No. 351. https://doi.org/10.1038/s41392-021-00727-9
|
[21]
|
Wang, Z., Chu, X., Li, N., Fu, L., Gu, H. and Zhang, N. (2020) Engineered DNA Nanodrugs Alleviate Inflammation in Inflammatory Arthritis. International Journal of Pharmaceutics, 577, Article ID: 119047. https://doi.org/10.1016/j.ijpharm.2020.119047
|
[22]
|
王星星, 宋虎, 杜晨阳, 王振, 张建军. 细胞焦亡的研究进展[J]. 天津医药, 2018, 46(11): 1252-1256.
|
[23]
|
章平衡, 刘健. 新风胶囊通过调节NLRP3通路抑制类风湿关节炎巨噬细胞焦亡[J]. 辽宁中医杂志, 2023, 50(7): 221-226, 257.
|
[24]
|
王佳妮, 周殿友, 武丽娟.细胞焦亡在类风湿关节炎中的研究进展[J].中国临床新医学, 2024, 17(05):585-589.
|
[25]
|
Zhang, X., Wang, Q., Cao, G., Luo, M., Hou, H. and Yue, C. (2023) Pyroptosis by NLRP3/Caspase-1/Gasdermin-D Pathway in Synovial Tissues of Rheumatoid Arthritis Patients. Journal of Cellular and Molecular Medicine, 27, 2448-2456. https://doi.org/10.1111/jcmm.17834
|
[26]
|
Dong, X., Zheng, Z., Lin, P., Fu, X., Li, F., Jiang, J., et al. (2019) ACPAs Promote Il-1β Production in Rheumatoid Arthritis by Activating the NLRP3 Inflammasome. Cellular & Molecular Immunology, 17, 261-271. https://doi.org/10.1038/s41423-019-0201-9
|
[27]
|
张雪芬, 孙玥, 张皖东. NLRC3通过抑制STING信号通路, 减轻类风湿关节炎患者巨噬细胞焦亡诱导的免疫炎症反应[J]. 细胞与分子免疫学杂志, 2024(8): 1-15.
|
[28]
|
Hong, Z., Wang, H., Zhang, T., Xu, L., Zhai, Y., Zhang, X., et al. (2024) The HIF-1/BNIP3 Pathway Mediates Mitophagy to Inhibit the Pyroptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. International Immunopharmacology, 127, Article ID: 111378. https://doi.org/10.1016/j.intimp.2023.111378
|
[29]
|
康艳慧, 穆萍萍, 张海雷. 雷公藤甲素对类风湿关节炎成纤维样滑膜细胞线粒体自噬、NLRP3炎症小体活化和细胞焦亡的影响[J]. 现代药物与临床, 2024, 39(2): 290-295.
|
[30]
|
边雨婷, 张艳珍, 陶庆文, 等. 尪痹片调控cGAS-STING信号通路改善肾虚证胶原诱导性关节炎大鼠炎症水平机制研究[J]. 中国中药杂志, 2024(8): 1-11.
|
[31]
|
Li, W., Wang, K., Liu, Y., Wu, H., He, Y., Li, C., et al. (2022) A Novel Drug Combination of Mangiferin and Cinnamic Acid Alleviates Rheumatoid Arthritis by Inhibiting TLR4/NFκB/NLRP3 Activation-Induced Pyroptosis. Frontiers in Immunology, 13, Article 912933. https://doi.org/10.3389/fimmu.2022.912933
|
[32]
|
Wu, Y., Zhang, Y., Wang, Z., Lu, Y., Wang, Y., Pan, J., et al. (2024) Bitongqing Attenuates CIA Rats by Suppressing Macrophage Pyroptosis and Modulating the NLRP3/Caspase-1/GSDMD Pathway. Journal of Inflammation Research, 17, 5453-5469. https://doi.org/10.2147/jir.s466624
|
[33]
|
Qiu, J., Wu, B., Goodman, S.B., Berry, G.J., Goronzy, J.J. and Weyand, C.M. (2021) Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Frontiers in Immunology, 12, Article 652771. https://doi.org/10.3389/fimmu.2021.652771
|
[34]
|
Li, Q., Chen, Y., Liu, H., Tian, Y., Yin, G. and Xie, Q. (2023) Targeting Glycolytic Pathway in Fibroblast-Like Synoviocytes for Rheumatoid Arthritis Therapy: Challenges and Opportunities. Inflammation Research, 72, 2155-2167. https://doi.org/10.1007/s00011-023-01807-y
|
[35]
|
Yang, X., Chang, Y. and Wei, W. (2020) Emerging Role of Targeting Macrophages in Rheumatoid Arthritis: Focus on Polarization, Metabolism and Apoptosis. Cell Proliferation, 53, e12854. https://doi.org/10.1111/cpr.12854
|
[36]
|
Jiang, S., Pan, T., Yu, J., Zhang, Y., Wang, T., Li, P., et al. (2022) Thermal and Wine Processing Enhanced Clematidis Radix Et Rhizoma Ameliorate Collagen II Induced Rheumatoid Arthritis in Rats. Journal of Ethnopharmacology, 288, Article ID: 114993. https://doi.org/10.1016/j.jep.2022.114993
|
[37]
|
Cheng, J., Yu, Y., Zong, S., Cai, W., Wang, Y., Song, Y., et al. (2023) Berberine Ameliorates Collagen-Induced Arthritis in Mice by Restoring Macrophage Polarization via AMPK/mTORC1 Pathway Switching Glycolytic Reprogramming. International Immunopharmacology, 124, Article ID: 111024. https://doi.org/10.1016/j.intimp.2023.111024
|
[38]
|
Zhou, Y., Xiang, R., Qin, G., Ji, B., Yang, S., Wang, G., et al. (2022) Xanthones from Securidaca inappendiculata Hassk. Attenuate Collagen-Induced Arthritis in Rats by Inhibiting the Nicotinamide Phosphoribosyltransferase/Glycolysis Pathway and Macrophage Polarization. International Immunopharmacology, 111, Article ID: 109137. https://doi.org/10.1016/j.intimp.2022.109137
|
[39]
|
Cutolo, M., Campitiello, R., Gotelli, E. and Soldano, S. (2022) The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology, 13, Article 867260. https://doi.org/10.3389/fimmu.2022.867260
|
[40]
|
Zhai, Z., Yang, F., Xu, W., Han, J., Luo, G., Li, Y., et al. (2022) Attenuation of Rheumatoid Arthritis through the Inhibition of Tumor Necrosis Factor-Induced Caspase 3/Gasdermin E-Mediated Pyroptosis. Arthritis & Rheumatology, 74, 427-440. https://doi.org/10.1002/art.41963
|
[41]
|
Demarco, B., Danielli, S., Fischer, F.A. and Bezbradica, J.S. (2022) How Pyroptosis Contributes to Inflammation and Fibroblast-Macrophage Cross-Talk in Rheumatoid Arthritis. Cells, 11, Article 1307. https://doi.org/10.3390/cells11081307
|
[42]
|
Luo, T., Wu, Y., Yin, Q., Chen, W. and Zuo, J. (2023) The Involvement of Glucose and Lipid Metabolism Alteration in Rheumatoid Arthritis and Its Clinical Implication. Journal of Inflammation Research, 16, 1837-1852. https://doi.org/10.2147/jir.s398291
|