中药调控类风湿关节炎中巨噬细胞极化、焦亡、糖代谢的研究进展
Research Progress of Traditional Chinese Medicine in Regulating Macrophage Polarization, Pyroptosis and Glucose Metabolism in Rheumatoid Arthritis
DOI: 10.12677/acm.2024.14102722, PDF, HTML, XML,    科研立项经费支持
作者: 庞宁馨, 江培妍, 杨 烁:黑龙江中医药大学研究生院,黑龙江 哈尔滨;佟 颖*:黑龙江中医药大学附属第一医院风湿免疫科,黑龙江 哈尔滨
关键词: 巨噬细胞类风湿关节炎极化焦亡糖代谢中药Macrophages Rheumatoid Arthritis Polarization Pyroptosis Glucose Metabolism Traditional Chinese Medicine
摘要: 类风湿关节炎骨质发生不可逆性损坏是免疫细胞浸润与成纤维样滑膜细胞增殖的结果,其主要病理特征为滑膜炎与血管翳生成。巨噬细胞作为人体免疫细胞,在类风湿性关节炎中起着重要作用。一方面,免疫稳态的破坏直接诱发全身炎症,巨噬细胞通过与成纤维细胞样滑膜细胞的相互作用引发并延续滑膜炎和组织损伤;另一方面,巨噬细胞的极化在类风湿关节炎发展过程中起着促炎及抗炎双重作用。在疾病进展中,巨噬细胞的极化、焦亡、糖代谢等功能与炎症小体,信号通路等因素联系发生改变,产生促炎因子,进而引起骨破坏及关节障碍,本文就巨噬细胞极化、焦亡、糖代谢与类风湿关节炎的关系进行综述,为类风湿关节炎的治疗提供参考。
Abstract: Irreversible bone damage in rheumatoid arthritis is the result of immune cell infiltration and fibroblast-like synovial cell proliferation. The main pathological features are synovitis and pannus formation. Macrophages, as human immune cells, play an important role in rheumatoid arthritis. On the one hand, the destruction of immune homeostasis directly induces systemic inflammation, and macrophages trigger and continue synovitis and tissue damage through interaction with fibroblast-like synovial cells. On the other hand, the polarization of macrophages plays a dual role of pro-inflammatory and anti-inflammatory in the development of rheumatoid arthritis. In the progression of the disease, the functions of macrophages such as polarization, pyroptosis, and glucose metabolism are changed in connection with factors such as inflammasomes and signaling pathways, resulting in pro-inflammatory factors, which in turn cause bone destruction and joint disorders. This article reviews the relationship between macrophage polarization, pyroptosis, glucose metabolism and rheumatoid arthritis, and provides a reference for the treatment of rheumatoid arthritis.
文章引用:庞宁馨, 江培妍, 杨烁, 佟颖. 中药调控类风湿关节炎中巨噬细胞极化、焦亡、糖代谢的研究进展[J]. 临床医学进展, 2024, 14(10): 746-753. https://doi.org/10.12677/acm.2024.14102722

1. 引言

类风湿关节炎(rheumatoid arthritis, RA)是一种以滑膜炎为病理基础并最终可能导致关节畸形的自身免疫疾病。我国患病率为0.28%~0.41%,早期临床表现为多发性小关节炎,后期病变可蔓延至大关节,可见关节红肿热痛和功能障碍及骨质破坏失去功能。病因尚不明确,但经过多年研究,普遍认为其与自身免疫、遗传以及微生物感染等因素密切相关。近些年,免疫细胞代谢紊乱和微环境稳态失衡,成为RA病理机制的研究热点[1]。巨噬细胞是一类主要参与机体免疫和炎症反应的白血球,在类风湿性关节炎滑膜炎的发生和延续中起着至关重要的作用,它们可以作为抗原呈递细胞发挥作用,导致T细胞依赖性B细胞活化,呈现多种炎症细胞状态并产生破坏性细胞因子,但也有助于组织稳态和修复[2]。巨噬细胞通过调节自身极化、焦亡、糖代谢,发挥着清除凋亡细胞、分泌炎症因子、刺激骨吸收等多重作用,因而与RA病程进展密切相关[3]。目前通过调控巨噬细胞极化、焦亡、糖代谢状态进行RA治疗是研究热点。本文就巨噬细胞极化、焦亡、糖代谢与RA的关系进行综述,为RA的治疗提供参考。

2. 巨噬细胞极化与类风湿关节炎的关系

RA的病理特征为滑膜的慢性炎症和血管翳形成,归因于滑膜细胞和常驻巨噬细胞的严重增殖以及免疫细胞的浸润,同时分泌促炎细胞因子产生慢性炎症和引起疼痛,在血管翳和软骨交接区域,存在两种巨噬细胞,巨噬细胞根据活化状态和发挥功能的不同,可分为M1型即经典活化的巨噬细胞(classically activated macrophage)和M2型即替代性活化的巨噬细胞(alternatively activated macrophage),巨噬细胞是关键效应细胞,通过极化形成M1、M2不同功能表型的能力,M1、M2也是巨噬细胞一系列连续功能状态,是极化的两种极端情况。当体内微环境发生变化,巨噬细胞可从M1型、M2型互相转化。

在RA发生发展过程中,M1巨噬细胞释放肿瘤坏死因子α (tumor necrosis factor-α, TNF-α)、白细胞介素6 (interleukin-6, IL-6)和白细胞介素17 (interleukin-17, IL-17)等促炎细胞因子,可以促使单核细胞聚集,并刺激滑膜成纤维细胞增殖,破骨细胞形成,同时M2巨噬细胞产生白细胞介素10 (interleukin-10, IL-10)、转化生长因子β (transforming growth factor-β, TGF-β)等抗炎细胞因子抑制炎症反应[4],M1/M2型巨噬细胞之间的比例失衡是RA进展的典型特征,因此,调节M1/M2平衡,有助于控制RA [4]

2.1. 巨噬细胞极化与T细胞

巨噬细胞极化影响RA进展与T细胞有关,趋化因子CCL21介导的T细胞积累并激活IL-6和白细胞介素23 (interleukin-23, IL-23)转录的能力相结合,使M1巨噬细胞和T细胞之间串扰[5]。在RA的早期阶段,CCL21诱导M1极化巨噬细胞的比例,导致IL-6和IL-23基因的上调,有利于幼稚T细胞分化为Th17细胞,加重了RA破骨细胞生成[6]。CCL21激活M1中的信号传导,但不激活M2中的信号传导,在关节滑膜中发现经CCL21刺激后M1相关促炎因子诱导型一氧化氮合成酶(inducible nitric oxide synthase, iNOS)升高,M2巨噬细胞标志物精氨酸酶1 (ARG1)降低[7]。这表明阻断巨噬细胞与T细胞之间的募集,抑制Th17的产生及活化,有助于控制巨噬细胞的极化类型并下调炎症因子。

2.2. 影响巨噬细胞极化的信号通路

多条信号通路参与M1/M2比例失衡,包括Notch、JAK/STAT、NF-κB和MAPK,参与调节RA中巨噬细胞向M1表型极化。有研究观察到,Notch1在成纤维细胞样滑膜细胞、Th17细胞和M1巨噬细胞中上调和激活,促进促炎细胞因子(如TNF-α、IL-6和IL-17)的分泌。这一连串的事件最终导致炎症,骨退化和关节骨质流失[8]。Sun [9]等人发现RA滑膜组织促进骨髓衍生巨噬细胞中Notch信号的激活,导致M1极化。用Notch抑制剂毒胡萝卜素治疗可减少TNF-α诱导的M1巨噬细胞极化,并通过促进从M1巨噬细胞到M2巨噬细胞的转换来减轻炎症和关节骨质流失[10]。NF-κB是巨噬细胞M1极化的重要介导信号之一,有效NF-κB的开发也是研究的重点[11]。JAK-STAT通路受到多种炎症刺激的刺激,影响巨噬细胞的分化和炎症反应。具体来说,IFN-γ激活JAK/STAT1信号级联有助于M1巨噬细胞释放促炎介质,STAT1活性有利于M1极化,其抑制可导致M2极化[12]。脂肪因子Nesfatin-1在人RA滑膜组织中高表达,Nesfatin-1诱导CCL2表达和单核细胞迁移刺激涉及MEK/ERK、p38和NF-κB信号通路,有利于M1巨噬细胞极化,从而增加促炎细胞因子IL-1β、IL-6和TNF-α的表达[13]。细胞因子信号转导抑制因子3 (the suppressor of cytokine signaling 3, SOCS3)基因参与炎症过程的负调节,促进巨噬细胞M2极化,陈迎[14]等研究观察到RA关节滑膜中M2型巨噬细胞标志物CD86下降,M1型巨噬细胞标志物CD206升高,激活SOCS3后发现通过抑制NOD2/NF-κB信号通路激活可抑制滑膜成纤维细胞中促炎细胞因子的分泌及降低NOD2和p-NF-κB蛋白的表达。以上结果说明抑制Notch、JAK/STAT、NF-κB和MAPK信号通路可防止关节骨质流失及骨破坏,并促进巨噬细胞从M1向M2极化,降低促炎细胞因子的分泌。

2.3. 药物活性成分及纳米载药平台调控巨噬细胞治疗RA

RA滑膜炎的治疗策略可以通过去除促炎的M1型巨噬细胞和诱导抗炎的M2型巨噬细胞,以实现巨噬细胞的极化。目前,大量研究尝试通过NF-κB来调控巨噬细胞极化,达到改善炎症微环境、抑制骨质丢失、促进骨形成的目标。中药治疗RA的疗效近年来受到广泛关注,中药提取物可通过调节M1、M2巨噬细胞的复极化控制RA。雷公藤苷已被证明可抑制M1巨噬细胞分泌促炎细胞因子(IL-1、IL-6、CXCL8、TNF-α和VEGF-A),同时增强M2巨噬细胞中抗炎细胞因子IL-4、IL-10的表达。此外,雷公藤内酯A抑制NF-κB、PI3K/AKT和p38 MAPK信号转导通路,从而改善RA关节炎症[15]。蒙古黄芪[16] (X. mongolicum)是一种传统的药用植物,其抗RA活性部分倍半萜内酯通过抑制NF-κB和MAPK信号通路的磷酸化控制M1巨噬细胞极化改善关节炎小鼠模型的症状。忍冬苷[17]能有效减轻胶原诱导的关节炎红肿热痛,减弱了NF-κB信号通路的激活,下调M1标志物水平同时上调M2标志物,调节M1/M2巨噬细胞的极化,抑制M1巨噬细胞中NLRP3炎症小体的激活,从而通过抑制IL-1β和IL-18的释放来减少炎症。蓝萼乙素[4] (Glaucocalyxin B, Gla B)是从中药冬凌草中分离出得到的一种倍半萜类化合物,实验表明Gal B能抑制NF-κB信号的激活和降低M1巨噬细胞标志物TNF-α、IL-1β、IL-6、iNOS和IL-12水平,抑制P65和p-P65的表达,而不影响M2巨噬细胞标志物IL-10和TGF-β1的表达,这说明Gla B能抑制滑膜巨噬细胞M1极化,缓解RA的骨损伤。乌头汤[18]抑制胶原诱导关节炎大鼠滑膜中NF-κB和下游p38的磷酸化和脂多糖诱导的M1型极化RAW264.7细胞以及随后分泌促炎和抗炎细胞因子。

随着对RA病理机制的深入理解以及新治疗靶点的发现,纳米载药平台的研发和应用在RA治疗中得到了推进。Yang等[19]成功研发了一种叶酸(FA)修饰的AgNP载药平台FA-AgNP,谷胱甘肽(GSH)作为触发机制使FA-AgNP溶解并释放Ag+,精准定位并诱导清除M1型巨噬细胞和活性氧(reactive oxygen species, ROS)等因子,促使M2型巨噬细胞极化以抗炎。相对于传统的纳米材料,DNA纳米材料的优势在于增强内吞作用、极具可编程性的结构以及内在的生物相容性,Ma等[20]设计了一种叶酸修饰的三角形DNA折纸纳米载药平台(FA-tDON),基于DNA分子清除ROS和一氧化氮(nitrogen monoxide, NO)的能力,可有效清除ROS和NO,并主动靶向M1巨噬细胞,同时促进M1向M2的极化,并帮助相关细胞因子和生物标志物恢复正常水平。

3. 巨噬细胞焦亡与类风湿关节炎的关系

细胞焦亡的过程是炎症小体活化、质膜孔形成、细胞肿胀和膜破裂,其过程由gasdermin D (GSDMD)蛋白的裂解以及下游炎症小体的激活介导,依赖于炎性半胱天冬酶-1 (Caspase-1),生化特征主要标志有炎症小体的形成,Caspase-1和GSDMD的激活以及大量促炎症因子的释放[21]

3.1. 炎症小体/caspase-1/GSDMD途径介导的细胞焦亡

细胞焦亡的经典途径为炎症小体/Caspase-1/GSDMD依赖性焦亡途径。研究发现,Caspase-1的成熟活化依赖于体内核苷酸结合寡聚化结构域样受体蛋白3 (NOD-like receptor protein 3, NLRP3)炎性小体的活化激活[22],RA早期产生大量NLRP3炎症小体,RA进展过程中,炎症因子的诱导下,巨噬细胞向M1型极化,NLRP3堆积导致大量Caspase-1产生,章平衡[23]等采用干扰素-γ (interferon-γ, IFN-γ)诱导刺激巨噬细胞向M1型分化产生炎性因子,并发现巨噬细胞中NLRP3及Caspase-1蛋白水平同时明显升高,表明炎性因子促进巨噬细胞焦亡从而引起炎症反应。

3.2. 自身免疫成分、免疫细胞、缺氧引起的细胞焦亡

RA细胞焦亡与自身免疫成分、免疫细胞、缺氧有关[24]。穿透素3 (pentaxin 3, PTX3)是自身免疫系统中的重要组成部分,在RA患者血浆中显著增加。PTX3和C1q配体的相互作用增强了NLRP3炎症小体的活化,并促使GSDMD的切割,引发Caspase-1参与的细胞焦亡和炎性细胞因子释放,这些炎性因子的分泌反过来促进了PTX3和C1q引起的单核细胞焦亡,形成RA炎症的双向促进机制[25]。干扰素基因刺激因子(Stimulator of interferon genes, STING)信号通路是免疫细胞内一条重要的炎症免疫应答通路,核苷酸结合寡聚结构域样受体3 [nucleotide oligomerization domain-like receptor (NLR) with a CARD 3, NLRC3]是表达于人免疫组织和细胞中先天和适应性免疫细胞炎症信号通路的负调节因子[26]。张雪芬[27]等通过实时定量PCR、ELISA法观察NLRC3与STING信号通路、促炎因子的关系,实验证明NLRC3与STING信号通路的mRNA相对表达水平呈负相关,NLRC3可抑制STING信号通路的激活,也可以减少焦亡通路中Caspase-1、GSDMD蛋白的表达同时抑制炎症因子IL-1β和IL-18的产生,从而调节免疫炎症反应。滑膜缺氧可显著导致滑膜炎和滑膜增生,研究表明,缺氧条件下,成纤维细胞样滑膜细胞(fibroblast-like synoviocytes, FLS)内NLRP3的表达上调,触发了FLS细胞焦亡,随后触发了炎性因子IL-1β和IL-18的释放,线粒体外膜蛋白BNIP3在缺氧条件下可作为线粒体自噬受体帮助线粒体完成自我清除,BNIP3介导的线粒体自噬降低了细胞内活性氧(reactive oxygen species, ROS)的水平,从而防止了由细胞焦亡引起的FLS死亡[28]

3.3. 中药活性成分及中药对RA细胞焦亡的作用

雷公藤甲素通过抑制线粒体自噬、NLRP3炎症小体激活进而抑制GSDMD的裂解抑制细胞焦亡[29]。新风胶囊抑制巨噬细胞向M1型分化,抑制巨噬细胞NLRP3/Caspase-1焦亡通路维持巨噬细胞稳态,阻止巨噬细胞焦亡的发生[23]。尪痹片通过增加DNA聚合酶β (polymerase beta, Polβ)的表达,降低STING磷酸化水平,减少IRF3、NF-κB的磷酸化,抑制cGAS-STING信号通路,减少细胞因子的释放和降低细胞焦亡的水平[30]。白虎桂芝汤可能与TLR4/PI3K/AKT/NF-κB信号相互作用,抑制NLRP3炎性小体激活并调节针对活动性RA的巨噬细胞焦亡[31]。为进一步研究巨噬细胞焦亡相关的信号通路,发现白虎桂枝汤的变方痹痛清可通过抑制巨噬细胞焦亡关键蛋白的上调,和调节NLRP3/Caspase-1/GSDMD通路,减少了IL-18和IL-1β细胞因子的产生,减轻大鼠的滑膜炎症和软骨损伤[32]

4. 糖代谢与类风湿关节炎的关系

代谢失调是RA所有阶段的基本致病途径。将葡萄糖分解成三磷酸腺苷(adenosine triphosphate, ATP)和中间代谢产物,包括糖酵解、有氧氧化和磷酸戊糖途径(pentose phosphate pathway, PPP)中的加工,这一过程为葡萄糖代谢,是人体的主要代谢途径之一。在RA的中期和终末期,组织中的巨噬细胞、T细胞、B细胞和基质细胞被长期激活并处于高代谢压力下,创造一个缺乏氧气和葡萄糖但富含乳酸等代谢中间体的微环境[33]。同时,在RA发展过程中FLS增殖和炎性细胞浸润大大增加了耗氧量,加剧关节腔局部缺氧微环境,这些细胞将进行代谢重编程,表现为葡萄糖摄取率增高,糖酵解活跃,代谢产物乳酸含量高,以适应缺氧压力并获得足够的能量物质ATP,呈现瓦博格效应[34]。缺氧水平升高与滑膜炎症增加呈负相关,氧化应激有利于糖酵解,有助于加速类风湿性关节炎炎症的发生和随后的血管生成功能障碍[35]

不平衡的代谢途径、自身免疫和组织炎症促使代谢干扰作为一种新的治疗策略。威灵仙具有消炎镇痛的作用,实验证明,利用脂多糖诱导巨噬细胞,NO产生、葡萄糖摄取、乳酸产生、ROS和MMP,粗制和葡萄酒处理的威灵仙都可以通过下调糖酵解过程的HK2、PKM2和LDHA的含量来抑制糖酵解[36]。小檗碱通过激活AMPK来切换糖酵解重编程,抑制M1巨噬细胞的糖酵解,恢复M1/M2比率达到控制RA的作用[37]。蝉翼藤提取物(Securidaca inappendiculata Hassk)保护RA关节的作用与烟酰胺磷酸核糖基转移酶(NAMPT)–糖酵解–极化轴相关,其衍生化合物dihydroxy-3,4-dimethoxyxanthone (XAN)通过抑制NAMPT/糖酵解途径诱导巨噬细胞复极化,负调控脂多糖诱导的巨噬细胞中的糖酵解来保护关节[38]

5. 结语

巨噬细胞是类风湿性关节炎滑膜中最丰富的细胞类型之一,巨噬细胞的极化、焦亡、糖代谢与RA发生发展相关。M1和M2巨噬细胞失衡可能会诱发破骨细胞生成,M1或M2巨噬细胞激活可能会影响T辅助性(Th)1或Th2反应的发生,M1在以Toll样受体(TLR)和干扰素(IFN)信号传导为主的炎症环境中被激活,促进促炎细胞因子TNF-α、IL-1、IL-12、IL-18和IFNγ、趋化因子和基质金属蛋白酶的大量产生,导致破骨细胞生成、糜烂和进行性关节破坏,M2激活决定了生长因子和细胞因子IL-4、IL-10、IL-13和转化生长因子(TGF)-β的释放并参与RA的抗炎过程[39]。调节M1/M2失衡以促进抗炎M2巨噬细胞可恢复组织稳态。随着RA进展,炎症小体通过TNF,NF-κB通路被诱导上调,促使巨噬细胞中活性IL-1β的加工和释放形成细胞焦亡,同时TNF激活了GSDME介导的RA中单核细胞和巨噬细胞的焦亡[40],而RA相关成纤维细胞的扩张与疾病的严重程度相关,其由巨噬细胞衍生因子TNF、IL-1β驱动,活化的成纤维细胞反过来增殖并启动组织破坏性和炎症程序[41]。近年来,代谢失调与免疫失衡之间的病理联系越来越受到重视。免疫细胞的高能量需求导致代谢副产物和炎症介质的积累[42]。在RA中后期,巨噬细胞与FLS相互作用,关节腔内形成缺氧环境,糖代谢活跃,加剧了关节炎性浸润炎症程度,软骨及骨破坏及关节障碍。

目前已有研究对巨噬细胞功能及其与类风湿关节炎的关系有了一定深入,但仍有不足,一,面临的主要问题是巨噬细胞功能状态的具体调控机制仍不明晰;二,巨噬细胞糖代谢的各环节仍需基础及临床实验挖掘其机制;三,巨噬细胞的功能除本文提及的极化、焦亡、糖代谢之外,其胞葬功能多关联肿瘤及代谢疾病,与类风湿关节炎的相关研究较少;四,线粒体稳态及自噬与巨噬细胞的免疫功能相关并参与代谢重编程,在引发和消除炎症方面都起着至关重要的作用,两者在类风湿关节炎中与介导炎症和免疫抑制的关联研究仍缺乏。期望在未来能理清巨噬细胞在类风湿关节炎中的作用机制及中药调控巨噬细胞的靶点,提高患者生活质量。

基金项目

黑龙江省自然科学基金项目(LH2019H1115)。

NOTES

*通讯作者。

参考文献

[1] McInnes, I.B. and Schett, G. (2011) The Pathogenesis of Rheumatoid Arthritis. New England Journal of Medicine, 365, 2205-2219.
https://doi.org/10.1056/nejmra1004965
[2] Boutet, M., Courties, G., Nerviani, A., Le Goff, B., Apparailly, F., Pitzalis, C., et al. (2021) Novel Insights into Macrophage Diversity in Rheumatoid Arthritis Synovium. Autoimmunity Reviews, 20, Article ID: 102758.
https://doi.org/10.1016/j.autrev.2021.102758
[3] 高甜甜, 郭锦晨. 巨噬细胞极化在类风湿关节炎中的作用及中医药干预研究进展[J]. 风湿病与关节炎, 2024, 13(7): 55-61.
[4] Han, C., Yang, Y., Sheng, Y., Wang, J., Zhou, X., Li, W., et al. (2021) Glaucocalyxin B Inhibits Cartilage Inflammatory Injury in Rheumatoid Arthritis by Regulating M1 Polarization of Synovial Macrophages through NF-κB Pathway. Aging, 13, 22544-22555.
https://doi.org/10.18632/aging.203567
[5] Kung, C., Dai, S., Chiang, H., Huang, H. and Sun, W. (2020) Temporal Expression Patterns of Distinct Cytokines and M1/M2 Macrophage Polarization Regulate Rheumatoid Arthritis Progression. Molecular Biology Reports, 47, 3423-3437.
https://doi.org/10.1007/s11033-020-05422-6
[6] Van Raemdonck, K., Umar, S., Palasiewicz, K., Volkov, S., Volin, M.V., Arami, S., et al. (2019) CCL21/CCR7 Signaling in Macrophages Promotes Joint Inflammation and Th17-Mediated Osteoclast Formation in Rheumatoid Arthritis. Cellular and Molecular Life Sciences, 77, 1387-1399.
https://doi.org/10.1007/s00018-019-03235-w
[7] Xuan, W., Qu, Q., Zheng, B., Xiong, S. and Fan, G. (2014) The Chemotaxis of M1 and M2 Macrophages Is Regulated by Different Chemokines. Journal of Leukocyte Biology, 97, 61-69.
https://doi.org/10.1189/jlb.1a0314-170r
[8] Tian, Y., Xu, Y., Fu, Q., Chang, M., Wang, Y., Shang, X., et al. (2015) Notch Inhibits Chondrogenic Differentiation of Mesenchymal Progenitor Cells by Targeting Twist1. Molecular and Cellular Endocrinology, 403, 30-38.
https://doi.org/10.1016/j.mce.2015.01.015
[9] Sun, W., Zhang, H., Wang, H., Chiu, Y.G., Wang, M., Ritchlin, C.T., et al. (2017) Targeting Notch-Activated M1 Macrophages Attenuates Joint Tissue Damage in a Mouse Model of Inflammatory Arthritis. Journal of Bone and Mineral Research, 32, 1469-1480.
https://doi.org/10.1002/jbmr.3117
[10] Liu, C., Zhang, X., Tan, Q., Xu, W., Zhou, C., Luo, M., et al. (2017) NF-κB Pathways Are Involved in M1 Polarization of RAW 264.7 Macrophage by Polyporus Polysaccharide in the Tumor Microenvironment. PLOS ONE, 12, e0188317.
https://doi.org/10.1371/journal.pone.0188317
[11] Ivashkiv, L.B. (2018) IFNγ: Signalling, Epigenetics and Roles in Immunity, Metabolism, Disease and Cancer Immunotherapy. Nature Reviews Immunology, 18, 545-558.
https://doi.org/10.1038/s41577-018-0029-z
[12] Haydar, D., Cory, T.J., Birket, S.E., Murphy, B.S., Pennypacker, K.R., Sinai, A.P., et al. (2019) Azithromycin Polarizes Macrophages to an M2 Phenotype via Inhibition of the STAT1 and NF-κB Signaling Pathways. The Journal of Immunology, 203, 1021-1030.
https://doi.org/10.4049/jimmunol.1801228
[13] Chang, J., Liu, S., Lin, Y., He, X., Wu, Y., Su, C., et al. (2023) Nesfatin-1 Stimulates CCL2-Dependent Monocyte Migration and M1 Macrophage Polarization: Implications for Rheumatoid Arthritis Therapy. International Journal of Biological Sciences, 19, 281-293.
https://doi.org/10.7150/ijbs.77987
[14] 陈迎, 焦宁. 钩藤碱通过上调SOCS3抑制NOD2/NF-κB信号通路调节巨噬细胞极化影响类风湿性关节炎进展[J]. 解剖科学进展, 2024(9): 1-6.
[15] Wan, L., Liu, J., Huang, C., Wang, K., Zhu, Z. and Li, F. (2023) A Novel Pharmaceutical Preparation of Tripterygium wilfordii Hook. F. Regulates Macrophage Polarization to Alleviate Inflammation in Rheumatoid Arthritis. Journal of Pharmacy and Pharmacology, 75, 1442-1457.
https://doi.org/10.1093/jpp/rgad078
[16] Han, J., Wang, J., Wang, Y., Zhu, Z., Zhang, S., Wu, B., et al. (2023) Sesquiterpene Lactones-Enriched Fractions from Xanthium Mongolicum kitag Alleviate RA by Regulating M1 Macrophage Polarization via NF-κB and MAPK Signaling Pathway. Frontiers in Pharmacology, 14, Article 1104153.
https://doi.org/10.3389/fphar.2023.1104153
[17] Yang, X., Qian, H., Meng, J., Jiang, H., Yuan, T., Yang, S., et al. (2023) Lonicerin Alleviates the Progression of Experimental Rheumatoid Arthritis by Downregulating m1 Macrophages through the NF-κB Signaling Pathway. Phytotherapy Research, 37, 3939-3950.
https://doi.org/10.1002/ptr.7853
[18] Lin, W., Shen, P., Huang, Y., Han, L., Ba, X., Huang, Y., et al. (2023) Wutou Decoction Attenuates the Synovial Inflammation of Collagen-Induced Arthritis Rats via Regulating Macrophage M1/M2 Type Polarization. Journal of Ethnopharmacology, 301, Article ID: 115802.
https://doi.org/10.1016/j.jep.2022.115802
[19] Yang, Y., Guo, L., Wang, Z., Liu, P., Liu, X., Ding, J., et al. (2021) Targeted Silver Nanoparticles for Rheumatoid Arthritis Therapy via Macrophage Apoptosis and Re-Polarization. Biomaterials, 264, Article ID: 120390.
https://doi.org/10.1016/j.biomaterials.2020.120390
[20] Ma, W., Zhan, Y., Zhang, Y., Mao, C., Xie, X. and Lin, Y. (2021) The Biological Applications of DNA Nanomaterials: Current Challenges and Future Directions. Signal Transduction and Targeted Therapy, 6, Article No. 351.
https://doi.org/10.1038/s41392-021-00727-9
[21] Wang, Z., Chu, X., Li, N., Fu, L., Gu, H. and Zhang, N. (2020) Engineered DNA Nanodrugs Alleviate Inflammation in Inflammatory Arthritis. International Journal of Pharmaceutics, 577, Article ID: 119047.
https://doi.org/10.1016/j.ijpharm.2020.119047
[22] 王星星, 宋虎, 杜晨阳, 王振, 张建军. 细胞焦亡的研究进展[J]. 天津医药, 2018, 46(11): 1252-1256.
[23] 章平衡, 刘健. 新风胶囊通过调节NLRP3通路抑制类风湿关节炎巨噬细胞焦亡[J]. 辽宁中医杂志, 2023, 50(7): 221-226, 257.
[24] 王佳妮, 周殿友, 武丽娟.细胞焦亡在类风湿关节炎中的研究进展[J].中国临床新医学, 2024, 17(05):585-589.
[25] Zhang, X., Wang, Q., Cao, G., Luo, M., Hou, H. and Yue, C. (2023) Pyroptosis by NLRP3/Caspase-1/Gasdermin-D Pathway in Synovial Tissues of Rheumatoid Arthritis Patients. Journal of Cellular and Molecular Medicine, 27, 2448-2456.
https://doi.org/10.1111/jcmm.17834
[26] Dong, X., Zheng, Z., Lin, P., Fu, X., Li, F., Jiang, J., et al. (2019) ACPAs Promote Il-1β Production in Rheumatoid Arthritis by Activating the NLRP3 Inflammasome. Cellular & Molecular Immunology, 17, 261-271.
https://doi.org/10.1038/s41423-019-0201-9
[27] 张雪芬, 孙玥, 张皖东. NLRC3通过抑制STING信号通路, 减轻类风湿关节炎患者巨噬细胞焦亡诱导的免疫炎症反应[J]. 细胞与分子免疫学杂志, 2024(8): 1-15.
[28] Hong, Z., Wang, H., Zhang, T., Xu, L., Zhai, Y., Zhang, X., et al. (2024) The HIF-1/BNIP3 Pathway Mediates Mitophagy to Inhibit the Pyroptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis. International Immunopharmacology, 127, Article ID: 111378.
https://doi.org/10.1016/j.intimp.2023.111378
[29] 康艳慧, 穆萍萍, 张海雷. 雷公藤甲素对类风湿关节炎成纤维样滑膜细胞线粒体自噬、NLRP3炎症小体活化和细胞焦亡的影响[J]. 现代药物与临床, 2024, 39(2): 290-295.
[30] 边雨婷, 张艳珍, 陶庆文, 等. 尪痹片调控cGAS-STING信号通路改善肾虚证胶原诱导性关节炎大鼠炎症水平机制研究[J]. 中国中药杂志, 2024(8): 1-11.
[31] Li, W., Wang, K., Liu, Y., Wu, H., He, Y., Li, C., et al. (2022) A Novel Drug Combination of Mangiferin and Cinnamic Acid Alleviates Rheumatoid Arthritis by Inhibiting TLR4/NFκB/NLRP3 Activation-Induced Pyroptosis. Frontiers in Immunology, 13, Article 912933.
https://doi.org/10.3389/fimmu.2022.912933
[32] Wu, Y., Zhang, Y., Wang, Z., Lu, Y., Wang, Y., Pan, J., et al. (2024) Bitongqing Attenuates CIA Rats by Suppressing Macrophage Pyroptosis and Modulating the NLRP3/Caspase-1/GSDMD Pathway. Journal of Inflammation Research, 17, 5453-5469.
https://doi.org/10.2147/jir.s466624
[33] Qiu, J., Wu, B., Goodman, S.B., Berry, G.J., Goronzy, J.J. and Weyand, C.M. (2021) Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Frontiers in Immunology, 12, Article 652771.
https://doi.org/10.3389/fimmu.2021.652771
[34] Li, Q., Chen, Y., Liu, H., Tian, Y., Yin, G. and Xie, Q. (2023) Targeting Glycolytic Pathway in Fibroblast-Like Synoviocytes for Rheumatoid Arthritis Therapy: Challenges and Opportunities. Inflammation Research, 72, 2155-2167.
https://doi.org/10.1007/s00011-023-01807-y
[35] Yang, X., Chang, Y. and Wei, W. (2020) Emerging Role of Targeting Macrophages in Rheumatoid Arthritis: Focus on Polarization, Metabolism and Apoptosis. Cell Proliferation, 53, e12854.
https://doi.org/10.1111/cpr.12854
[36] Jiang, S., Pan, T., Yu, J., Zhang, Y., Wang, T., Li, P., et al. (2022) Thermal and Wine Processing Enhanced Clematidis Radix Et Rhizoma Ameliorate Collagen II Induced Rheumatoid Arthritis in Rats. Journal of Ethnopharmacology, 288, Article ID: 114993.
https://doi.org/10.1016/j.jep.2022.114993
[37] Cheng, J., Yu, Y., Zong, S., Cai, W., Wang, Y., Song, Y., et al. (2023) Berberine Ameliorates Collagen-Induced Arthritis in Mice by Restoring Macrophage Polarization via AMPK/mTORC1 Pathway Switching Glycolytic Reprogramming. International Immunopharmacology, 124, Article ID: 111024.
https://doi.org/10.1016/j.intimp.2023.111024
[38] Zhou, Y., Xiang, R., Qin, G., Ji, B., Yang, S., Wang, G., et al. (2022) Xanthones from Securidaca inappendiculata Hassk. Attenuate Collagen-Induced Arthritis in Rats by Inhibiting the Nicotinamide Phosphoribosyltransferase/Glycolysis Pathway and Macrophage Polarization. International Immunopharmacology, 111, Article ID: 109137.
https://doi.org/10.1016/j.intimp.2022.109137
[39] Cutolo, M., Campitiello, R., Gotelli, E. and Soldano, S. (2022) The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Frontiers in Immunology, 13, Article 867260.
https://doi.org/10.3389/fimmu.2022.867260
[40] Zhai, Z., Yang, F., Xu, W., Han, J., Luo, G., Li, Y., et al. (2022) Attenuation of Rheumatoid Arthritis through the Inhibition of Tumor Necrosis Factor-Induced Caspase 3/Gasdermin E-Mediated Pyroptosis. Arthritis & Rheumatology, 74, 427-440.
https://doi.org/10.1002/art.41963
[41] Demarco, B., Danielli, S., Fischer, F.A. and Bezbradica, J.S. (2022) How Pyroptosis Contributes to Inflammation and Fibroblast-Macrophage Cross-Talk in Rheumatoid Arthritis. Cells, 11, Article 1307.
https://doi.org/10.3390/cells11081307
[42] Luo, T., Wu, Y., Yin, Q., Chen, W. and Zuo, J. (2023) The Involvement of Glucose and Lipid Metabolism Alteration in Rheumatoid Arthritis and Its Clinical Implication. Journal of Inflammation Research, 16, 1837-1852.
https://doi.org/10.2147/jir.s398291