[1]
|
Zufferey, A., Kapur, R. and Semple, J. (2017) Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). Journal of Clinical Medicine, 6, Article 16. https://doi.org/10.3390/jcm6020016
|
[2]
|
梅恒, 胡豫. 成人原发免疫性血小板减少症诊断与治疗中国指南(2020年版)解读[J]. 临床内科杂志, 2021, 38(6): 431-432.
|
[3]
|
Arnold, D.M., Clerici, B., Ilicheva, E. and Ghanima, W. (2023) Refractory Immune Thrombocytopenia in Adults: Towards a New Definition. British Journal of Haematology, 203, 23-27. https://doi.org/10.1111/bjh.19075
|
[4]
|
Vianelli, N., Auteri, G., Buccisano, F., Carrai, V., Baldacci, E., Clissa, C., et al. (2022) Refractory Primary Immune Thrombocytopenia (ITP): Current Clinical Challenges and Therapeutic Perspectives. Annals of Hematology, 101, 963-978. https://doi.org/10.1007/s00277-022-04786-y
|
[5]
|
Schifferli, A., Le Gavrian, G., Aladjidi, N., Moulis, G., Godeau, B. and Kühne, T. (2023) Chronic Refractory Immune Thrombocytopenia in Adolescents and Young Adults. British Journal of Haematology, 203, 36-42. https://doi.org/10.1111/bjh.19081
|
[6]
|
Semple, J., Milev, Y., Cosgrave, D., Mody, M., Hornstein, A., Blanchette, V., et al. (1996) Differences in Serum Cytokine Levels in Acute and Chronic Autoimmune Thrombocytopenic Purpura: Relationship to Platelet Phenotype and Antiplatelet T-Cell Reactivity. Blood, 87, 4245-4254. https://doi.org/10.1182/blood.v87.10.4245.bloodjournal87104245
|
[7]
|
Malik, A., Sayed, A.A., Han, P., Tan, M.M.H., Watt, E., Constantinescu-Bercu, A., et al. (2023) The Role of CD8+ T Cell Clones in Immune Thrombocytopenia. Blood, 141, 2417-2429. https://doi.org/10.1182/blood.2022018380
|
[8]
|
Yazdanbakhsh, K., Provan, D. and Semple, J.W. (2023) The Role of T Cells and Myeloid-Derived Suppressor Cells in Refractory Immune Thrombocytopenia. British Journal of Haematology, 203, 54-61. https://doi.org/10.1111/bjh.19079
|
[9]
|
Türk, L., Filippov, I., Arnold, C., Zaugg, J., Tserel, L., Kisand, K., et al. (2024) Cytotoxic CD8+ Temra Cells Show Loss of Chromatin Accessibility at Genes Associated with T Cell Activation. Frontiers in Immunology, 15, Article 1285798. https://doi.org/10.3389/fimmu.2024.1285798
|
[10]
|
Liu, S. and Shan, N. (2020) DNA Methylation Plays an Important Role in Immune Thrombocytopenia. International Immunopharmacology, 83, Article ID: 106390. https://doi.org/10.1016/j.intimp.2020.106390
|
[11]
|
Chen, Z., Guo, Z., Ma, J., Ma, J., Liu, F. and Wu, R. (2014) Foxp3 Methylation Status in Children with Primary Immune Thrombocytopenia. Human Immunology, 75, 1115-1119. https://doi.org/10.1016/j.humimm.2014.09.018
|
[12]
|
Du, H., Tang, Q., Yang, J., Yan, B., Yang, L. and Wang, M. (2023) Genome-Wide DNA Methylation Profiling of CD4+ T Lymphocytes Identifies Differentially Methylated Loci Associated with Adult Primary Refractory Immune Thrombocytopenia. BMC Medical Genomics, 16, Article No. 124. https://doi.org/10.1186/s12920-023-01557-0
|
[13]
|
Liu, S., Qu, H., Sun, R., Yuan, D., Sui, X. and Shan, N. (2022) High-Throughput DNA Methylation Analysis in ITP Confirms NOTCH1 Hypermethylation through the Th1 and Th2 Cell Differentiation Pathways. International Immunopharmacology, 111, Article ID: 109105. https://doi.org/10.1016/j.intimp.2022.109105
|
[14]
|
Han, P., Yu, T., Hou, Y., Zhao, Y., Liu, Y., Sun, Y., et al. (2021) Low-Dose Decitabine Inhibits Cytotoxic T Lymphocytes-Mediated Platelet Destruction via Modulating PD-1 Methylation in Immune Thrombocytopenia. Frontiers in Immunology, 12, Article 630693. https://doi.org/10.3389/fimmu.2021.630693
|
[15]
|
Wang, L., Wang, H., Zhu, M., Ni, X., Sun, L., Wang, W., et al. (2024) Platelet-Derived TGF-Β1 Induces Functional Reprogramming of Myeloid-Derived Suppressor Cells in Immune Thrombocytopenia. Blood, 144, 99-112. https://doi.org/10.1182/blood.2023022738
|
[16]
|
Ni, X., Wang, L., Wang, H., Yu, T., Xie, J., Li, G., et al. (2022) Low-Dose Decitabine Modulates Myeloid-Derived Suppressor Cell Fitness via LKB1 in Immune Thrombocytopenia. Blood, 140, 2818-2834. https://doi.org/10.1182/blood.2022016029
|
[17]
|
Ma, L., Simpson, E., Li, J., Xuan, M., Xu, M., Baker, L., et al. (2015) CD8+ T Cells Are Predominantly Protective and Required for Effective Steroid Therapy in Murine Models of Immune Thrombocytopenia. Blood, 126, 247-256. https://doi.org/10.1182/blood-2015-03-635417
|
[18]
|
Stimpson, M.L., Lait, P.J.P., Schewitz-Bowers, L.P., Williams, E.L., Thirlwall, K.F., Lee, R.W.J., et al. (2020) IL-10 and IL-17 Expression by CD4+ T Cells Is Altered in Corticosteroid Refractory Immune Thrombocytopenia (ITP). Journal of Thrombosis and Haemostasis, 18, 2712-2720. https://doi.org/10.1111/jth.14970
|
[19]
|
Mann, E.H., Gabryšová, L., Pfeffer, P.E., O’Garra, A. and Hawrylowicz, C.M. (2019) High-Dose IL-2 Skews a Glucocorticoid-Driven IL-17+IL-10+ Memory CD4+ T Cell Response Towards a Single Il-10-Producing Phenotype. The Journal of Immunology, 202, 684-693. https://doi.org/10.4049/jimmunol.1800697
|
[20]
|
McGeachy, M.J., Bak-Jensen, K.S., Chen, Y., Tato, C.M., Blumenschein, W., McClanahan, T., et al. (2007) TGF-β and IL-6 Drive the Production of IL-17 and IL-10 by T Cells and Restrain TH-17 Cell-Mediated Pathology. Nature Immunology, 8, 1390-1397. https://doi.org/10.1038/ni1539
|
[21]
|
Qiu, J., Liu, X., Li, X., Zhang, X., Han, P., Zhou, H., et al. (2016) CD8+ T Cells Induce Platelet Clearance in the Liver via Platelet Desialylation in Immune Thrombocytopenia. Scientific Reports, 6, Article No. 27445. https://doi.org/10.1038/srep27445
|
[22]
|
Zheng, S.S., Ahmadi, Z., Leung, H.H.L., Wong, R., Yan, F., Perdomo, J.S., et al. (2022) Antiplatelet Antibody Predicts Platelet Desialylation and Apoptosis in Immune Thrombocytopenia. Haematologica, 107, 2195-2205. https://doi.org/10.3324/haematol.2021.279751
|