|
[1]
|
李哲, 杨寒淞, 曹应葵, 等. 50种中药提取物体外抗菌活性研究[J]. 皮肤病与性病, 2022, 44(3): 202-205.
|
|
[2]
|
冯子强. 中药有效成分抑制肿瘤细胞迁移和逆转多药耐药的实验研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2015.
|
|
[3]
|
Chen, C. and Zhang, D. (2014) Anti-Inflammatory Effects of 81 Chinese Herb Extracts and Their Correlation with the Characteristics of Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 985176. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Huq, M.A., Ashrafudoulla, M., Rahman, M.M., Balusamy, S.R. and Akter, S. (2022) Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers, 14, Article No. 742. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Qian, J., Hou, M., Wu, X., Dai, C., Sun, J. and Dong, L. (2020) A Review on the Extraction, Purification, Detection, and Pharmacological Effects of 2,3,5,4’-Tetrahydroxystilbene-2-O-Β-D-Glucoside from Polygonum Multiflorum. Biomedicine & Pharmacotherapy, 124, Article ID: 109923. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liu, P., Zhang, J., Wang, Y., Shen, Z., Wang, C., Chen, D., et al. (2021) The Active Compounds and Therapeutic Target of Tripterygium wilfordii hook. f. in Attenuating Proteinuria in Diabetic Nephropathy: A Review. Frontiers in Medicine, 8, Article ID: 747922. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kumar, S., Singh, B. and Bajpai, V. (2021) Andrographis paniculata (burm.f.) Nees: Traditional Uses, Phytochemistry, Pharmacological Properties and Quality Control/Quality Assurance. Journal of Ethnopharmacology, 275, Article ID: 114054. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Adiguna, S.P., Panggabean, J.A., Swasono, R.T., Rahmawati, S.I., Izzati, F., Bayu, A., et al. (2023) Evaluations of Andrographolide-Rich Fractions of Andrographis paniculata with Enhanced Potential Antioxidant, Anticancer, Antihypertensive, and Anti-Inflammatory Activities. Plants, 12, Article No. 1220. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, Q., Ren, R., Zhang, Q., Wu, J., Zhang, Y., Xue, M., et al. (2021) Coptis Chinensis Franch Polysaccharides Provide a Dynamically Regulation on Intestinal Microenvironment, Based on the Intestinal Flora and Mucosal Immunity. Journal of Ethnopharmacology, 267, Article ID: 113542. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ti, H. (2021) Phytochemical Profiles and Their Anti-Inflammatory Responses against Influenza from Traditional Chinese Medicine or Herbs. Mini-Reviews in Medicinal Chemistry, 20, 2153-2164. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dai, J., Wang, Q., Su, Y., Gu, L., Zhao, Y., Chen, X., et al. (2017) Emodin Inhibition of Influenza a Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, P38/jnk and Nf-Kappab Pathways. Molecules, 22, Article No. 1754. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tsai, S., Nithiyanantham, S., Satyanarayanan, S.K. and Su, K. (2023) Anti-Inflammatory Effect of Traditional Chinese Medicine on the Concept of Mind-Body Interface. In: Kim, Y.-K., Ed., Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders, Springer Nature, 435-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
魏雅雯, 李谨彤, 任夏, 等. 基于数据驱动分析的抗病毒中药分布规律[J]. 中草药, 2021(16): 4959-4972.
|
|
[14]
|
华玉洁. 13种中药查耳酮抗氧化机制与产物的研究[D]: [硕士学位论文]. 广州: 广州中医药大学, 2022.
|
|
[15]
|
Jang, Y., Zhang, X., Zhu, R., Li, S., Sun, S., Li, W., et al. (2022) Viola betonicifolia-Mediated Biosynthesis of Silver Nanoparticles for Improved Biomedical Applications. Frontiers in Microbiology, 13, Article ID: 891144. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lu, H., Zhang, X., Khan, S.A., Li, W. and Wan, L. (2021) Biogenic Synthesis of MnO2 Nanoparticles with Leaf Extract of Viola betonicifolia for Enhanced Antioxidant, Antimicrobial, Cytotoxic, and Biocompatible Applications. Frontiers in Microbiology, 12, Article ID: 761084. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wang, M., Meng, Y., Zhu, H., Hu, Y., Xu, C., Chao, X., et al. (2021) Green Synthesized Gold Nanoparticles Using Viola betonicifolia Leaves Extract: Characterization, Antimicrobial, Antioxidant, and Cytobiocompatible Activities. International Journal of Nanomedicine, 16, 7319-7337. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sukweenadhi, J., Setiawan, K.I., Avanti, C., Kartini, K., Rupa, E.J. and Yang, D. (2021) Scale-Up of Green Synthesis and Characterization of Silver Nanoparticles Using Ethanol Extract of Plantago major L. Leaf and Its Antibacterial Potential. South African Journal of Chemical Engineering, 38, 1-8. [Google Scholar] [CrossRef]
|
|
[19]
|
Urnukhsaikhan, E., Bold, B., Gunbileg, A., Sukhbaatar, N. and Mishig-Ochir, T. (2021) Antibacterial Activity and Characteristics of Silver Nanoparticles Biosynthesized from Carduus Crispus. Scientific Reports, 11, Article No. 21047. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Arokiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y.K. and Kim, K.H. (2016) Green Synthesis of Silver Nanoparticles Using Rheum palmatum Root Extract and Their Antibacterial Activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artificial Cells, Nanomedicine, and Biotechnology, 45, 372-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huo, Y., Singh, P., Kim, Y.J., Soshnikova, V., Kang, J., Markus, J., et al. (2017) Biological Synthesis of Gold and Silver Chloride Nanoparticles by Glycyrrhiza uralensis and in Vitro Applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 303-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
韩淑兰. 载黄芩苷多功能纳米粒构建及抗肿瘤研究[D]: [博士学位论文]. 哈尔滨: 东北林业大学, 2020.
|
|
[23]
|
Soshnikova, V., Kim, Y.J., Singh, P., Huo, Y., Markus, J., Ahn, S., et al. (2017) Cardamom Fruits as a Green Resource for Facile Synthesis of Gold and Silver Nanoparticles and Their Biological Applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 108-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rajkuberan, C., Prabukumar, S., Sathishkumar, G., Wilson, A., Ravindran, K. and Sivaramakrishnan, S. (2017) Facile Synthesis of Silver Nanoparticles Using Euphorbia antiquorum L. Latex Extract and Evaluation of Their Biomedical Perspectives as Anticancer Agents. Journal of Saudi Chemical Society, 21, 911-919. [Google Scholar] [CrossRef]
|
|
[25]
|
Singh, H., Du, J., Singh, P. and Yi, T.H. (2017) Ecofriendly Synthesis of Silver and Gold Nanoparticles by Euphrasia officinalis Leaf Extract and Its Biomedical Applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1163-1170. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Saratale, R.G., Benelli, G., Kumar, G., Kim, D.S. and Saratale, G.D. (2017) Bio-Fabrication of Silver Nanoparticles Using the Leaf Extract of an Ancient Herbal Medicine, Dandelion (Taraxacum officinale), Evaluation of Their Antioxidant, Anticancer Potential, and Antimicrobial Activity against Phytopathogens. Environmental Science and Pollution Research, 25, 10392-10406. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Mohanta, Y.K., Panda, S.K., Biswas, K., Tamang, A., Bandyopadhyay, J., De, D., et al. (2016) Biogenic Synthesis of Silver Nanoparticles from Cassia fistula (Linn.): In Vitro Assessment of Their Antioxidant, Antimicrobial and Cytotoxic Activities. IET Nanobiotechnology, 10, 438-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, H. and Wang, M. (2019) Nanometer Preparation of Traditional Chinese Medicine for Rheumatoid Arthritis. China Journal of Chinese Materia Medica, 44, 3908-3916.
|
|
[29]
|
Chatterjee, S., Hui, P.C., Siu, W.S., Kan, C., Leung, P., Wanxue, C., et al. (2021) Influence of Ph-Responsive Compounds Synthesized from Chitosan and Hyaluronic Acid on Dual-Responsive (Ph/Temperature) Hydrogel Drug Delivery Systems of Cortex Moutan. International Journal of Biological Macromolecules, 168, 163-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, W., Hui, P.C.L., Wat, E., Ng, F.S.F., Kan, C., Wang, X., et al. (2016) In Vitro Drug Release and Percutaneous Behavior of Poloxamer-Based Hydrogel Formulation Containing Traditional Chinese Medicine. Colloids and Surfaces B: Biointerfaces, 148, 526-532. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, B., Zhang, H., Qiu, J., Wang, S., Ouyang, L., Qiao, Y., et al. (2022) Mechanical Force Induced Self-Assembly of Chinese Herbal Hydrogel with Synergistic Effects of Antibacterial Activity and Immune Regulation for Wound Healing. Small, 18, Article ID: 2201766. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, Q., Chu, F., Xu, Y., Wu, X., Yu, J., Cong, B., et al. (2023) Osteogenesis Promotion by Injectable Methacryloylated Gelatin Containing Psoralen and Its Bacteriostatic Properties. IET Nanobiotechnology, 17, 376-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chen, D., Chen, C., Huang, C., Chen, T. and Liu, Z. (2020) Injectable Hydrogel for NIR-II Photo-Thermal Tumor Therapy and Dihydroartemisinin-Mediated Chemodynamic Therapy. Frontiers in Chemistry, 8, Article No. 251. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, Y., Wei, Y., Wu, Y., Zong, Y., Song, Y., Pu, S., et al. (2023) Multifunctional Nano-Realgar Hydrogel for Enhanced Glioblastoma Synergistic Chemotherapy and Radiotherapy: A New Paradigm of an Old Drug. International Journal of Nanomedicine, 18, 743-763. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xiao, S., Wang, L., Han, W., Gu, L., Cui, X. and Wang, C. (2022) Novel Deep Eutectic Solvent-Hydrogel Systems for Synergistic Transdermal Delivery of Chinese Herb Medicine and Local Treatments for Rheumatoid Arthritis. Pharmaceutical Research, 39, 2431-2446. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tan, H., Jin, D., Sun, J., Song, J., Lu, Y., Yin, M., et al. (2021) Enlisting a Traditional Chinese Medicine to Tune the Gelation Kinetics of a Bioactive Tissue Adhesive for Fast Hemostasis or Minimally Invasive Therapy. Bioactive Materials, 6, 905-917. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Qiu, Z., Fu, K., Yu, D., Luo, J., Shang, J., Luo, S., et al. (2022) Radix Astragali Residue-Derived Porous Amino-Laced Double-Network Hydrogel for Efficient Pb(II) Removal: Performance and Modeling. Journal of Hazardous Materials, 438, Article ID: 129418. [Google Scholar] [CrossRef] [PubMed]
|