中药提取物合成材料的研究进展
Research Progress on Synthetic Materials of Traditional Chinese Medicine Extracts
DOI: 10.12677/acm.2024.14102733, PDF, HTML, XML,    科研立项经费支持
作者: 张晓雅, 黄天纵, 朱蓉雪, 罗晓敏, 姜迎萍*:暨南大学附属广东省第二人民医院康复医学中心,广东 广州
关键词: 中药提取物新型材料综述Traditional Chinese Medicine Extract New Material Review
摘要: 大量研究表明中药的天然产物具有良好的抗炎、抑菌活性,并可以逆转耐药、抑制肿瘤细胞,充分利用中医药宝藏,研究具有抗炎、抗真菌、抗病毒、抗氧化及抑制肿瘤细胞等作用的中药及单药提取物,对临床治疗感染、肿瘤和新型载药材料研发具有重要作用。研究证明中药提取物可合成多种材料,如金、银纳米粒子和凝胶制剂等,且具有明显的抗炎、抑菌、促进伤口愈合和抑制肿瘤细胞等作用,中药单药有效成分应用已成为研究热点,现将近年此领域相关研究进行综述。
Abstract: A large number of studies have shown that the natural products of traditional Chinese medicine have good anti-inflammatory and antibacterial activities, can reverse drug resistance, inhibit tumor cells, and make full use of the treasure of traditional Chinese medicine. The study of traditional Chinese medicine and single drug extracts with anti-inflammatory, antifungal, antiviral, antioxidant and inhibitory effects on tumor cells plays an important role in clinical treatment of infection, tumor and research and development of new drug-carrying materials. It has been proved that the extract of traditional Chinese medicine can synthesize a variety of materials, such as gold, silver nanoparticles and gel preparations, and has obvious effects of anti-inflammation, bacteriostasis, promoting wound healing and inhibiting tumor cells. It has become a research hotspot in the application of effective components of traditional Chinese medicine, and the related research in this field in recent years is reviewed.
文章引用:张晓雅, 黄天纵, 朱蓉雪, 罗晓敏, 姜迎萍. 中药提取物合成材料的研究进展[J]. 临床医学进展, 2024, 14(10): 817-824. https://doi.org/10.12677/acm.2024.14102733

1. 引言

大量研究表明中药的天然产物具有良好的抗炎、抑菌活性[1],并可以逆转耐药、抑制肿瘤细胞[2],因此,充分利用中医药宝藏,研究具有抗炎、抗真菌、抗病毒、抗氧化及抑制肿瘤细胞等作用的中药及单药提取物,对临床治疗感染、肿瘤和新型载药材料研发具有重要作用。在本文中,我们回归了近年中药提取物合成纳米粒子和凝胶制剂的相关研究,概述了具有中药活性的纳米粒子和凝胶制剂在医学中的潜在应用。

2. 中药的抗炎作用

Chang-Liang Chen [3]等对81种不同中药进行研究后发现,具有抗炎作用的中药具有的共同特点是味辛、苦,性温,归肺、肝经。通过对红花、菊花、绞股蓝、余甘子和桑叶等16种草药进行研究,发现余甘子提取物具有显著抗氧化活性,桑叶提取物具有显著的抗炎活性,可抑制IL-6和TNF-α [4]。何首乌的主要活性成分具有抗衰老、抗炎、保肝、抗氧化的作用,并有助于预防和治疗阿尔茨海默病[5]。随着中医逐步被国际认可,越来越多的人认识和接受中医。针对中药的研究日渐增多,已明确具有抗炎作用的中药还有雷公藤[6]、穿心莲[7] [8]、黄连[9]等。

在抗病毒研究方面,姜黄素被证明可在体外抑制甲型流感病毒(IAV),并减轻感染IAV小鼠疾病的严重程度[10]。大黄素通过Nrf2、TLR4、p38/JNK和NF-KappaB途径抑制IAV复制,还提高了小鼠的存活率,降低炎症细胞因子的水平,并改善了肺部病理学组织变化[11]

研究还发现在神经精神疾病中,如抑郁症、阿尔茨海默病和帕金森病,抗炎似乎是中药治疗的生物学途径[12]

不论是抗炎、抑菌、抗病毒还是抗氧化,中药都具有良好的治疗作用[1] [13] [14]。进一步延长药物作用时间、增强药物治疗效果,成为该领域的研究热点(图1)。

3. 具有中药活性的纳米粒子

将中药提取物与纳米粒子合成具植物活性的纳米粒子可进一步提高粒子的治疗作用(表1)。如紫花地丁,内服可清热解毒、凉血消肿,外用可治跌打损伤、痈肿等。其提取物与纳米银离子合成,获得了具有植物活性的纳米银离子合成物,并证实该生物合成物能很好地抑制细菌和真菌的生物膜形成,并表现出良好的体外细胞生物相容性,从而起到抑菌杀菌作用,并促进伤口愈合[15]。此外,紫花地丁的提取物合成二氧化锰纳米粒子有更优异的抗菌、抗真菌和生物膜抑制性能,同时还有显著的抗氧化潜力[16]。紫花地丁合成金纳米粒子也展现出较好的抗菌和抑制生物膜形成的作用,对MCF-7黑色素细胞瘤具有显著细胞毒性[17]

Figure 1. Chinese herbal medicines and their extracts have significant inhibitory inflammatory response, antibacterial, antiviral and antioxidant effects

1. 中药及其提取物具有显著的抑制炎症反应、抑菌、抗病毒和抗氧化作用

车前草叶乙醇提取物的纳米银粒子具有更强的抗菌能力[18]。卷叶飞蓟生物合成纳米银对革兰氏阴性菌大肠杆菌和革兰氏阳性菌藤黄微球菌均表现出抗菌活性[19]。大黄根的水提取物合成了银纳米粒子对金黄色葡萄球菌和铜绿假单胞菌表现出显著的活性[20]。甘草根的水提取物可绿色合成金纳米粒子和氯化银纳米粒子,两种粒子均具有自由基清除活性,合成后的氯化银纳米粒子对大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌和肠沙门氏菌具有有效抗菌作用[21]

部分中药合成纳米粒子不仅有抗炎抑菌作用,还有抗肿瘤作用[22]。砂仁干果的水提取物合成的金、银纳米粒子均表现出针对2,2-二苯基-1-三硝基苯肼的自由基清除活性,并成功还原了亚甲基蓝,此外,砂仁提取物合成的银纳米粒子对金黄色葡萄球菌和大肠杆菌具有抑菌作用,砂仁提取物合成的金纳米粒子对乳腺癌细胞具有潜在细胞毒性[23]。大戟水乳胶提取物合成银纳米粒子后除对奇异假单胞菌、霍乱弧菌和大肠杆菌有抗菌作用外,还对传播疾病的吸血寄生虫(如致倦库蚊和埃及伊蚊(第三龄幼虫))表现出显著的杀幼虫活性,也对人宫颈癌细胞具有潜在抗癌活性[24]。狼毒的水提取物合成金纳米粒子和银纳米粒子后也表现出一定的抗癌活性或抑菌作用[25]。蒲公英合成银纳米粒子,对人肝癌细胞(HepG2)显示出高细胞毒性作用,有开发为抗癌药物的潜力[26]。决明子叶提取物处理银离子后获得的生物合成银纳米粒子对枯草芽孢杆菌、金黄色葡萄球菌、克鲁氏念珠菌和须毛癣菌有潜在抗菌和抗真菌活性,并对A-431皮肤癌细胞系表现出有效的细胞毒性[27]

Table 1. Synthesis of herbal extract nanoparticles and their biological effects

1. 中草药提取物纳米粒的合成及其生物学效应

Herbal

Used Parts

Synthetic nanoparticle types

Target Pathogens

References

Viola betonicifolia

Leaf extract

Ag NP

H. pylori, S. epidermidis, C. tropicalis, and T. rubrum

[15]

Viola betonicifolia

Leaf extract

MnO2 NP

K. pneumoniae and S. aureus

[16]

Viola betonicifolia

Leaf extract

Au NP

S. aureus, B. subtilis, E. coli, P. aeruginosa,

C. albicans, A. fumigatus, A. flavus, A. nige and MCF-7 Cells

[17]

Plantago major

Leaf extract

Ag NP

S. aureus, E. coli and P. aeruginosa. L

[18]

Carduus crispus

Plant extract

Ag NP

E. coli, M. luteus

[19]

Rheum palmatum

Root extract

Ag NP

S. aureus, P. aeruginosa

[20]

Glycyrrhiza uralensis

Root extract

Au NP

Free radical and murine macrophage (RAW264.7)

[21]

Glycyrrhiza uralensis

Root extract

AgCl NP

E. coli, S. aureus, P. aeruginosa, S. enterica and breast cancer cell lines (MCF7)

[21]

Amomum villosum

Dried fruit extract

Ag NP

S. aureus, E. coli

[23]

Amomum villosum

Dried fruit extract

Au NP

Breast cancer cells

[23]

Euphorbia antiquorum

Latex extract

Ag NP

P. mirabilis, V. cholerae and E. faecalis.

Culex quinquefasciatus and Aedes aegypti (IIIrd instar larvae).

Human cervical carcinoma cells (HeLa)

[24]

Euphrasia officinalis

Leaf extract

Ag NP

P. aeruginosa, E. coli, S. aureus and V. parahaemolyticus.

Human lung cancer (A549) and human cervical cancer

[25]

Euphrasia officinalis

Leaf extract

Au NP

Human cervical cancer

[25]

Taraxacum officinale

Leaf extract

Ag NP

Human liver cancer cells (HepG2)

[26]

Cassia fistula

Leaf extract

Ag NP

B. subtilis, S. aureus, C. kruseii and T. mentagrophytes.

A-431 skin cancer cell

[27]

临床应用中,雷公藤内酯醇通过纳米载体可以在血液中维持稳定循环,避免被网状内皮系统捕获排出体外;粉防己碱固体纳米粒会增加粉防己碱被网状内皮系统器官摄取,激活免疫系统,抑制炎症因子产生[28]。纳米制剂不仅可以改善中药成分在体内的物理化学性质,还可以通过局部给药的方式减少活性成分对机体的副作用。

除将中药提取物合成为金、银等纳米粒子外,中药提取物也常制作为水凝胶制剂,用于临床。

4. 具有中药活性成分的水凝胶制剂

凝胶剂具有涂展性好,易于清洗、患者易于接受、制备工艺简单等优点,可通过皮肤、口腔、眼黏膜等多种途径给药(图2)。

牡丹皮为临床常用药物,具有清热凉血、活血化瘀的功效。牡丹皮水凝胶制剂对革兰氏阳性菌、金黄色葡萄球菌表现出较强的抗菌作用[29]。含有牡丹皮提取物的原位热敏泊洛沙姆407/羧甲基纤维素钠复合水凝胶制剂用于治疗特应性皮炎,具有药物和水分供给的双重功能[30]

皮肤伤口,特别是感染后形成慢性伤口,因发病率高且治疗效果不佳引起全世界的关注。壳聚糖和葛根素的自组装制备中草药基水凝胶,该水凝胶的抗菌率超过95%,伤口闭合率是对照组的两倍[31]

牙周炎的治疗主要集中在控制炎症发展、减少菌斑积聚和促进骨组织重建。补骨脂素是一种具有抗炎、抗菌和成骨作用的中草药,使用可注射性甲基丙烯酸酯明胶载药,载药后的甲基丙烯酸酯明胶具有流动性、轻粘合性、自愈合性和缓释性等特性,可以更好应用于牙周袋的深窄结构中,增加了局部给药的有效性[32]

多种中药提取物均被证明具有抗肿瘤作用。双氢青蒿素借助水凝胶平台治疗肿瘤在小鼠体内实验中取得显著效果[33]。雄黄作为一种传统矿物中药,溶解度低,人体吸收较差,制成纳米雄黄水凝胶后通过化疗和放疗的协同作用,有效抑制肿瘤细胞的增殖和迁移,抑制肿瘤生长,改善运动协调性,延长肿瘤小鼠的生存期[34]

不同于中药单体合成纳米粒子,水胶体体系可承载中药成药有效成分。三乌胶丸作为成药,其提取物制成水胶体在关节炎大鼠模型中发挥了增强的治疗效果,显著降低了炎症反应和提取物的全身毒性[35]

Figure 2. Synthetic hydrogel formulations of Chinese herbal extracts have a wide range of effects

2. 中药提取物合成水凝胶制剂作用广泛

中药不但可以制成水凝胶剂进行给药,还可以调节凝胶反应速率。硼砂可调节酰胺化反应触发系统的凝胶速率,此外由于硼砂的生物活性,可以提高凝胶的抗菌能力[36]

不仅中药和中药提取物可作为有效治疗成分,中药残渣亦可进行再利用。黄芪的中药残渣转化为高性能凝胶,可吸附重金属,实现高效去除重金属,既可解决黄芪残渣的处理问题,又可改善重金属污染[37]

5. 总结

近年来关于中药和中药有效成分的研究逐渐增多,以新型材料为载药平台已成为研究热点。虽然能通过观察细胞或分子的变化,分析其可能存在的作用机制,但是信号通路的机制仍需进一步研究。笔者认为后续研究还需开展更多更深入的机制探讨和临床应用观察,以切实提高中药的临床使用,发挥中医药的治疗优势。

基金项目

广东省医学科学技术研究基金项目[B2024129]。

NOTES

*通讯作者。

参考文献

[1] 李哲, 杨寒淞, 曹应葵, 等. 50种中药提取物体外抗菌活性研究[J]. 皮肤病与性病, 2022, 44(3): 202-205.
[2] 冯子强. 中药有效成分抑制肿瘤细胞迁移和逆转多药耐药的实验研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2015.
[3] Chen, C. and Zhang, D. (2014) Anti-Inflammatory Effects of 81 Chinese Herb Extracts and Their Correlation with the Characteristics of Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 985176.
https://doi.org/10.1155/2014/985176
[4] Huq, M.A., Ashrafudoulla, M., Rahman, M.M., Balusamy, S.R. and Akter, S. (2022) Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers, 14, Article No. 742.
https://doi.org/10.3390/polym14040742
[5] Qian, J., Hou, M., Wu, X., Dai, C., Sun, J. and Dong, L. (2020) A Review on the Extraction, Purification, Detection, and Pharmacological Effects of 2,3,5,4’-Tetrahydroxystilbene-2-O-Β-D-Glucoside from Polygonum Multiflorum. Biomedicine & Pharmacotherapy, 124, Article ID: 109923.
https://doi.org/10.1016/j.biopha.2020.109923
[6] Liu, P., Zhang, J., Wang, Y., Shen, Z., Wang, C., Chen, D., et al. (2021) The Active Compounds and Therapeutic Target of Tripterygium wilfordii hook. f. in Attenuating Proteinuria in Diabetic Nephropathy: A Review. Frontiers in Medicine, 8, Article ID: 747922.
https://doi.org/10.3389/fmed.2021.747922
[7] Kumar, S., Singh, B. and Bajpai, V. (2021) Andrographis paniculata (burm.f.) Nees: Traditional Uses, Phytochemistry, Pharmacological Properties and Quality Control/Quality Assurance. Journal of Ethnopharmacology, 275, Article ID: 114054.
https://doi.org/10.1016/j.jep.2021.114054
[8] Adiguna, S.P., Panggabean, J.A., Swasono, R.T., Rahmawati, S.I., Izzati, F., Bayu, A., et al. (2023) Evaluations of Andrographolide-Rich Fractions of Andrographis paniculata with Enhanced Potential Antioxidant, Anticancer, Antihypertensive, and Anti-Inflammatory Activities. Plants, 12, Article No. 1220.
https://doi.org/10.3390/plants12061220
[9] Chen, Q., Ren, R., Zhang, Q., Wu, J., Zhang, Y., Xue, M., et al. (2021) Coptis Chinensis Franch Polysaccharides Provide a Dynamically Regulation on Intestinal Microenvironment, Based on the Intestinal Flora and Mucosal Immunity. Journal of Ethnopharmacology, 267, Article ID: 113542.
https://doi.org/10.1016/j.jep.2020.113542
[10] Ti, H. (2021) Phytochemical Profiles and Their Anti-Inflammatory Responses against Influenza from Traditional Chinese Medicine or Herbs. Mini-Reviews in Medicinal Chemistry, 20, 2153-2164.
https://doi.org/10.2174/1389557520666200807134921
[11] Dai, J., Wang, Q., Su, Y., Gu, L., Zhao, Y., Chen, X., et al. (2017) Emodin Inhibition of Influenza a Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, P38/jnk and Nf-Kappab Pathways. Molecules, 22, Article No. 1754.
https://doi.org/10.3390/molecules22101754
[12] Tsai, S., Nithiyanantham, S., Satyanarayanan, S.K. and Su, K. (2023) Anti-Inflammatory Effect of Traditional Chinese Medicine on the Concept of Mind-Body Interface. In: Kim, Y.-K., Ed., Neuroinflammation, Gut-Brain Axis and Immunity in Neuropsychiatric Disorders, Springer Nature, 435-458.
https://doi.org/10.1007/978-981-19-7376-5_19
[13] 魏雅雯, 李谨彤, 任夏, 等. 基于数据驱动分析的抗病毒中药分布规律[J]. 中草药, 2021(16): 4959-4972.
[14] 华玉洁. 13种中药查耳酮抗氧化机制与产物的研究[D]: [硕士学位论文]. 广州: 广州中医药大学, 2022.
[15] Jang, Y., Zhang, X., Zhu, R., Li, S., Sun, S., Li, W., et al. (2022) Viola betonicifolia-Mediated Biosynthesis of Silver Nanoparticles for Improved Biomedical Applications. Frontiers in Microbiology, 13, Article ID: 891144.
https://doi.org/10.3389/fmicb.2022.891144
[16] Lu, H., Zhang, X., Khan, S.A., Li, W. and Wan, L. (2021) Biogenic Synthesis of MnO2 Nanoparticles with Leaf Extract of Viola betonicifolia for Enhanced Antioxidant, Antimicrobial, Cytotoxic, and Biocompatible Applications. Frontiers in Microbiology, 12, Article ID: 761084.
https://doi.org/10.3389/fmicb.2021.761084
[17] Wang, M., Meng, Y., Zhu, H., Hu, Y., Xu, C., Chao, X., et al. (2021) Green Synthesized Gold Nanoparticles Using Viola betonicifolia Leaves Extract: Characterization, Antimicrobial, Antioxidant, and Cytobiocompatible Activities. International Journal of Nanomedicine, 16, 7319-7337.
https://doi.org/10.2147/ijn.s323524
[18] Sukweenadhi, J., Setiawan, K.I., Avanti, C., Kartini, K., Rupa, E.J. and Yang, D. (2021) Scale-Up of Green Synthesis and Characterization of Silver Nanoparticles Using Ethanol Extract of Plantago major L. Leaf and Its Antibacterial Potential. South African Journal of Chemical Engineering, 38, 1-8.
https://doi.org/10.1016/j.sajce.2021.06.008
[19] Urnukhsaikhan, E., Bold, B., Gunbileg, A., Sukhbaatar, N. and Mishig-Ochir, T. (2021) Antibacterial Activity and Characteristics of Silver Nanoparticles Biosynthesized from Carduus Crispus. Scientific Reports, 11, Article No. 21047.
https://doi.org/10.1038/s41598-021-00520-2
[20] Arokiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y.K. and Kim, K.H. (2016) Green Synthesis of Silver Nanoparticles Using Rheum palmatum Root Extract and Their Antibacterial Activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artificial Cells, Nanomedicine, and Biotechnology, 45, 372-379.
https://doi.org/10.3109/21691401.2016.1160403
[21] Huo, Y., Singh, P., Kim, Y.J., Soshnikova, V., Kang, J., Markus, J., et al. (2017) Biological Synthesis of Gold and Silver Chloride Nanoparticles by Glycyrrhiza uralensis and in Vitro Applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 303-312.
https://doi.org/10.1080/21691401.2017.1307213
[22] 韩淑兰. 载黄芩苷多功能纳米粒构建及抗肿瘤研究[D]: [博士学位论文]. 哈尔滨: 东北林业大学, 2020.
[23] Soshnikova, V., Kim, Y.J., Singh, P., Huo, Y., Markus, J., Ahn, S., et al. (2017) Cardamom Fruits as a Green Resource for Facile Synthesis of Gold and Silver Nanoparticles and Their Biological Applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 108-117.
https://doi.org/10.1080/21691401.2017.1296849
[24] Rajkuberan, C., Prabukumar, S., Sathishkumar, G., Wilson, A., Ravindran, K. and Sivaramakrishnan, S. (2017) Facile Synthesis of Silver Nanoparticles Using Euphorbia antiquorum L. Latex Extract and Evaluation of Their Biomedical Perspectives as Anticancer Agents. Journal of Saudi Chemical Society, 21, 911-919.
https://doi.org/10.1016/j.jscs.2016.01.002
[25] Singh, H., Du, J., Singh, P. and Yi, T.H. (2017) Ecofriendly Synthesis of Silver and Gold Nanoparticles by Euphrasia officinalis Leaf Extract and Its Biomedical Applications. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1163-1170.
https://doi.org/10.1080/21691401.2017.1362417
[26] Saratale, R.G., Benelli, G., Kumar, G., Kim, D.S. and Saratale, G.D. (2017) Bio-Fabrication of Silver Nanoparticles Using the Leaf Extract of an Ancient Herbal Medicine, Dandelion (Taraxacum officinale), Evaluation of Their Antioxidant, Anticancer Potential, and Antimicrobial Activity against Phytopathogens. Environmental Science and Pollution Research, 25, 10392-10406.
https://doi.org/10.1007/s11356-017-9581-5
[27] Mohanta, Y.K., Panda, S.K., Biswas, K., Tamang, A., Bandyopadhyay, J., De, D., et al. (2016) Biogenic Synthesis of Silver Nanoparticles from Cassia fistula (Linn.): In Vitro Assessment of Their Antioxidant, Antimicrobial and Cytotoxic Activities. IET Nanobiotechnology, 10, 438-444.
https://doi.org/10.1049/iet-nbt.2015.0104
[28] Wang, H. and Wang, M. (2019) Nanometer Preparation of Traditional Chinese Medicine for Rheumatoid Arthritis. China Journal of Chinese Materia Medica, 44, 3908-3916.
[29] Chatterjee, S., Hui, P.C., Siu, W.S., Kan, C., Leung, P., Wanxue, C., et al. (2021) Influence of Ph-Responsive Compounds Synthesized from Chitosan and Hyaluronic Acid on Dual-Responsive (Ph/Temperature) Hydrogel Drug Delivery Systems of Cortex Moutan. International Journal of Biological Macromolecules, 168, 163-174.
https://doi.org/10.1016/j.ijbiomac.2020.12.035
[30] Wang, W., Hui, P.C.L., Wat, E., Ng, F.S.F., Kan, C., Wang, X., et al. (2016) In Vitro Drug Release and Percutaneous Behavior of Poloxamer-Based Hydrogel Formulation Containing Traditional Chinese Medicine. Colloids and Surfaces B: Biointerfaces, 148, 526-532.
https://doi.org/10.1016/j.colsurfb.2016.09.036
[31] Chen, B., Zhang, H., Qiu, J., Wang, S., Ouyang, L., Qiao, Y., et al. (2022) Mechanical Force Induced Self-Assembly of Chinese Herbal Hydrogel with Synergistic Effects of Antibacterial Activity and Immune Regulation for Wound Healing. Small, 18, Article ID: 2201766.
https://doi.org/10.1002/smll.202201766
[32] Zhang, Q., Chu, F., Xu, Y., Wu, X., Yu, J., Cong, B., et al. (2023) Osteogenesis Promotion by Injectable Methacryloylated Gelatin Containing Psoralen and Its Bacteriostatic Properties. IET Nanobiotechnology, 17, 376-386.
https://doi.org/10.1049/nbt2.12136
[33] Chen, D., Chen, C., Huang, C., Chen, T. and Liu, Z. (2020) Injectable Hydrogel for NIR-II Photo-Thermal Tumor Therapy and Dihydroartemisinin-Mediated Chemodynamic Therapy. Frontiers in Chemistry, 8, Article No. 251.
https://doi.org/10.3389/fchem.2020.00251
[34] Wang, Y., Wei, Y., Wu, Y., Zong, Y., Song, Y., Pu, S., et al. (2023) Multifunctional Nano-Realgar Hydrogel for Enhanced Glioblastoma Synergistic Chemotherapy and Radiotherapy: A New Paradigm of an Old Drug. International Journal of Nanomedicine, 18, 743-763.
https://doi.org/10.2147/ijn.s394377
[35] Xiao, S., Wang, L., Han, W., Gu, L., Cui, X. and Wang, C. (2022) Novel Deep Eutectic Solvent-Hydrogel Systems for Synergistic Transdermal Delivery of Chinese Herb Medicine and Local Treatments for Rheumatoid Arthritis. Pharmaceutical Research, 39, 2431-2446.
https://doi.org/10.1007/s11095-022-03239-5
[36] Tan, H., Jin, D., Sun, J., Song, J., Lu, Y., Yin, M., et al. (2021) Enlisting a Traditional Chinese Medicine to Tune the Gelation Kinetics of a Bioactive Tissue Adhesive for Fast Hemostasis or Minimally Invasive Therapy. Bioactive Materials, 6, 905-917.
https://doi.org/10.1016/j.bioactmat.2020.10.011
[37] Qiu, Z., Fu, K., Yu, D., Luo, J., Shang, J., Luo, S., et al. (2022) Radix Astragali Residue-Derived Porous Amino-Laced Double-Network Hydrogel for Efficient Pb(II) Removal: Performance and Modeling. Journal of Hazardous Materials, 438, Article ID: 129418.
https://doi.org/10.1016/j.jhazmat.2022.129418