[1]
|
Lewis, N.S. (2016) Research Opportunities to Advance Solar Energy Utilization. Science, 351, aad1920. https://doi.org/10.1126/science.aad1920
|
[2]
|
Aslam, A., Ahmed, N., Qureshi, S.A., Assadi, M. and Ahmed, N. (2022) Advances in Solar PV Systems; a Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques. Energies, 15, Article 7595. https://doi.org/10.3390/en15207595
|
[3]
|
Liu, G., Xu, J. and Wang, K. (2017) Solar Water Evaporation by Black Photothermal Sheets. Nano Energy, 41, 269-284. https://doi.org/10.1016/j.nanoen.2017.09.005
|
[4]
|
Wang, P. (2018) Emerging Investigator Series: The Rise of Nano-Enabled Photothermal Materials for Water Evaporation and Clean Water Production by Sunlight. Environmental Science: Nano, 5, 1078-1089. https://doi.org/10.1039/c8en00156a
|
[5]
|
Guo, L., Burda, C. and Liu, M. (2020) Special Section Guest Editorial: Advanced Materials and Devices for Solar Driven Liquid Fuel and Hydrogen Production. Journal of Photonics for Energy, 10, Article ID: 023501. https://doi.org/10.1117/1.jpe.10.023501
|
[6]
|
Roy, N., Suzuki, N., Terashima, C. and Fujishima, A. (2019) Recent Improvements in the Production of Solar Fuels: From CO2 Reduction to Water Splitting and Artificial Photosynthesis. Bulletin of the Chemical Society of Japan, 92, 178-192. https://doi.org/10.1246/bcsj.20180250
|
[7]
|
Chen, X., Zhao, J., Li, G., Zhang, D. and Li, H. (2022) Recent Advances in Photocatalytic Renewable Energy Production. Energy Materials, 2, Article ID: 200001. https://doi.org/10.20517/energymater.2021.24
|
[8]
|
Dominguez, J.R., Gonzalez, T., Cuerda-Correa, E.M. and Muñoz-Peña, M.J. (2019) Combating Paraben Pollution in Surface Waters with a Variety of Photocatalyzed Systems: Looking for the Most Efficient Technology. Open Chemistry, 17, 1317-1327. https://doi.org/10.1515/chem-2019-0133
|
[9]
|
Shah, Z., Arshad, T., Shaheen, K., Khan, S.B., Salman, S.M. and Uddin, A. (2021) Recent and Future Prospective of Various Photo-Catalysts for Environmental Pollution and Energy Production: A Review. Surface Review and Letters, 28, Article ID: 2130002. https://doi.org/10.1142/s0218625x21300021
|
[10]
|
Boonen, E. and Beeldens, A. (2014) Recent Photocatalytic Applications for Air Purification in Belgium. Coatings, 4, 553-573. https://doi.org/10.3390/coatings4030553
|
[11]
|
吕鲲, 张庆竹. 纳米二氧化钛光催化技术与大气污染治理[J]. 中国环境科学, 2018, 38(3): 852-861.
|
[12]
|
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293, 269-271. https://doi.org/10.1126/science.1061051
|
[13]
|
Kong, M., Li, Y., Chen, X., Tian, T., Fang, P., Zheng, F., et al. (2011) Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. Journal of the American Chemical Society, 133, 16414-16417. https://doi.org/10.1021/ja207826q
|
[14]
|
曹周明. 羟基锡酸盐微纳材料的合成及其催化性能研究[D]: [硕士学位论文]. 福州: 福州大学, 2016.
|
[15]
|
Wang, H., Yuan, X., Wu, Y., Zeng, G., Tu, W., Sheng, C., et al. (2017) Plasmonic Bi Nanoparticles and Biocl Sheets as Cocatalyst Deposited on Perovskite-Type ZnSn(Oh)6 Microparticle with Facet-Oriented Polyhedron for Improved Visible-Light-Driven Photocatalysis. Applied Catalysis B: Environmental, 209, 543-553. https://doi.org/10.1016/j.apcatb.2017.03.024
|
[16]
|
潘睿. 羟基锡酸锶及其复合物光催化降解甲苯的性能研究[D]: [硕士学位论文]. 重庆: 重庆工商大学, 2021.
|
[17]
|
Fu, X., Wang, X., Ding, Z., Leung, D.Y.C., Zhang, Z., Long, J., et al. (2009) Hydroxide ZnSn(Oh)6: A Promising New Photocatalyst for Benzene Degradation. Applied Catalysis B: Environmental, 91, 67-72. https://doi.org/10.1016/j.apcatb.2009.05.007
|
[18]
|
Wang, L., Tang, K., Liu, Z., Wang, D., Sheng, J. and Cheng, W. (2011) Single-Crystalline ZnSn(Oh)6 Hollow Cubes via Self-Templated Synthesis at Room Temperature and Their Photocatalytic Properties. Journal of Materials Chemistry, 21, 4352-4357. https://doi.org/10.1039/c0jm03734f
|
[19]
|
Lu, Y., Huang, Y., Cao, J., Li, H., Ho, W. and Lee, S.C. (2019) Constructing Z-Scheme SnO2/N-Doped Carbon Quantum Dots/ZnSn(OH)6 Nanohybrids with High Redox Ability for NOx Removal under VIS-NIR Light. Journal of Materials Chemistry A, 7, 15782-15793. https://doi.org/10.1039/c9ta03504d
|
[20]
|
徐少东, 李栋, 郭学益, 等. Ca-Al-Cl型层状双金属氢氧化物用于强碱性溶液中六价硒的去除[J]. 中国有色金属学报(英文版), 2019, 29(8): 1763-1775.
|
[21]
|
Li, Y., Tian, X., Wang, Y., Yang, Q., Diao, Y., Zhang, B., et al. (2019) In Situ Construction of a MgSn(OH)6 Perovskite/SnO2 Type-II Heterojunction: A Highly Efficient Photocatalyst Towards Photodegradation of Tetracycline. Nanomaterials, 10, Article 53. https://doi.org/10.3390/nano10010053
|
[22]
|
Huang, D., Fu, X., Long, J., Jiang, X., Chang, L., Meng, S., et al. (2015) Hydrothermal Synthesis of MSn(OH)6 (M = Co, Cu, Fe, Mg, Mn, Zn) and Their Photocatalytic Activity for the Destruction of Gaseous Benzene. Chemical Engineering Journal, 269, 168-179. https://doi.org/10.1016/j.cej.2015.01.133
|
[23]
|
Ye, Q., Liu, C., Wu, P., Wu, J., Lin, L., Li, Y., et al. (2022) Insights into Photocatalytic Degradation of Phthalate Esters over MsNo3 Perovskites (M = Mg, Ca): Experiments and Density Functional Theory. Journal of Environmental Management, 307, Article ID: 114511. https://doi.org/10.1016/j.jenvman.2022.114511
|
[24]
|
Li, M., Tang, Y., Shi, W., Chen, F., Shi, Y. and Gu, H. (2018) Design of Visible-Light-Response Core-Shell Fe2O3/CuBi2O4 Heterojunctions with Enhanced Photocatalytic Activity towards the Degradation of Tetracycline: Z-Scheme Photocatalytic Mechanism Insight. Inorganic Chemistry Frontiers, 5, 3148-3154. https://doi.org/10.1039/c8qi00906f
|
[25]
|
Kudo, A. and Miseki, Y. (2009) Heterogeneous Photocatalyst Materials for Water Splitting. Chemical Society Reviews, 38, 253-278. https://doi.org/10.1039/b800489g
|
[26]
|
Zhou, P., Yu, J. and Jaroniec, M. (2014) All‐Solid‐State Z‐Scheme Photocatalytic Systems. Advanced Materials, 26, 4920-4935. https://doi.org/10.1002/adma.201400288
|
[27]
|
Li, X., Xu, M., Shen, J., Wang, J., Zhu, L., Zhao, X., et al. (2023) Epitaxial-grafting Strategy to Boost Inert Hydroxide Photocatalytic Performance: A Case Study of SnOx-MgSn(OH)6. Journal of Catalysis, 428, Article ID: 115145. https://doi.org/10.1016/j.jcat.2023.115145
|
[28]
|
Li, Q., Guan, Z., Wu, D., Zhao, X., Bao, S., Tian, B., et al. (2017) Z-scheme BiOCL-Au-CdS Heterostructure with Enhanced Sunlight-Driven Photocatalytic Activity in Degrading Water Dyes and Antibiotics. ACS Sustainable Chemistry & Engineering, 5, 6958-6968. https://doi.org/10.1021/acssuschemeng.7b01157
|
[29]
|
Qin, Y., Xiong, J., Zhang, W., Liu, L., Cui, Y. and Gu, H. (2015) Facile Synthesis and Photocatalytic Performance of Mg2SnO4/SnO2 Heterostructures. Journal of Materials Science, 50, 5865-5872. https://doi.org/10.1007/s10853-015-9136-4
|
[30]
|
Nadernia, H.A., Haghighi, M. and Shabani, M. (2022) Textural/Structural Evolution of Cube/Cauliflower-Like MgSn(OH)6 Nanophotocatalyst with Excellent Photocatalytic Degradation of Toxic Dye Pollutants. Ceramics International, 48, 17385-17399. https://doi.org/10.1016/j.ceramint.2022.03.003
|
[31]
|
Tao, J., Sun, Z., Zhang, M., He, G. and Chen, X. (2017) Hydroxide MgSn(OH)6: A Promising New Photocatalyst for Methyl Orange Degradation. Electronic Materials Letters, 13, 339-343. https://doi.org/10.1007/s13391-017-6192-8
|
[32]
|
Wang, P., Xue, W., Ye, J., Zhang, R., Kumar, R., Cai, W., et al. (2024) Efficient Glucose Isomerization to Fructose Using Photoregenerable MgSnO3 Catalyst with Cooperative Acid‐base Sites. ChemSusChem, 17, e202400637. https://doi.org/10.1002/cssc.202400637
|
[33]
|
赖日裕. 多面体羟基锡酸盐MSn(OH)6(M = Zn, Mg)的可控合成及其催化性能研究[D]: [硕士学位论文]. 福州: 福州大学, 2013.
|
[34]
|
Meng, S., Li, D., Sun, M., Li, W., Wang, J., Chen, J., et al. (2011) Sonochemical Synthesis, Characterization and Photocatalytic Properties of a Novel Cube-Shaped CaSn(OH)6. Catalysis Communications, 12, 972-975. https://doi.org/10.1016/j.catcom.2011.02.026
|
[35]
|
Moshtaghi, S., Gholamrezaei, S. and Salavati Niasari, M. (2017) Nano Cube of CaSnO3: Facile and Green Co-Precipitation Synthesis, Characterization and Photocatalytic Degradation of Dye. Journal of Molecular Structure, 1134, 511-519. https://doi.org/10.1016/j.molstruc.2016.12.098
|
[36]
|
Baeissa, E.S. (2014) Novel Pd/CaSn(OH)6 Nanocomposite Prepared by Modified Sonochemical Method for Photocatalytic Degradation of Methylene Blue Dye. Journal of Alloys and Compounds, 590, 303-308. https://doi.org/10.1016/j.jallcom.2013.12.131
|
[37]
|
Wang, H., Dong, X., Tang, R., Li, J., Sun, Y., Wang, Z., et al. (2020) Selective Breakage of C H Bonds in the Key Oxidation Intermediates of Gaseous Formaldehyde on Self-Doped CaSn(OH)6 Cubes for Safe and Efficient Photocatalysis. Applied Catalysis B: Environmental, 277, Article ID: 119214. https://doi.org/10.1016/j.apcatb.2020.119214
|
[38]
|
Kong, H.J., Won, D.H., Kim, J. and Woo, S.I. (2016) Sulfur-Doped G-C3N4/BiVo4 Composite Photocatalyst for Water Oxidation under Visible Light. Chemistry of Materials, 28, 1318-1324. https://doi.org/10.1021/acs.chemmater.5b04178
|
[39]
|
Liang, C., Niu, C., Wen, X., Yang, S., Shen, M. and Zeng, G. (2017) Effective Removal of Colourless Pollutants and Organic Dyes by Ag@AgCl Nanoparticle-Modified CaSn(OH)6 Composite under Visible Light Irradiation. New Journal of Chemistry, 41, 5334-5346. https://doi.org/10.1039/c7nj00162b
|
[40]
|
Liu, T., Ma, X., Yang, L., Li, H., Li, H., Lee, S.W., et al. (2017) Highly Enhanced Photocatalytic Activity of CaSn(OH)6 through Tuning CaSn(OH)6/SnO2 Heterostructural Interaction and Optimizing Fe3+ Doping Concentration. Applied Catalysis B: Environmental, 217, 256-264. https://doi.org/10.1016/j.apcatb.2017.05.080
|
[41]
|
Wang, W., Bi, J., Wu, L., Li, Z. and Fu, X. (2009) Hydrothermal Synthesis and Catalytic Performances of a New Photocatalyst CaSnO3 with Microcube Morphology. Scripta Materialia, 60, 186-189. https://doi.org/10.1016/j.scriptamat.2008.10.001
|
[42]
|
Li, H., Gao, Y., Gao, D. and Wang, Y. (2019) Effect of Oxide Defect on Photocatalytic Properties of MsNo3 (M = Ca, Sr, and Ba) Photocatalysts. Applied Catalysis B: Environmental, 243, 428-437. https://doi.org/10.1016/j.apcatb.2018.10.076
|
[43]
|
Wang, J., Asakura, Y., Hasegawa, T. and Yin, S. (2022) Morphology and Facet Tailoring of CaSnO3 Assembled in Molten Salt with Defect-Mediated Photocatalytic Activity. Journal of Environmental Chemical Engineering, 10, Article ID: 108169. https://doi.org/10.1016/j.jece.2022.108169
|
[44]
|
Venkatesh, G., Palanisamy, G., Srinivasan, M., Vignesh, S., Elavarasan, N., Pazhanivel, T., et al. (2022) CaSnO3 Coupled G-C3N4S-Scheme Heterostructure Photocatalyst for Efficient Pollutant Degradation. Diamond and Related Materials, 124, Article ID: 108873. https://doi.org/10.1016/j.diamond.2022.108873
|
[45]
|
Luo, Y., Chen, J., Liu, J., Shao, Y., Li, X. and Li, D. (2016) Hydroxide SrSn(OH)6: A New Photocatalyst for Degradation of Benzene and Rhodamine B. Applied Catalysis B: Environmental, 182, 533-540. https://doi.org/10.1016/j.apcatb.2015.09.051
|
[46]
|
Xue, Z., Li, F., Yu, C., Huang, J., Tao, F., Cai, Z., et al. (2022) Low Temperature Synthesis of SnSr(OH)6 Nanoflowers and Photocatalytic Performance for Organic Pollutants. International Journal of Materials Research, 113, 80-90. https://doi.org/10.1515/ijmr-2021-8333
|
[47]
|
Zhang, W., Wang, Y., Wang, Y., Liang, Y. and Dong, F. (2022) Highly Efficient Photocatalytic NO Removal and in Situ DRIFTS Investigation on SrSn(OH)6. Chinese Chemical Letters, 33, 1259-1262. https://doi.org/10.1016/j.cclet.2021.07.065
|
[48]
|
He, W., Li, J., Hou, X., Chen, P., Wang, H., Dong, X., et al. (2022) Light-Induced Secondary Hydroxyl Defects in Sr1-xSn(OH)6 Enable Sustained and Efficient Photocatalytic Toluene Mineralization. Chemical Engineering Journal, 427, Article ID: 131764. https://doi.org/10.1016/j.cej.2021.131764
|
[49]
|
Deng, A., Yu, C., Xue, Z., Huang, J., Pan, H. and Pei, L. (2022) Rare Metal Doping of the Hexahydroxy Strontium Stannate with Enhanced Photocatalytic Performance for Organic Pollutants. Journal of Materials Research and Technology, 19, 1073-1089. https://doi.org/10.1016/j.jmrt.2022.05.104
|
[50]
|
Tao, F., Xue, Z., Huang, J., Li, F., Cai, Z. and Pei, L. (2022) Rb(Dy)-Doped SrSn(OH)6 for the Photodegradation of Gentian Violet. Journal of Materials Science: Materials in Electronics, 33, 17343-17360. https://doi.org/10.1007/s10854-022-08612-z
|
[51]
|
Fu, M., Kang, H., Zhao, D., Ren, H., He, Y., Bai, J., et al. (2023) Constructing ZnSn(OH)6/SrSn(OH)6 Perovskite-Structured Hydroxide Heterojunction to Enhance Photocatalytic Degradation of Toluene. Journal of Alloys and Compounds, 953, Article ID: 170113. https://doi.org/10.1016/j.jallcom.2023.170113
|
[52]
|
Pei, L., Zhang, Y., Zhuang, L., Tao, F. and Xue, Z. (2023) Facile Synthesis and Enhanced Photocatalytic Properties of La2O3/SrSn(OH)6 Nanorods. Current Nanoscience, 19, 449-458. https://doi.org/10.2174/1573413718666220701150802
|
[53]
|
Yang, L., Yu, Y., Yang, W., Li, X., Zhang, G., Shen, Y., et al. (2021) Efficient Visible Light Photocatalytic NO Abatement over SrSn(OH)6 Nanowires Loaded with Ag/Ag2O Cocatalyst. Environmental Research, 201, Article ID: 111521. https://doi.org/10.1016/j.envres.2021.111521
|
[54]
|
Faisal, M., Harraz, F.A., Ismail, A.A., Alsaiari, M.A., Al-Sayari, S.A. and Al-Assiri, M.S. (2019) Novel Synthesis of Polyaniline/SrSnO3 Nanocomposites with Enhanced Photocatalytic Activity. Ceramics International, 45, 20484-20492. https://doi.org/10.1016/j.ceramint.2019.07.027
|
[55]
|
Zhang, X., Hu, J., Cao, Y., Xie, J., Jia, W., Wang, S., et al. (2018) Insights into Crystal Facets of Perovskite SrSnO3 as High‐Performance Photocatalysts toward Environmental Remediation. Chemistry—A European Journal, 24, 14111-14118. https://doi.org/10.1002/chem.201803244
|
[56]
|
Chantelle, L., Menezes de Oliveira, A.L., Kennedy, B.J., Maul, J., da Silva, M.R.S., Duarte, T.M., et al. (2020) Probing the Site-Selective Doping in SrSnO3: Eu Oxides and Its Impact on the Crystal and Electronic Structures Using Synchrotron Radiation and DFT Simulations. Inorganic Chemistry, 59, 7666-7680. https://doi.org/10.1021/acs.inorgchem.0c00664
|
[57]
|
黄秋锋, 肖含兵, 张晓凤, 等. 氮硫共掺杂SrSnO3的制备及光催化降解染料研究[J]. 功能材料, 2016, 47(2): 2219-2223.
|
[58]
|
Tao, F., Li, F., Huang, J., Xue, Z., Yu, C., Cai, Z., et al. (2021) A General Hydrothermal Growth and Photocatalytic Performance of Barium Tin Hydroxide/Tin Dioxide Nanorods. Crystal Research and Technology, 57, Article ID: 2100156. https://doi.org/10.1002/crat.202100156
|
[59]
|
Wang, X., Zhou, X., Jin, R., Tan, T., Ma, H., Fang, R., et al. (2023) Defect-Poor BaSn(OH)6 Enhanced Charge Separation for Efficient Photocatalytic Degradation of Toluene. Journal of Environmental Sciences, 134, 86-95. https://doi.org/10.1016/j.jes.2022.10.036
|
[60]
|
杨莹. Eu离子掺杂对BaSnO3在水中光催化产氧性能的影响[D]: [硕士学位论文]. 兰州: 兰州大学, 2020.
|
[61]
|
Bimli, S., Mulani, S.R., Choudhary, E., Manjunath, V., Shinde, P., Jadkar, S.R., et al. (2024) Perovskite BaSnO3 Nanoparticles for Solar-Driven Bi-Functional Photocatalytic Activity: PEC Water Splitting and Wastewater Treatment. International Journal of Hydrogen Energy, 51, 1497-1507. https://doi.org/10.1016/j.ijhydene.2023.11.163
|
[62]
|
叶权运, 李想, 马晓蕊, 等. BaSnO3钙钛矿光催化降解邻苯二甲酸二乙酯的机理研究[J]. 中国环境科学, 2023, 43(3): 1208-1215.
|
[63]
|
王雪梅. 锡酸钡基钙钛矿材料光催化降解甲苯的性能与机理研究[D]: [硕士学位论文]. 重庆: 重庆工商大学, 2023.
|
[64]
|
Chen, X., Dong, Q., Chen, S., Zhang, Z., Zhang, X., Di, Y., et al. (2023) Halloysite Nanotubes Supported BiVo4/BaSnO3 P-N Heterojunction Photocatalysts for the Enhanced Degradation of Methylene Blue under Visible Light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 664, Article ID: 131143. https://doi.org/10.1016/j.colsurfa.2023.131143
|
[65]
|
Baoum, A.A. and Ismail, A.A. (2023) Enhanced Photocatalytic Efficiency of Highly Effective and Stable Perovskite BaSnO3 with Monoclinic Li2MnO3 Nanoparticles: Atrazine a Case Study of Herbicide. Ceramics International, 49, 23227-23237. https://doi.org/10.1016/j.ceramint.2023.04.152
|
[66]
|
Chen, S., Liu, R., Kuai, Z., Li, X., Lian, S., Jiang, D., et al. (2022) Facile Synthesis of a Novel BaSnO3/MXene Nanocomposite by Electrostatic Self-Assembly for Efficient Photodegradation of 4-Nitrophenol. Environmental Research, 204, Article ID: 111949. https://doi.org/10.1016/j.envres.2021.111949
|