|
[1]
|
Quigley, H.A. (2011) Glaucoma. The Lancet, 377, 1367-1377. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tham, Y., Li, X., Wong, T.Y., Quigley, H.A., Aung, T. and Cheng, C. (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology, 121, 2081-2090. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Khaw, P.T. (2004) Glaucoma—1: Diagnosis. BMJ, 328, 97-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, Z., Wiggs, J.L., Aung, T., Khawaja, A.P. and Khor, C.C. (2022) The Genetic Basis for Adult Onset Glaucoma: Recent Advances and Future Directions. Progress in Retinal and Eye Research, 90, Article ID: 101066. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Craig, J.E., Han, X., Qassim, A., Hassall, M., Cooke Bailey, J.N., Kinzy, T.G., et al. (2020) Multitrait Analysis of Glaucoma Identifies New Risk Loci and Enables Polygenic Prediction of Disease Susceptibility and Progression. Nature Genetics, 52, 160-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Stein, J.D., Khawaja, A.P. and Weizer, J.S. (2021) Glaucoma in Adults—Screening, Diagnosis, and Management. JAMA, 325, 164-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shi, N., Li, N., Duan, X. and Niu, H. (2017) Interaction between the Gut Microbiome and Mucosal Immune System. Military Medical Research, 4, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fang, P., Kazmi, S.A., Jameson, K.G. and Hsiao, E.Y. (2020) The Microbiome as a Modifier of Neurodegenerative Disease Risk. Cell Host & Microbe, 28, 201-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Rowan, S., Jiang, S., Korem, T., Szymanski, J., Chang, M., Szelog, J., et al. (2017) Involvement of a Gut-Retina Axis in Protection against Dietary Glycemia-Induced Age-Related Macular Degeneration. Proceedings of the National Academy of Sciences of the United States of America, 114, E4472-E4481. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Brown, E.M., Kenny, D.J. and Xavier, R.J. (2019) Gut Microbiota Regulation of T Cells during Inflammation and Autoimmunity. Annual Review of Immunology, 37, 599-624. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Baudouin, C., Kolko, M., Melik-Parsadaniantz, S. and Messmer, E.M. (2021) Inflammation in Glaucoma: From the Back to the Front of the Eye, and Beyond. Progress in Retinal and Eye Research, 83, Article ID: 100916. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sharon, G., Sampson, T.R., Geschwind, D.H. and Mazmanian, S.K. (2016) The Central Nervous System and the Gut Microbiome. Cell, 167, 915-932. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gong, H., Zhang, S., Li, Q., Zuo, C., Gao, X., Zheng, B., et al. (2020) Gut Microbiota Compositional Profile and Serum Metabolic Phenotype in Patients with Primary Open-Angle Glaucoma. Experimental Eye Research, 191, Article ID: 107921. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, Y., Zhou, X. and Lu, Y. (2022) Gut Microbiota and Derived Metabolomic Profiling in Glaucoma with Progressive Neurodegeneration. Frontiers in Cellular and Infection Microbiology, 12, Article 968992. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, H., Cho, K., Vu, T.H.K., Shen, C., Kaur, M., Chen, G., et al. (2018) Commensal Microflora-Induced T Cell Responses Mediate Progressive Neurodegeneration in Glaucoma. Nature Communications, 9, Article No. 3209. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chen, J., Chen, D.F. and Cho, K. (2023) The Role of Gut Microbiota in Glaucoma Progression and Other Retinal Diseases. The American Journal of Pathology, 193, 1662-1668. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zeng, J., Liu, H., Liu, X. and Ding, C. (2015) The Relationship between Helicobacter pylori Infection and Open-Angle Glaucoma: A Meta-Analysis. Investigative Opthalmology & Visual Science, 56, 5238-5245. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kurtz, S., Regenbogen, M., Goldiner, I., Horowitz, N. and Moshkowitz, M. (2008) No Association between Helicobacter Pylori Infection or CagA-Bearing Strains and Glaucoma. Journal of Glaucoma, 17, 223-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. and Davey Smith, G. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Burgess, S., Small, D.S. and Thompson, S.G. (2015) A Review of Instrumental Variable Estimators for Mendelian Randomization. Statistical Methods in Medical Research, 26, 2333-2355. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian Randomization’: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hemani, G., Zheng, J., Elsworth, B., Wade, K.H., Haberland, V., Baird, D., et al. (2018) The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. eLife, 7, e34408. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Swerdlow, D.I., Kuchenbaecker, K.B., Shah, S., Sofat, R., Holmes, M.V., White, J., et al. (2016) Selecting Instruments for Mendelian Randomization in the Wake of Genome-Wide Association Studies. International Journal of Epidemiology, 45, 1600-1616. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., Radjabzadeh, D., Wang, J., Demirkan, A., et al. (2021) Large-Scale Association Analyses Identify Host Factors Influencing Human Gut Microbiome Composition. Nature Genetics, 53, 156-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kurki, M.I., Karjalainen, J., Palta, P., Sipilä, T.P., Kristiansson, K., Donner, K.M., et al. (2023) Finngen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature, 613, 508-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Skrivankova, V.W., Richmond, R.C., Woolf, B.A.R., Yarmolinsky, J., Davies, N.M., Swanson, S.A., et al. (2021) Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA, 326, 1614-1621. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Boef, A.G.C., Dekkers, O.M. and le Cessie, S. (2015) Mendelian Randomization Studies: A Review of the Approaches Used and the Quality of Reporting. International Journal of Epidemiology, 44, 496-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Song, J., Wu, Y., Yin, X., Ma, H. and Zhang, J. (2023) The Causal Links between Gut Microbiota and COVID‐19: A Mendelian Randomization Study. Journal of Medical Virology, 95, e28784. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, S., Chen, M., Zhang, Q., Fang, M., Xiong, W. and Bai, L. (2023) Ankylosing Spondylitis and Glaucoma in European Population: A Mendelian Randomization Study. Frontiers in Immunology, 14, Article 1120742. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Burgess, S. and Thompson, S.G. (2011) Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. International Journal of Epidemiology, 40, 755-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hartwig, F.P., Davey Smith, G. and Bowden, J. (2017) Robust Inference in Summary Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption. International Journal of Epidemiology, 46, 1985-1998. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hemani, G., Bowden, J. and Davey Smith, G. (2018) Evaluating the Potential Role of Pleiotropy in Mendelian Randomization Studies. Human Molecular Genetics, 27, R195-R208. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Bowden, J. and Holmes, M.V. (2019) Meta-Analysis Andmendelianrandomization: A Review. Research Synthesis Methods, 10, 486-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bowden, J., Del Greco M, F., Minelli, C., Zhao, Q., Lawlor, D.A., Sheehan, N.A., et al. (2018) Improving the Accuracy of Two-Sample Summary-Data Mendelian Randomization: Moving Beyond the NOME Assumption. International Journal of Epidemiology, 48, 728-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Emdin, C.A., Khera, A.V. and Kathiresan, S. (2017) Mendelian Randomization. JAMA, 318, 1925-1926. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Fea, A.M., Ricardi, F., Novarese, C., Cimorosi, F., Vallino, V. and Boscia, G. (2023) Precision Medicine in Glaucoma: Artificial Intelligence, Biomarkers, Genetics and Redox State. International Journal of Molecular Sciences, 24, Article 2814. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Fan, D. (2017) Holistic Integrative Medicine: Toward a New Era of Medical Advancement. Frontiers of Medicine, 11, 152-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, K., Zou, J., Fan, H., Hu, H. and You, Z. (2022) Causal Effects of Gut Microbiota on Diabetic Retinopathy: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article 930318. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Collins, D.W., Gudiseva, H.V., Trachtman, B., et al. (2016) Association of Primary Open-Angle Glaucoma with Mitochondrial Variants and Haplogroups Common in African Americans. Molecular Vision, 22, 454-471.
|
|
[44]
|
Floyd, J.L. and Grant, M.B. (2020) The Gut-Eye Axis: Lessons Learned from Murine Models. Ophthalmology and Therapy, 9, 499-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Brandscheid, C., Schuck, F., Reinhardt, S., Schäfer, K., Pietrzik, C.U., Grimm, M., et al. (2017) Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer’s Mouse Model. Journal of Alzheimer’s Disease, 56, 775-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ma, J., Hong, Y., Zheng, N., Xie, G., Lyu, Y., Gu, Y., et al. (2020) Gut Microbiota Remodeling Reverses Aging-Associated Inflammation and Dysregulation of Systemic Bile Acid Homeostasis in Mice Sex-Specifically. Gut Microbes, 11, 1450-1474. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Jin, C., Zeng, Z., Fu, Z. and Jin, Y. (2016) Oral Imazalil Exposure Induces Gut Microbiota Dysbiosis and Colonic Inflammation in Mice. Chemosphere, 160, 349-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Li, Z., Lu, G., Li, Z., Wu, B., Luo, E., Qiu, X., et al. (2021) Altered Actinobacteria and Firmicutes Phylum Associated Epitopes in Patients with Parkinson’s Disease. Frontiers in Immunology, 12, Article 632482. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Biswas, L., Ibrahim, K.S., Li, X., Zhou, X., Zeng, Z., Craft, J., et al. (2021) Effect of a TSPO Ligand on Retinal Pigment Epithelial Cholesterol Homeostasis in High-Fat Fed Mice, Implication for Age-Related Macular Degeneration. Experimental Eye Research, 208, Article ID: 108625. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Liu, Y., Li, T., Alim, A., Ren, D., Zhao, Y. and Yang, X. (2019) Regulatory Effects of Stachyose on Colonic and Hepatic Inflammation, Gut Microbiota Dysbiosis, and Peripheral CD4+ T Cell Distribution Abnormality in High-Fat Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 67, 11665-11674. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bou Ghanem, G.O., Wareham, L.K. and Calkins, D.J. (2024) Addressing Neurodegeneration in Glaucoma: Mechanisms, Challenges, and Treatments. Progress in Retinal and Eye Research, 100, Article ID: 101261. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Gramlich, O.W., Beck, S., von Thun und Hohenstein-Blaul, N., Boehm, N., Ziegler, A., Vetter, J.M., et al. (2013) Enhanced Insight into the Autoimmune Component of Glaucoma: Igg Autoantibody Accumulation and Pro-Inflammatory Conditions in Human Glaucomatous Retina. PLOS ONE, 8, e57557. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hwang, I.K., Yoo, K., Li, H., Park, O.K., Lee, C.H., Choi, J.H., et al. (2009) Indole-3-Propionic Acid Attenuates Neuronal Damage and Oxidative Stress in the Ischemic Hippocampus. Journal of Neuroscience Research, 87, 2126-2137. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Kim, C., Jung, S., Hwang, G. and Shin, D. (2023) Gut Microbiota Indole-3-Propionic Acid Mediates Neuroprotective Effect of Probiotic Consumption in Healthy Elderly: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial and in Vitro Study. Clinical Nutrition, 42, 1025-1033. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Vajaranant, T.S., Nayak, S., Wilensky, J.T. and Joslin, C.E. (2010) Gender and Glaucoma: What We Know and What We Need to Know. Current Opinion in Ophthalmology, 21, 91-99. [Google Scholar] [CrossRef] [PubMed]
|