从遗传学角度来看肠道菌群对青光眼的因果效应:一项孟德尔随机化研究
Causal Effects of Gut Microbiota on Glaucoma from Genetic Perspective: A Mendelian Randomization Study
DOI: 10.12677/acm.2024.14102746, PDF, HTML, XML,   
作者: 陈奕玄*, 谢婷珂, 李卓晓:西安医学院研工部,陕西 西安;陈城明#:空军军医大学唐都医院眼科,陕西 西安
关键词: 肠道菌群青光眼因果效应孟德尔随机化Gut Microbiota Glaucoma Causal Effect Mendelian Randomization
摘要: 目的:探讨肠道菌群(GM)对青光眼、原发性开角型青光眼(POAG)和原发性闭角型青光眼(PACG)的因果关系。方法:采用孟德尔随机化分析方法,利用GM相关GWAS数据(18,340例)、青光眼相关GWAS数据(18,902例及358,375对照)、POAG相关GWAS数据(7756例及358,375对照)和PACG相关GWAS数据(1199例及358,375对照)确定GM对青光眼的因果效应。结果以比值比(OR)和95%置信区间(CI)表示。结果:MR分析结果显示,genus LachnospiraceaeUCG010 (IVW, OR = 1.20, 95% CI [1.06, 1.35], P = 0.0029)、genus Ruminiclostridium9 (IVW, OR = 1.26, 95% CI [1.08, 1.46], P = 0.0026)和genus Streptococcus (IVW, OR = 1.17, 95% CI [1.05, 1.30], P = 0.0053)与青光眼风险显著增加有因果关系,而family Oxalobacteraceae (IVW, OR = 0.88, 95% CI [0.80, 0.97], P = 0.0077)与青光眼风险显著降低有因果关系。phylum Actinobacteria与POAG风险显著增加有因果关系。Class Erysipelotrichia、order Erysipelotrichales、family Erysipelotrichaceaegenus Anaerotruncus与PACG风险显着增加有因果关系。结论:我们的研究从不同分类水平的GM进一步证实了GM对青光眼的因果效应,以及GM对POAG和PACG的相对特异性。然而,需要进一步的研究来证实这些结论。
Abstract: Purpose: To verify the causal effects of gut microbiota (GM) on glaucoma, primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG). Methods: Mendelian randomization analysis was conducted to identify the causal effect of GM on glaucoma via using GM-related GWAS data (18,340 samples), glaucoma-related GWAS data (18,902 cases and 358,375 controls), POAG-related GWAS data (7756 cases and 358,375 controls) and PACG-related GWAS data (1199 cases and 358,375 controls). The outcome was expressed as odds ratio (OR) with 95% confidence intervals (CI). Results: The MR analysis results presented that genus LachnospiraceaeUCG010 (IVW, OR = 1.20, 95% CI [1.06, 1.35], P = 0.0029), genus Ruminiclostridium9 (IVW, OR = 1.26, 95% CI [1.08, 1.46], P = 0.0026) and genus Streptococcus (IVW, OR = 1.17, 95% CI [1.05, 1.30], P = 0.0053) were causally associated with a significantly increased risk of glaucoma, while family Oxalobacteraceae (IVW, OR = 0.88, 95% CI [0.80, 0.97], P = 0.0077) were causally associated with a significantly decreased risk of glaucoma. Phylum Actinobacteria was causally associated with a significantly increased risk of POAG. Class Erysipelotrichia, order Erysipelotrichales, family Veillonellaceae and genus Anaerotruncus were causally associated with a significantly increased risk of PACG. Conclusions: Our research further confirmed the causal effect of GM on glaucoma from diverse taxonomies and the relative specificity of GM on POAG and PACG. However, further research is needed to confirm these conclusions.
文章引用:陈奕玄, 谢婷珂, 李卓晓, 陈城明. 从遗传学角度来看肠道菌群对青光眼的因果效应:一项孟德尔随机化研究[J]. 临床医学进展, 2024, 14(10): 908-919. https://doi.org/10.12677/acm.2024.14102746

1. 研究背景

青光眼是一种视神经退行性疾病,其特征是视网膜神经节细胞和视神经轴突的损伤,可能导致不可逆的视力逐渐丧失,甚至失明[1]。随着全球人口老龄化的加剧,预计到2040年,全球青光眼患者人数将超过1.1亿[2]。根据前房角的形态,青光眼在临床上可以分为开角型和闭角型[3]。除了年龄和眼压升高等公认的危险因素外,遗传易感性也被发现与青光眼的发生密切相关[4] [5]。由于青光眼的病理变化不可逆,早期诊断和治疗显得尤为重要。降低眼压是目前青光眼的主要干预措施,也是唯一能够改变的已知危险因素[6]。然而,眼压控制并不适用于所有青光眼患者,其疗效仍有一定局限性。

肠道菌群(gut microbiota, GM)是人体肠道内的必需共生微生物群,具有维持肠道稳态的关键作用[7]。随着年龄的增长,GM的组成会发生变化,其紊乱可能显著增加神经退行性疾病的风险[8]。随着”肠–视网膜轴”概念的提出[9],GM在青光眼发病机制中的作用日益受到关注。现有证据表明,GM可能通过破坏肠道稳态、促进多种炎症因子的生成,从而对全身免疫功能产生深远影响[10],而炎症是青光眼发病机制中的重要组成部分之一[11]。GM通过介导神经炎症,可能导致视网膜的神经退行性病变[12]。Haijun Gong等人通过比较原发性开角型青光眼(primary open-angle glaucoma, POAG)患者与健康对照者的粪便样本,探讨了GM在青光眼发病机制中的作用。研究发现,POAG患者的肠道中g unidentified Enterobacteriaceae, f Prevotellaceae和s Escherichia coli的数量显著增加,而s Bacteroides plebeius和g Megamonas的数量显著减少,代谢组学分析也显示出POAG患者的血清代谢产物与健康对照者存在明显差异[13]。Yinglei Zhang等研究表明,在青光眼大鼠模型中,Firmicutes与Bacteroidetes的比例及Verrucomicrobia门显著升高[14]。此外,青光眼小鼠模型(DBA/2J)在无菌环境中培养时,不会出现青光眼相关的神经退行性病变[15]。一些研究还指出,与健康对照组相比,POAG患者肠道中的Dysgonamonadaceae科和链球菌显著富集,且其典型代谢产物丙酸和异戊酸显著升高[16]。一项Meta分析结果证实了幽门螺杆菌感染与POAG之间的关联[17],但另一项前瞻性研究则未发现青光眼与幽门螺杆菌之间存在潜在联系[18]。此外,在研究GM与青光眼关系时,不能忽略其他混杂因素的影响,因此,现有证据尚不足以明确GM与青光眼的因果关系。

孟德尔随机化(Mendelian randomization, MR)分析是一种推断危险因素与疾病结果之间潜在因果关系的有力工具。它通过利用遗传变异作为工具变量(IV),有效地排除了混杂因素的影响[19] [20],这相较于传统的观察性研究而言具有显著优势[21]。根据孟德尔第二定律,减数分裂过程中的基因变异是随机组合的,不受环境因素的干扰[22]。目前,用于MR分析的主要工具变量是来自不同全基因组关联研究(GWAS)的单核苷酸多态性(SNP) [23]。由于现有的观察性研究样本量较小且结论不一,无法明确定义肠道菌群对青光眼的真实影响。本研究通过MR分析法确定肠道菌群对青光眼的因果效应,以期进一步探索青光眼新的潜在诊断和治疗途径[24]

2. 研究方法

2.1. GWAS数据来源

在本研究中,肠道菌群(GM)分类群的工具变量(IVs)来源于MiBioGen Consortium数据库,具体使用了Kurilshikov等人分析的16S粪便微生物组数据,该数据包含了24个队列中的18,340个样本[25]。青光眼的IVs则全部来自FinnGen数据库[26],其青光眼相关的全基因组关联研究(GWAS)数据取自FinnGen R9,包含18,902例青光眼患者和358,375个对照(GWAS ID:finngen_R9_H7_GLAUCOMA)。此外,研究还分析了青光眼的两种主要亚型,即原发性开角型青光眼(POAG)和原发性闭角型青光眼(PACG)。POAG相关的GWAS数据(7756例患者和358,375个对照,GWAS ID:finngen_R9_H7_GLAUCOMA_POAG)和PACG相关的GWAS数据(1199例患者和358,375个对照,GWAS ID:finngen_R9_H7_GLAUCCLOSEPRIM)同样取自FinnGen R9。

2.2. 研究设计和工具变量提取

本研究是一项基于《加强使用孟德尔随机化方法报告流行病学观察性研究指南》(STROBE-MR)的多组学双样本孟德尔随机化(MR)分析[27]。MR分析的主要目的是探讨肠道菌群对青光眼的潜在作用,从而揭示二者之间的因果关系。在严格遵循双样本MR分析的三个假设前提下,我们将肠道菌群相关的单核苷酸多态性(SNPs)作为暴露变量,将青光眼相关的SNPs作为结果变量,并确保所提取的SNPs与暴露变量紧密相关。此外,还进行了亚组分析,以探讨肠道菌群对不同类型青光眼(包括原发性开角型青光眼(POAG)和原发性闭角型青光眼(PACG))的因果作用。在分析过程中,排除了任何可能影响暴露与结果相关性的混杂因素,确保工具变量(IV)仅通过暴露变量影响结果变量(图1) [28]。由于当全基因组关联研究(GWAS)的统计学意义阈值设定为P < 5 × 108时,可提取的SNP数量较少,为了探索肠道菌群对青光眼因果关系的更多可能性,本研究将GWAS统计学意义阈值设定为P < 1 × 105 [29]。在连锁不平衡分析中,设定r2 < 0.001和kb = 1000,以确保提取的SNPs之间的独立性。为了避免弱工具变量(IVs)引起的偏倚,基于暴露变量的β系数(β暴露)和标准误(Se暴露)计算F值(F = (β暴露)2/(Se暴露)2) [30],并仅保留F值大于10的IVs,以确保研究结果的稳健性,避免弱IVs带来的偏倚[31]。在协调肠道菌群相关IVs和青光眼相关IVs时,排除了具有回文序列的SNPs。

Figure 1. Schematic diagram of mendelian randomization analysis satisfying three key assumptions. SNPs: Single nucleotide polymorphisms; POAG: Primary open-angle glaucoma; PACG: Primary angle-closure glaucoma

1. 孟德尔随机化分析需满足的三个关键假设的示意图。SNPs:单核苷酸多态性;POAG:原发性开角型青光眼;PACG:原发性闭角型青光眼。

2.3. 统计分析

所有统计分析均在R软件(版本4.3.1)中进行,主要使用了TwoSampleMR和MR-PRESSO R包[23] [32]。逆方差加权(Inverse Variance Weighted, IVW)模型被作为估计肠道分类群对青光眼因果效应的主要方法[33]。在无异质性的情况下,使用固定效应IVW模型[34];若存在异质性,则采用乘法随机效应IVW模型[35]。此外,MR-Egger回归和加权中位数(Weighted Median)方法作为IVW模型的补充分析工具[23]。此外,如果纳入的工具变量(IVs)具有显著的多效性,MR-Egger回归的结果仍然具有解释力,并被认为是有效的[36]。最终的分析结果以比值比(OR)和95%置信区间(CI)的形式呈现,P < 0.05被认为具有统计学意义。

2.4. 敏感性分析

多效性通过执行MR-Egger截距检验来评估[37]。为了检测提取的工具变量(IVs)是否存在异质性,使用了Cochran’s Q检验[38]。此外,通过“留一法”(Leave-one-out)分析,逐一剔除每个SNP进行分析,以识别潜在的偏倚来源,并评估结果的稳定性[39]。应用MR-PRESSO方法来检测异常SNP,并测试水平多效性,消除异常值,以确定因果效应是否发生变化[32]

3. 结果

3.1. 工具变量选择

基于先前设立的全基因组关联研究(GWAS)阈值和连锁不平衡分析标准,本文对不同层次的肠道菌群(GM)进行了筛选。在211个细菌分类群中,分别在门、纲、目、科和属(phylum, class, order, family, and genus)层次上,提取了125、228、286、505和1730个单核苷酸多态性(SNPs)。这些SNPs被全部用于孟德尔随机化(MR)分析,以探究GM在不同分类层次上对青光眼(涵盖原发性开角型青光眼(POAG)和原发性闭角型青光眼(PACG))的因果关系。所有选取的SNPs的F值均超过10,表明这些工具变量在因果关系预测中的可靠性较高。

3.2. 肠道菌群对于青光眼患病风险的MR分析

针对青光眼的孟德尔随机化(MR)分析结果(表1)显示,在3个纲、1个目、2个科和4个属的肠道菌

Table 1. Results of Cochran’s Q test, MR-Egger-intercept test and MR-PRESSO for MR analyses of causal relations between gut microbiota and glaucoma (including POAG and PACG)

1. 肠道菌群与青光眼(包括POAG和PACG)因果关系MR分析的Cochran’s Q检验、MR-egger-intercept 检验和MR-PRESSO结果

群(GM)中,存在与青光眼发病相关的因果效应(图2)。在所纳入的SNPs中,没有检测到异质性和多效性(表1)。然而,“留一法”分析结果表明,去除某些SNP后,部分MR分析结果发生了变化,暗示部分结果可能不稳定。在保留显示稳定性的结果后(图5展示了留一法分析的稳定性结果),genus LachnospiraceaeUCG010 (IVW, OR = 1.20, 95% CI [1.06, 1.35], P = 0.0029)、genus Ruminiclostridium9 (IVW, OR = 1.26, 95% CI [1.08, 1.46], P = 0.0026)以及genus Streptococcus (IVW, OR = 1.17, 95% CI [1.05, 1.30], P = 0.0053)与青光眼风险增加之间存在显著因果关系,而family Oxalobacteraceae (IVW, OR = 0.88, 95% CI [0.80, 0.97], P = 0.0077)则与青光眼风险显著降低有关。加权中位数模型的结果进一步支持了genus LachnospiraceaeUCG010、genus Streptococcus和family Oxalobacteraceae对青光眼的因果效应。此外,MR-PRESSO分析结果未检测到任何导致水平多效性效应的异常SNP (表1)。

Figure 2. The forest plot existing causal effect of gut microbiota on glaucoma

2. 肠道菌群对青光眼发病风险的因果关系森林图

3.3. 肠道菌群与原发性开角型青光眼和原发性闭角型青光眼风险的亚组分析

以开角型青光眼(POAG)和闭角型青光眼(PACG)为结局指标的亚组分析结果表明,有1个门、2个目、2个科和5个属的肠道菌群(GM)与POAG风险存在因果关系(图3),而1个纲、1个目、2个科和3个属的GM与PACG风险有因果关系(图4)。通过Cochran’s Q检验,未发现纳入的SNPs之间存在异质性(表1)。值得注意的是,尽管部分MR分析(如order NB1n-POAG、family unknownfamily id.1000006161-POAG和genus unknowngenus id.1000006162-POAG)的MR-Egger截距检验显示出多效性,但由于这些分析得到了MR-Egger模型结果的支持,因此我们仍认为这些细菌类群的因果关系有效。在去除“留一法”分析中不可靠的结果后(图5),发现phylum Actinobacteria与POAG风险显著增加之间存在因果关系(图3),而Class Erysipelotrichia、order Erysipelotrichales、family Erysipelotrichaceaegenus Anaerotruncus与PACG风险显著增加存在因果关系(图4)。此外,MR-PRESSO分析结果未发现任何导致水平多效性效应异常的SNP (表1)。

Figure 3. The forest plot existing causal effect of gut microbiota on primary open-angle glaucoma

3. 肠道菌群与原发性开角型青光眼发病风险的因果关系森林图

Figure 4. The forest plot existing causal effect of gut microbiota on primary angle-closure glaucoma

4. 肠道菌群与原发性闭角型青光眼发病风险的因果关系森林图

4. 讨论

青光眼是全球主要致盲疾病之一,因其不可逆的神经损伤,长期以来对眼科医生构成了重大挑战。青光眼的诊断和治疗仍然面临着疾病进展和疗效延迟的限制[40]。因此,迫切需要有效的青光眼生物标志物和干预措施。随着整体医学理念的发展[41],越来越多的研究者开始关注肠道菌群(GM)与眼部疾病的潜在联系,这也引发了“肠–视网膜轴”的概念[8]。然而,目前关于GM对青光眼影响的研究仍处于早期阶段。现有的观察性研究由于样本量不足和研究结论不一致等问题,面临诸多挑战。此外,由于种族差异和动物实验的局限性,证据水平尚待提升,而客观的混杂因素(如饮食习惯)也可能引入偏倚[42]

Figure 5. Results of leave-one-out analysis of the causal effect between gut microbiota and glaucoma (including POAG and PACG)

5. 肠道菌群与青光眼(包括POAG和PACG)因果关系MR分析的去一分析法结果

本研究基于人类遗传大数据,采用孟德尔随机化(MR)分析方法,能够有效克服传统观察性研究中混杂因素的干扰。这也是首个利用遗传工具变量(IV)探讨GM对青光眼因果作用的原创研究。我们严格遵循MR的三大假设,力求获得可靠的预测结果。研究结果显示,genus LachnospiraceaeUCG010, genus Ruminiclostridium9, genus Streptococcus与青光眼的风险显著增加相关,而family Oxalobacteraceae则与青光眼的风险显著降低。亚组分析显示,phylum Actinobacteria可能是开角型青光眼(POAG)的风险因素,而class Erysipelotrichia, order Erysipelotrichales, family Erysipelotrichaceae, family Veillonellaceae和genus Anaerotruncusclass Erysipelotrichia可能是闭角型青光眼(PACG)的风险因素。这些结果与先前研究发现的青光眼模型中Firmicutes与Bacteroidetes比例升高的结论一致[14]。此外,线粒体DNA变异可能在Firmicutes与青光眼之间起到了桥梁作用,已有研究发现与Firmicutes相关的m.15784T>C变异在POAG患者中富集[43] [44]。Firmicutes在促进神经退行性病变中的作用也得到了其他研究的支持,例如,在阿尔茨海默病小鼠模型中,Firmicutes与Bacteroidetes的比例增加[45]。据报道,Firmicutes通过促进衰老相关的炎症,可能在神经退行性疾病中发挥核心作用[46]。除了Firmicutes之外,Cuiyuan Jin等人在研究中通过诱导小鼠结肠炎症,在模型中检测到Actinobacteria的富集现象[47]。Zhou Li等人进一步证明,帕金森病相关的富集表位与肠道Actinobacteria生物标志物的表达呈正相关,这支持了Actinobacteria在神经退行性疾病中的潜在作用[48]。此外,在年龄相关性黄斑变性(AMD)患者中,肠道Anaerotruncus的浓度随着AMD治疗的进行而下降[49]Anaerotruncus的丰度也被报道与肠道炎症程度呈正相关[50]。青光眼的发病机制主要涉及眼压升高或局部血液供应不足,较常见的神经退行性疾病机制更为复杂[51]。然而,与其他神经退行性疾病类似,炎症仍然是青光眼病理的核心[11]。在青光眼患者的视网膜中,明显的免疫细胞浸润也是这一病理过程的重要特征[52]

除上述与青光眼有害的细菌群外,本研究还发现了几种可能具有保护作用的GM。其保护机制可能与这些细菌的代谢产物有关。已有研究表明,益生菌代谢物吲哚-3-丙酸可通过肠–脑轴减缓神经退行性变,并通过调节小胶质细胞的炎症信号,发挥抗炎作用[53] [54]。此外,研究还证实,肠道微生物共代谢物如较高的血清素水平,可以通过肠–视网膜轴对视网膜产生保护作用[9]

本研究为GM与青光眼的因果关系提供了新的证据。随着基因检测技术的进步,GM相关的GWAS数据将更加丰富,从而提高因果关系预测的准确性。研究结果为青光眼的诊断和治疗提供了新的思路。在筛查青光眼时,应特别关注与青光眼相关的GM及其代谢标志物。此外,未来可通过调整GM组成或直接增加相关代谢产物含量,以改善青光眼的预后。

然而,本研究仍存在一些局限性:(1) 尽管有证据表明性别可能影响青光眼风险,但由于数据限制,我们无法按性别分层分析SNPs [55];(2) 尽管我们调整了GWAS的统计学阈值以纳入更多的IV,但最终纳入MR分析的SNP数量仍然有限;(3) 虽然使用的肠道微生物相关GWAS数据主要来自欧洲血统人群,但少量样本来自其他种族,这可能影响总体结果的准确性。因此,未来需要包含更大样本量、不同种族和多中心的基因研究,以进一步验证本研究的结论。

这项研究是首次从遗传学角度探讨肠道菌群(GM)与青光眼之间因果关系的研究。通过多种分类方法,我们进一步证实了肠道菌群对青光眼的因果效应,以及其对原发性开角型青光眼(POAG)和原发性闭角型青光眼(PACG)的相对特异性。研究结果为肠道菌群在青光眼诊断和治疗中的临床价值提供了新的见解。然而,研究结果的准确性和有效性仍需通过更多相关研究加以验证。

伦理批准:由于本MR分析中采用的数据都是来自Finngen数据库的公开数据,因此所有与数据相关的研究均已获得各自的伦理审查委员会的批准,并获得患者的书面知情同意书。因此,本研究不需要额外的伦理批准。

数据可用性声明

本研究中提供的数据可在文章中找到。

致 谢

我们衷心感谢FinnGen联盟公开提供本次MR分析的所有数据。

利益冲突

本文所有作者声明他们之间没有利益冲突。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Quigley, H.A. (2011) Glaucoma. The Lancet, 377, 1367-1377.
https://doi.org/10.1016/s0140-6736(10)61423-7
[2] Tham, Y., Li, X., Wong, T.Y., Quigley, H.A., Aung, T. and Cheng, C. (2014) Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology, 121, 2081-2090.
https://doi.org/10.1016/j.ophtha.2014.05.013
[3] Khaw, P.T. (2004) Glaucoma—1: Diagnosis. BMJ, 328, 97-99.
https://doi.org/10.1136/bmj.328.7431.97
[4] Wang, Z., Wiggs, J.L., Aung, T., Khawaja, A.P. and Khor, C.C. (2022) The Genetic Basis for Adult Onset Glaucoma: Recent Advances and Future Directions. Progress in Retinal and Eye Research, 90, Article ID: 101066.
https://doi.org/10.1016/j.preteyeres.2022.101066
[5] Craig, J.E., Han, X., Qassim, A., Hassall, M., Cooke Bailey, J.N., Kinzy, T.G., et al. (2020) Multitrait Analysis of Glaucoma Identifies New Risk Loci and Enables Polygenic Prediction of Disease Susceptibility and Progression. Nature Genetics, 52, 160-166.
https://doi.org/10.1038/s41588-019-0556-y
[6] Stein, J.D., Khawaja, A.P. and Weizer, J.S. (2021) Glaucoma in Adults—Screening, Diagnosis, and Management. JAMA, 325, 164-174.
https://doi.org/10.1001/jama.2020.21899
[7] Shi, N., Li, N., Duan, X. and Niu, H. (2017) Interaction between the Gut Microbiome and Mucosal Immune System. Military Medical Research, 4, Article No. 14.
https://doi.org/10.1186/s40779-017-0122-9
[8] Fang, P., Kazmi, S.A., Jameson, K.G. and Hsiao, E.Y. (2020) The Microbiome as a Modifier of Neurodegenerative Disease Risk. Cell Host & Microbe, 28, 201-222.
https://doi.org/10.1016/j.chom.2020.06.008
[9] Rowan, S., Jiang, S., Korem, T., Szymanski, J., Chang, M., Szelog, J., et al. (2017) Involvement of a Gut-Retina Axis in Protection against Dietary Glycemia-Induced Age-Related Macular Degeneration. Proceedings of the National Academy of Sciences of the United States of America, 114, E4472-E4481.
https://doi.org/10.1073/pnas.1702302114
[10] Brown, E.M., Kenny, D.J. and Xavier, R.J. (2019) Gut Microbiota Regulation of T Cells during Inflammation and Autoimmunity. Annual Review of Immunology, 37, 599-624.
https://doi.org/10.1146/annurev-immunol-042718-041841
[11] Baudouin, C., Kolko, M., Melik-Parsadaniantz, S. and Messmer, E.M. (2021) Inflammation in Glaucoma: From the Back to the Front of the Eye, and Beyond. Progress in Retinal and Eye Research, 83, Article ID: 100916.
https://doi.org/10.1016/j.preteyeres.2020.100916
[12] Sharon, G., Sampson, T.R., Geschwind, D.H. and Mazmanian, S.K. (2016) The Central Nervous System and the Gut Microbiome. Cell, 167, 915-932.
https://doi.org/10.1016/j.cell.2016.10.027
[13] Gong, H., Zhang, S., Li, Q., Zuo, C., Gao, X., Zheng, B., et al. (2020) Gut Microbiota Compositional Profile and Serum Metabolic Phenotype in Patients with Primary Open-Angle Glaucoma. Experimental Eye Research, 191, Article ID: 107921.
https://doi.org/10.1016/j.exer.2020.107921
[14] Zhang, Y., Zhou, X. and Lu, Y. (2022) Gut Microbiota and Derived Metabolomic Profiling in Glaucoma with Progressive Neurodegeneration. Frontiers in Cellular and Infection Microbiology, 12, Article 968992.
https://doi.org/10.3389/fcimb.2022.968992
[15] Chen, H., Cho, K., Vu, T.H.K., Shen, C., Kaur, M., Chen, G., et al. (2018) Commensal Microflora-Induced T Cell Responses Mediate Progressive Neurodegeneration in Glaucoma. Nature Communications, 9, Article No. 3209.
https://doi.org/10.1038/s41467-018-05681-9
[16] Chen, J., Chen, D.F. and Cho, K. (2023) The Role of Gut Microbiota in Glaucoma Progression and Other Retinal Diseases. The American Journal of Pathology, 193, 1662-1668.
https://doi.org/10.1016/j.ajpath.2023.06.015
[17] Zeng, J., Liu, H., Liu, X. and Ding, C. (2015) The Relationship between Helicobacter pylori Infection and Open-Angle Glaucoma: A Meta-Analysis. Investigative Opthalmology & Visual Science, 56, 5238-5245.
https://doi.org/10.1167/iovs.15-17059
[18] Kurtz, S., Regenbogen, M., Goldiner, I., Horowitz, N. and Moshkowitz, M. (2008) No Association between Helicobacter Pylori Infection or CagA-Bearing Strains and Glaucoma. Journal of Glaucoma, 17, 223-226.
https://doi.org/10.1097/ijg.0b013e31815a34ac
[19] Lawlor, D.A., Harbord, R.M., Sterne, J.A.C., Timpson, N. and Davey Smith, G. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163.
https://doi.org/10.1002/sim.3034
[20] Burgess, S., Small, D.S. and Thompson, S.G. (2015) A Review of Instrumental Variable Estimators for Mendelian Randomization. Statistical Methods in Medical Research, 26, 2333-2355.
https://doi.org/10.1177/0962280215597579
[21] Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665.
https://doi.org/10.1002/gepi.21758
[22] Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian Randomization’: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22.
https://doi.org/10.1093/ije/dyg070
[23] Hemani, G., Zheng, J., Elsworth, B., Wade, K.H., Haberland, V., Baird, D., et al. (2018) The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. eLife, 7, e34408.
https://doi.org/10.7554/elife.34408
[24] Swerdlow, D.I., Kuchenbaecker, K.B., Shah, S., Sofat, R., Holmes, M.V., White, J., et al. (2016) Selecting Instruments for Mendelian Randomization in the Wake of Genome-Wide Association Studies. International Journal of Epidemiology, 45, 1600-1616.
https://doi.org/10.1093/ije/dyw088
[25] Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., Radjabzadeh, D., Wang, J., Demirkan, A., et al. (2021) Large-Scale Association Analyses Identify Host Factors Influencing Human Gut Microbiome Composition. Nature Genetics, 53, 156-165.
https://doi.org/10.1038/s41588-020-00763-1
[26] Kurki, M.I., Karjalainen, J., Palta, P., Sipilä, T.P., Kristiansson, K., Donner, K.M., et al. (2023) Finngen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature, 613, 508-518.
https://doi.org/10.1038/s41586-022-05473-8
[27] Skrivankova, V.W., Richmond, R.C., Woolf, B.A.R., Yarmolinsky, J., Davies, N.M., Swanson, S.A., et al. (2021) Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA, 326, 1614-1621.
https://doi.org/10.1001/jama.2021.18236
[28] Boef, A.G.C., Dekkers, O.M. and le Cessie, S. (2015) Mendelian Randomization Studies: A Review of the Approaches Used and the Quality of Reporting. International Journal of Epidemiology, 44, 496-511.
https://doi.org/10.1093/ije/dyv071
[29] Song, J., Wu, Y., Yin, X., Ma, H. and Zhang, J. (2023) The Causal Links between Gut Microbiota and COVID‐19: A Mendelian Randomization Study. Journal of Medical Virology, 95, e28784.
https://doi.org/10.1002/jmv.28784
[30] Li, S., Chen, M., Zhang, Q., Fang, M., Xiong, W. and Bai, L. (2023) Ankylosing Spondylitis and Glaucoma in European Population: A Mendelian Randomization Study. Frontiers in Immunology, 14, Article 1120742.
https://doi.org/10.3389/fimmu.2023.1120742
[31] Burgess, S. and Thompson, S.G. (2011) Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. International Journal of Epidemiology, 40, 755-764.
https://doi.org/10.1093/ije/dyr036
[32] Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698.
https://doi.org/10.1038/s41588-018-0099-7
[33] Hartwig, F.P., Davey Smith, G. and Bowden, J. (2017) Robust Inference in Summary Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption. International Journal of Epidemiology, 46, 1985-1998.
https://doi.org/10.1093/ije/dyx102
[34] Hemani, G., Bowden, J. and Davey Smith, G. (2018) Evaluating the Potential Role of Pleiotropy in Mendelian Randomization Studies. Human Molecular Genetics, 27, R195-R208.
https://doi.org/10.1093/hmg/ddy163
[35] Bowden, J. and Holmes, M.V. (2019) Meta-Analysis Andmendelianrandomization: A Review. Research Synthesis Methods, 10, 486-496.
https://doi.org/10.1002/jrsm.1346
[36] Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.
https://doi.org/10.1093/ije/dyv080
[37] Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389.
https://doi.org/10.1007/s10654-017-0255-x
[38] Bowden, J., Del Greco M, F., Minelli, C., Zhao, Q., Lawlor, D.A., Sheehan, N.A., et al. (2018) Improving the Accuracy of Two-Sample Summary-Data Mendelian Randomization: Moving Beyond the NOME Assumption. International Journal of Epidemiology, 48, 728-742.
https://doi.org/10.1093/ije/dyy258
[39] Emdin, C.A., Khera, A.V. and Kathiresan, S. (2017) Mendelian Randomization. JAMA, 318, 1925-1926.
https://doi.org/10.1001/jama.2017.17219
[40] Fea, A.M., Ricardi, F., Novarese, C., Cimorosi, F., Vallino, V. and Boscia, G. (2023) Precision Medicine in Glaucoma: Artificial Intelligence, Biomarkers, Genetics and Redox State. International Journal of Molecular Sciences, 24, Article 2814.
https://doi.org/10.3390/ijms24032814
[41] Fan, D. (2017) Holistic Integrative Medicine: Toward a New Era of Medical Advancement. Frontiers of Medicine, 11, 152-159.
https://doi.org/10.1007/s11684-017-0499-6
[42] Liu, K., Zou, J., Fan, H., Hu, H. and You, Z. (2022) Causal Effects of Gut Microbiota on Diabetic Retinopathy: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article 930318.
https://doi.org/10.3389/fimmu.2022.930318
[43] Collins, D.W., Gudiseva, H.V., Trachtman, B., et al. (2016) Association of Primary Open-Angle Glaucoma with Mitochondrial Variants and Haplogroups Common in African Americans. Molecular Vision, 22, 454-471.
[44] Floyd, J.L. and Grant, M.B. (2020) The Gut-Eye Axis: Lessons Learned from Murine Models. Ophthalmology and Therapy, 9, 499-513.
https://doi.org/10.1007/s40123-020-00278-2
[45] Brandscheid, C., Schuck, F., Reinhardt, S., Schäfer, K., Pietrzik, C.U., Grimm, M., et al. (2017) Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer’s Mouse Model. Journal of Alzheimers Disease, 56, 775-788.
https://doi.org/10.3233/jad-160926
[46] Ma, J., Hong, Y., Zheng, N., Xie, G., Lyu, Y., Gu, Y., et al. (2020) Gut Microbiota Remodeling Reverses Aging-Associated Inflammation and Dysregulation of Systemic Bile Acid Homeostasis in Mice Sex-Specifically. Gut Microbes, 11, 1450-1474.
https://doi.org/10.1080/19490976.2020.1763770
[47] Jin, C., Zeng, Z., Fu, Z. and Jin, Y. (2016) Oral Imazalil Exposure Induces Gut Microbiota Dysbiosis and Colonic Inflammation in Mice. Chemosphere, 160, 349-358.
https://doi.org/10.1016/j.chemosphere.2016.06.105
[48] Li, Z., Lu, G., Li, Z., Wu, B., Luo, E., Qiu, X., et al. (2021) Altered Actinobacteria and Firmicutes Phylum Associated Epitopes in Patients with Parkinson’s Disease. Frontiers in Immunology, 12, Article 632482.
https://doi.org/10.3389/fimmu.2021.632482
[49] Biswas, L., Ibrahim, K.S., Li, X., Zhou, X., Zeng, Z., Craft, J., et al. (2021) Effect of a TSPO Ligand on Retinal Pigment Epithelial Cholesterol Homeostasis in High-Fat Fed Mice, Implication for Age-Related Macular Degeneration. Experimental Eye Research, 208, Article ID: 108625.
https://doi.org/10.1016/j.exer.2021.108625
[50] Liu, Y., Li, T., Alim, A., Ren, D., Zhao, Y. and Yang, X. (2019) Regulatory Effects of Stachyose on Colonic and Hepatic Inflammation, Gut Microbiota Dysbiosis, and Peripheral CD4+ T Cell Distribution Abnormality in High-Fat Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 67, 11665-11674.
https://doi.org/10.1021/acs.jafc.9b04731
[51] Bou Ghanem, G.O., Wareham, L.K. and Calkins, D.J. (2024) Addressing Neurodegeneration in Glaucoma: Mechanisms, Challenges, and Treatments. Progress in Retinal and Eye Research, 100, Article ID: 101261.
https://doi.org/10.1016/j.preteyeres.2024.101261
[52] Gramlich, O.W., Beck, S., von Thun und Hohenstein-Blaul, N., Boehm, N., Ziegler, A., Vetter, J.M., et al. (2013) Enhanced Insight into the Autoimmune Component of Glaucoma: Igg Autoantibody Accumulation and Pro-Inflammatory Conditions in Human Glaucomatous Retina. PLOS ONE, 8, e57557.
https://doi.org/10.1371/journal.pone.0057557
[53] Hwang, I.K., Yoo, K., Li, H., Park, O.K., Lee, C.H., Choi, J.H., et al. (2009) Indole-3-Propionic Acid Attenuates Neuronal Damage and Oxidative Stress in the Ischemic Hippocampus. Journal of Neuroscience Research, 87, 2126-2137.
https://doi.org/10.1002/jnr.22030
[54] Kim, C., Jung, S., Hwang, G. and Shin, D. (2023) Gut Microbiota Indole-3-Propionic Acid Mediates Neuroprotective Effect of Probiotic Consumption in Healthy Elderly: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial and in Vitro Study. Clinical Nutrition, 42, 1025-1033.
https://doi.org/10.1016/j.clnu.2023.04.001
[55] Vajaranant, T.S., Nayak, S., Wilensky, J.T. and Joslin, C.E. (2010) Gender and Glaucoma: What We Know and What We Need to Know. Current Opinion in Ophthalmology, 21, 91-99.
https://doi.org/10.1097/icu.0b013e3283360b7e