颅内静脉对急性脑卒中血管内治疗预后的研究
Study on the Prognosis of Intracranial Veins on Endovascular Therapy of Acute Stroke
DOI: 10.12677/acm.2024.14102750, PDF, HTML, XML,   
作者: 乌日汉, 吴迎春*:内蒙古医科大学鄂尔多斯临床医学院,内蒙古 鄂尔多斯
关键词: 急性脑卒中血管内治疗预后颅内静脉Acute Stroke Endovascular Therapy Prognosis Intracranial Veins
摘要: 急性脑卒中是目前老年人死亡的主要原因,其急性期血管内治疗是主要治疗方法。但急性脑卒中血管内治疗良好预后仅为40%~50%,如何精准预测其良好预后是目前研究热点。越来越多研究已证实动脉在急性脑卒中预后(包括3月mrs (modified Rankin Scale)评分、出血转化、无效再通、再灌注损伤、恶性脑水肿)的影响;近年来,静脉逐渐成为急性脑卒中预后评估的热点。本文主要描述静脉在急性脑卒中血管内治疗预后的作用。
Abstract: Acute stroke is currently the main cause of death in the elderly, and endovascular treatment in its acute phase is the main treatment method. However, the good prognosis of endovascular treatment for acute stroke is only 40%~50%, and how to accurately predict its good prognosis is a hot research topic. More and more studies have confirmed the influence of arteries in acute stroke prognosis (including 3-month mrs (modified Rankin Scale) score, hemorrhage conversion, ineffective recanalization, reperfusion injury, malignant cerebral edema); in recent years, veins have gradually become a hotspot for acute stroke prognosis assessment. This article mainly describes the role of veins in the prognosis of endovascular therapy in acute stroke.
文章引用:乌日汉, 吴迎春. 颅内静脉对急性脑卒中血管内治疗预后的研究[J]. 临床医学进展, 2024, 14(10): 943-948. https://doi.org/10.12677/acm.2024.14102750

1. 引言

中风是老年人死亡的主要原因之一,中风后的死亡率和致残率分别为115/100,000和2.77%;这给患者和家人造成了严重后果即降低患者的生活质量[1]。在某些病例中,血管内治疗(Endovascular therapy, EVT)在发病后24小时内进行,对于因大血管闭塞而导致的急性缺血性卒中(acute ischemic stroke, AIS)非常有效。AIS由大血管闭塞引起,采用EVT治疗,其最新进展降低了中风的残疾程度、发病率和死亡率[1]。多项研究已证实动脉在急性脑卒中预后(包括出血转化、无效再通、再灌注损伤、恶性脑水肿)的影响[2];近年来,静脉逐渐成为急性脑卒中预后评估的热点。本文主要描述静脉在急性脑卒中血管内治疗预后的作用。

脑静脉回流对于维持正常脑循环起关键作用,正常情况下脑静脉血容量约占整个颅腔的6%,占全脑血容量的70%~80% [3]。从解剖结构可知,大脑静脉系统分为:皮质浅静脉,深静脉和颅内静脉窦。大脑皮质浅静脉存在广泛吻合,其中最为主要的是上吻合静脉(Troland)和下吻合静脉(Labbe)。大脑皮质及皮质下血流主要经皮质浅静脉引流,汇入上矢状窦和横窦;深部白质及基底节区的血流主要由髓质静脉,引流入大脑内静脉、基底静脉等深静脉,汇入直窦,最终经颈内静脉回流[4]

2. 神经功能量表

为了量化中风的严重程度,美国国立卫生研究院改良中风量表(modified National Institutes of Health Stroke Scale, mNIHSS)于2001年制定,用于测量中风的严重程度。临床试验中招募的患者患有急性神经功能缺损,并且被发现比以前使用的NIHSS更可靠[5]。随后,改进后的NIHSS已广泛用于常规临床实践中,以评估严重程度并开始治疗。兰金量表是衡量全球残疾程度的指标,并于1988年修改为改良兰金量表(modified Rankin Scale, mRS) [6]。它经过广泛验证,对于评估中风患者非常可靠[6]。改良兰金量表mRS用于测量患有中风或其他原因导致神经功能障碍的患者在进行日常生活活动时的依赖或残疾程度[7]。分数范围从0到6;0级:完全没症状;1级:尽管有症状,但未见明显残障,能完成所有经常从事的职责和活动;2级:轻度残障;不能完成所有以前能从事的活动,但能处理个人事务而不需帮助;3级:中度残障;需要一些协助,但行走不需要协助;4级:重度残障;离开他人协助不能行走,以及不能照顾自己的身体需要;5级:严重残障;卧床不起、大小便失禁、须持续护理和照顾;6级:死亡。分数越高,残疾程度越高[8] [9]。Bala等人用CTA评估急性脑卒中患者皮层静脉充盈时间的研究发现皮层静脉充盈时间越长预后越差,即更高的mrs评分相关[10]。此评分全球广泛运用于急性脑卒中预后的评价,主要评估日常活动中的残疾或依赖程度。

3. 脑出血转化

AIS后出血转化(Hemorrhagic transformation, HT)的机制主要在于脑缺血和再灌注治疗(静脉溶栓或血

管内治疗)引起的严重血脑屏障破坏,外周血由此外渗至脑实质、脑室和蛛网膜下腔[11]。研究强调,半数以上的脑梗塞表现出一定阶段的血液流变学转变[12]。缺血后最初几小时内血脑屏障的破坏被认为是再灌注损伤后出血性转化的主要原因[13]。出血性转化可以是有症状的,也可以是无症状的。症状性脑出血常常伴随着快速的神经病学恶化[14]。出现严重出血性转化后,患者的预后不佳[15]

症状性颅内出血sICH (Symptomatic intracranial hemorrhage)是由于另一个血管区域的栓塞引起的卒中进展[16]。机械取栓术后的sICH风险与静脉溶栓后的sICH风险或两种治疗模式一起使用(桥接溶栓)时的sICH风险没有区别,sICH发展的主要风险因素(除了血栓引起的栓子变化外)是晚期再灌注——如果在大的缺血核心超过半暗带时血管重新开放,则更有可能发生sICH [17]。临床上检测到的由血栓碎片栓塞至其他血管区域(例如从大脑中动脉取出的血栓和栓塞至大脑前动脉的血栓)导致的进展性卒中相当罕见(1%~3%) [16]。在没有临床卒中进展的情况下,血管造影观察到稍高的比率(高达5%) [16]。Shimonaga等人用DSA评估急性缺血性卒中再灌注治疗后早期静脉充盈的研究发现早期静脉充盈可能是过度灌注的表现,易发生出血和不良预后[18]。Cao等人使用4D-CTA评估急性脑卒中患者静脉侧支循环对出血转化的影响的研究,选择皮层静脉充盈对出血转化的影响发现凝血符合评分和静脉侧支循环对出血转化有较好的预测能力[19]。目前如何减少或预防血管内治疗后出血转化,改善患者预后是术后管理的焦点。

4. 无效再通

研究数据及临床实践发现,尽管大血管成功再通[公认的评估改良脑梗死溶栓(mTICI)分级在2b/3级以上],仍有近一半的患者临床结局不良,称为“无效再通”[20]。无复流现象:“无效再通”可能与侧支血管代偿不良、微血栓形成、远端小血管再闭塞等有关,其中最重要的病理生理改变是虽然大血管开通,但流域内脑组织的血流灌注不良,即“无复流现象”[20]。在最近的一项研究中,接受EVT治疗的急性LVO患者中80%~90%实现了成功再灌注(mTICI评分为2b-3) [21]。然而,成功或完全再灌注并不总是与良好的功能相关。尽管及时且成功地进行了再灌注(mTICI),但大约一半的AIS患者在24小时内接受EVT治疗后并未获得良好的90天功能结果(改良Rankin量表[mRS]为0~2)评分为(2b-3) [22]。研究表明,尽管血管再通成功,但仍有约54%患者90天内出现无效再通,即不良预后。一些研究将高龄、卒中严重程度、近端血管闭塞、大面积水肿、未静脉溶栓及再灌注出血为无效再通的独立因素[22]。一项纳入539患者的研究中发现良好的静脉回流与良好的血管再通相关[23]。如何获得良好的结果和更好的恢复是接受EVT治疗的AIS患者的主要临床问题。尽管在技术上成功实现再通和再灌注,但人们越来越关注了解不良结果的决定因素和机制,这可能有助于识别风险和保护因素,并在临床实践中建立更个性化的治疗目标。

5. 再灌注损伤

在再通治疗中闭塞动脉的再开放导致再灌注的三阶段过程[24]。第一阶段是反应性充血状态,伴有与细胞毒性水肿相关的脑血管调节丧失[25]。在此之后,有一个与反应性微血管阻塞相关的低灌注阶段,该阶段会加重血脑屏障的破坏[25]。这对应于大脑的缺血性眩晕阶段[25]。低灌注后,初始再灌注后细胞通透性增加,这与血管源性水肿和血管生成有关[24]。血管内治疗(endovascular treatment, EVT)后再灌注出血是大血管闭塞(AIS-LVO)急性缺血性卒中患者常见的并发症,可能与临床预后不良有关[26]。研究发现,年龄、血糖升高、基线缺血性核心大、广泛脑水肿形成和脑梗死溶栓不良评分可预测EVT后再灌注出血[26]。此外,较差的动脉侧支循环与EVT后再灌注出血的风险较高相关,不良的静脉充盈与出血转化和脑实质血肿的发生有关[26]。一项CTA评估静脉充盈与血管内治疗后再灌注相关的研究发现,良好的静脉充盈与首次良好再灌注独立相关[27]

6. 侧支循环

缺血性卒中的侧支循环作为一种动脉–动脉或小动脉–小动脉的内在吻合网络,存在于不同的器官中,如冠状动脉和外周循环[28]。当正常供应血液的动脉闭塞时,侧枝血管可以潜在地为组织提供血流。因此,在急性缺血性卒中,侧支循环保护组织免受缺血[28]。侧支循环是影响急性缺血性卒中(AIS)患者预后的关键因素[29]。良好的侧支循环可以维持半暗区脑组织的基础代谢,延缓梗死灶的扩张和疾病的快速进展,提高再灌注治疗的成功率,降低患者出血转化的风险[29]。一项基于4D-CTA评估AIS-LVO患者皮层静脉血流对侧支循环和预后的关系,研究表明皮层静脉延迟少的患者侧支循环越好,进而影响预后,及预后越好[29]。一项基于全脑CTA对患者和正常对照组的两侧皮层静脉流入时间(venous inflow time, VIT)、静脉峰值时间(VPT)和静脉流出时间(Venous outflow time, VOT)进行了分析[30]。对VIT/VPT/VOT进行统计描述,并在患者组和正常对照组之间进行比较,然后对不同侧支循环和预后的患者进行统计[30]。研究表明,与对照组相比患者组患侧的VIT和VPT与动脉侧支评分呈负相关关系。与预后良好组相比,预后不良组患者两侧的VIT和VPT都明显延迟(P < 0.05)。逻辑回归显示,患者的患侧VPT、动脉侧支分数和NIHSS是预后不良的独立预测因素,预测预后不良的准确率为79.6%。在24小时内就诊的患者中,受影响的VPT和NIHSS是预后不良的独立预测因素,预测预后不良的准确率为79.6% [30]。Faizy等人使用CTA评估急性缺血性脑卒中血管内治疗后动脉侧支、静脉侧支与早期神经功能改善的关系的研究,发现良好的动脉侧支、静脉侧支与良好的神经功能预后相关[31]。此外,Xu等人关于急性大血管闭塞性卒中患者的深髓静脉、皮质静脉充盈与侧支循环、与预后关系的研究,发现良好的深髓静脉、皮质静脉充盈与良好的软脑膜侧支循环有关,但与大血管闭塞性卒中患者的预后无关[32]。David等人发现,在这个较晚的时间窗(发病6~24小时内),良好的侧支循环也会导致减缓卒中的进展和良好的功能结果[33]。脑侧支循环在缺血性卒中病理生理学中起着核心作用,被认为与梗塞面积、再灌注治疗的成功和临床结果相关[34]。我们仍需继续探索影响急性脑卒中血管内治疗侧支循环的因素。

7. 脑水肿

严重大动脉狭窄或闭塞所致急性缺血性脑卒中(AIS)患者往往脑梗死面积大,发病后2~3天内易发生占位性脑水肿,继发中线移位、脑疝、神经功能损害加重,死亡率可达80%,因此这种类型的水肿被称为恶性脑水肿(Malignant brain edema, MCE) [35]。早期MCE预测有助于干预措施的选择和时机选择,如颅骨切除减压术,以改善临床结果,进一步减轻卒中相关残疾的负担[35]。脑血管病管理指南提出虽然去骨瓣减压术的最佳时机尚不明确,但将脑水肿引起的意识水平下降作为手术治疗的标准是合理的(Ⅱa类推荐,A级证据) [36]。且指出接受了药物治疗却在发病48 h内出现神经功能恶化的单侧大脑中动脉梗死患者,行去骨瓣减压术及硬脑膜扩张术是合理的[36]。Kabiri等人关于使用CTA评估急性脑卒中机械取栓研究发现皮层静脉充盈不良的患者发生脑水肿的概率显著升高[37]。Xia等人关于CTA评估皮层静脉充盈缺失与急性缺血性脑卒中关系的研究发现皮层静脉缺失可增加早期脑水肿的发生和增加恶性脑水肿的发生率[38]

8. 展望

脑静脉回流在急性缺血性卒中的治疗和预后评估中扮演着重要角色。随着医学影像技术和人工智能技术的不断进步,我们有望在未来更深入地了解脑静脉回流在卒中中的作用,并开发出更有效的治疗策略来改善患者的治疗效果和预后。

NOTES

*通讯作者。

参考文献

[1] Wang, Y., Yuan, X., Kang, Y., Yu, L., Chen, W. and Fan, G. (2024) Clinical Predictors of Prognosis in Stroke Patients after Endovascular Therapy. Scientific Reports, 14, Article No. 667.
https://doi.org/10.1038/s41598-024-51356-5
[2] 钱宇, 陆新宇, 李巧玉, 等. 急性缺血性脑卒中患者血管内机械取栓术后发生症状性颅内出血的危险因素分析[J]. 山东医药, 2020, 60(23): 79-81.
[3] 刘海兵. 颅脑损伤患者颅内微循环和静脉循环的研究[D]: [硕士学位论文]. 福州: 福建医科大学, 2022.
[4] Krogager, M.E., Jespersen, B., Mathiesen, T.I. and Benndorf, G. (2022) Three Underdogs among Galenic Veins: Anatomical Analysis and Literature Review of Surgical Relevant Veins in the Quadrigeminal Cistern. Neurosurgical Review, 45, 3245-3258.
https://doi.org/10.1007/s10143-022-01842-z
[5] Lyden, P.D., Lu, M., Levine, S.R., Brott, T.G. and Broderick, J. (2001) A Modified National Institutes of Health Stroke Scale for Use in Stroke Clinical Trials: Preliminary Reliability and Validity. Stroke, 32, 1310-1317.
https://doi.org/10.1161/01.str.32.6.1310
[6] van Swieten, J.C., Koudstaal, P.J., Visser, M.C., Schouten, H.J. and van Gijn, J. (1988) Interobserver Agreement for the Assessment of Handicap in Stroke Patients. Stroke, 19, 604-607.
https://doi.org/10.1161/01.str.19.5.604
[7] Nimbvikar, A.A., Panchawagh, S., Chavan, A.P., Ingole, J.R., Pargaonkar, Y. and Pai, R. (2024) Modified Rankin Scale Is a Reliable Tool for the Rapid Assessment of Stroke Severity and Predicting Disability Outcomes. Journal of Family Medicine and Primary Care, 13, 1085-1090.
https://doi.org/10.4103/jfmpc.jfmpc_1431_23
[8] Nimbvikar, A.A., Panchawagh, S., Chavan, A.P., Ingole, J.R., Pargaonkar, Y. and Pai, R. (2024) Modified Rankin Scale Is a Reliable Tool for the Rapid Assessment of Stroke Severity and Predicting Disability Outcomes. Journal of Family Medicine and Primary Care, 13, 1085-1092.
https://www.mdcalc.com/calc/1890/
https://doi.org/10.4103/jfmpc.jfmpc_1431_23
[9] Yi, K., Nakajima, M., Ikeda, T., Yoshigai, M. and Ueda, M. (2022) Modified Rankin Scale Assessment by Telephone Using a Simple Questionnaire. Journal of Stroke and Cerebrovascular Diseases, 31, Article 106695.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106695
[10] Singh, N., Bala, F., Kim, B.J., Najm, M., Ahn, S.H., Fainardi, E., et al. (2021) Time-Resolved Assessment of Cortical Venous Drainage on Multiphase CT Angiography in Patients with Acute Ischemic Stroke. Neuroradiology, 64, 897-903.
https://doi.org/10.1007/s00234-021-02837-1
[11] Hong, L., Hsu, T., Zhang, Y. and Cheng, X. (2022) Neuroimaging Prediction of Hemorrhagic Transformation for Acute Ischemic Stroke. Cerebrovascular Diseases, 51, 542-552.
https://doi.org/10.1159/000521150
[12] Zubair, A.S. and Sheth, K.N. (2023) Hemorrhagic Conversion of Acute Ischemic Stroke. Neurotherapeutics, 20, 705-711.
https://doi.org/10.1007/s13311-023-01377-1
[13] Arba, F., Piccardi, B., Palumbo, V., Biagini, S., Galmozzi, F., Iovene, V., et al. (2021) Blood-Brain Barrier Leakage and Hemorrhagic Transformation: The Reperfusion Injury in Ischemic Stroke (RISK) Study. European Journal of Neurology, 28, 3147-3154.
https://doi.org/10.1111/ene.14985
[14] Jensen, M., Schlemm, E., Cheng, B., Lettow, I., Quandt, F., Boutitie, F., et al. (2020) Clinical Characteristics and Outcome of Patients with Hemorrhagic Transformation after Intravenous Thrombolysis in the WAKE-UP Trial. Frontiers in Neurology, 11, Article 957.
https://doi.org/10.3389/fneur.2020.00957
[15] Iwamoto, T., Kitano, T., Oyama, N. and Yagita, Y. (2021) Predicting Hemorrhagic Transformation after Large Vessel Occlusion Stroke in the Era of Mechanical Thrombectomy. PLOS ONE, 16, e0256170.
https://doi.org/10.1371/journal.pone.0256170
[16] Widimsky, P., Snyder, K., Sulzenko, J., Hopkins, L.N. and Stetkarova, I. (2022) Acute Ischaemic Stroke: Recent Advances in Reperfusion Treatment. European Heart Journal, 44, 1205-1215.
https://doi.org/10.1093/eurheartj/ehac684
[17] Sun, D., Huo, X., Jia, B., Tong, X., Ma, G., et al. (2022) Predictors of Symptomatic Intracranial Hemorrhage after Endovascular Treatment for Acute Large Vessel Occlusion: Data from ANGEL-ACT Registry. Journal of Thrombosis and Thrombolysis, 54, 558-565.
https://doi.org/10.1007/s11239-022-02688-4
[18] Shimonaga, K., Matsushige, T., Takahashi, H., Hashimoto, Y., Mizoue, T., Ono, C., et al. (2020) Early Venous Filling after Reperfusion Therapy in Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 29, Article 104926.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104926
[19] Cao, R., Ye, G., Lu, Y., Wang, Y., Jiang, Y., Sun, C., et al. (2024) The Predictive Value of Cerebral Veins on Hemorrhagic Transformation after Endovascular Treatment in Acute Ischemic Stroke Patients: Enhanced Insights from Venous Collateral Circulation Analysis Using Four-Dimensional CTA. Academic Radiology, 31, 1024-1035.
https://doi.org/10.1016/j.acra.2023.06.034
[20] 刘丽萍, 杨清武. 应重视急性缺血性卒中患者无效再通管理[J]. 中华医学杂志, 2023, 103(29): 2207-2209.
[21] Nie, X., Leng, X., Miao, Z., Fisher, M. and Liu, L. (2023) Clinically Ineffective Reperfusion after Endovascular Therapy in Acute Ischemic Stroke. Stroke, 54, 873-881.
https://doi.org/10.1161/strokeaha.122.038466
[22] Jovin, T.G., Nogueira, R.G., Lansberg, M.G., Demchuk, A.M., Martins, S.O., Mocco, J., et al. (2022) Thrombectomy for Anterior Circulation Stroke Beyond 6 H from Time Last Known Well (AURORA): A Systematic Review and Individual Patient Data Meta-analysis. The Lancet, 399, 249-258.
https://doi.org/10.1016/s0140-6736(21)01341-6
[23] Heitkamp, C., Winkelmeier, L., Heit, J.J., Albers, G.W., Lansberg, M.G., Wintermark, M., et al. (2023) Unfavorable Cerebral Venous Outflow Is Associated with Futile Recanalization in Acute Ischemic Stroke Patients. European Journal of Neurology, 30, 2684-2692.
https://doi.org/10.1111/ene.15898
[24] Nie, X., Leng, X., Miao, Z., Fisher, M. and Liu, L. (2023) Clinically Ineffective Reperfusion after Endovascular Therapy in Acute Ischemic Stroke. Stroke, 54, 873-881.
https://doi.org/10.1161/STROKEAHA.122.038466
[25] Bernardo-Castro, S., Sousa, J.A., Brás, A., Cecília, C., Rodrigues, B., Almendra, L., et al. (2020) Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Frontiers in Neurology, 11, Article 594672.
https://doi.org/10.3389/fneur.2020.594672
[26] Winkelmeier, L., Heit, J.J., Adusumilli, G., Geest, V., Guenego, A., Broocks, G., et al. (2022) Poor Venous Outflow Profiles Increase the Risk of Reperfusion Hemorrhage after Endovascular Treatment. Journal of Cerebral Blood Flow & Metabolism, 43, 72-83.
https://doi.org/10.1177/0271678x221127089
[27] van Horn, N., Heit, J.J., Kabiri, R., Mader, M.M., Christensen, S., Mlynash, M., et al. (2021) Cerebral Venous Outflow Profiles Are Associated with the First Pass Effect in Endovascular Thrombectomy. Journal of NeuroInterventional Surgery, 14, 1056-1061.
https://doi.org/10.1136/neurintsurg-2021-018078
[28] Moshayedi, P. and Liebeskind, D.S. (2021) Hemodynamics in Acute Stroke: Cerebral and Cardiac Complications. Handbook of Clinical Neurology, 177, 295-317.
https://doi.org/10.1016/b978-0-12-819814-8.00015-9
[29] Singh, N., Bala, F., Kim, B.J., et al. (2022) Time-Resolved Assessment of Cortical Venous Drainage on Multiphase CT Angiography in Patients with Acute Ischemic Stroke. Neuroradiology, 64, 897-903.
https://doi.org/10.1007/s00234-021-02837-1
[30] Wang, J., Li, J., Liu, J., Wu, J., Gu, S., Yao, Y., et al. (2023) Significant Slowed Cortical Venous Blood Flow in Patients with Acute Ischemic Stroke with Large Vessel Occlusion Suggests Poor Collateral Circulation and Prognosis. Academic Radiology, 30, 1896-1903.
https://doi.org/10.1016/j.acra.2022.12.004
[31] Faizy, T.D., Mlynash, M., Kabiri, R., Christensen, S., Kuraitis, G., Meyer, L., et al. (2022) Favourable Arterial, Tissue-Level and Venous Collaterals Correlate with Early Neurological Improvement after Successful Thrombectomy Treatment of Acute Ischaemic Stroke. Journal of Neurology, Neurosurgery & Psychiatry, 93, 701-706.
https://doi.org/10.1136/jnnp-2021-328041
[32] Xu, Z., Duan, Y., Yang, B., Huang, X., Pei, Y. and Li, X. (2019) Asymmetric Deep Medullary Veins in Patients with Occlusion of a Large Cerebral Artery: Association with Cortical Veins, Leptomeningeal Collaterals, and Prognosis. Frontiers in Neurology, 10, Article 1292.
https://doi.org/10.3389/fneur.2019.01292
[33] Liebeskind, D.S., Saber, H., Xiang, B., Jadhav, A.P., Jovin, T.G., Haussen, D.C., et al. (2022) Collateral Circulation in Thrombectomy for Stroke after 6 to 24 Hours in the DAWN Trial. Stroke, 53, 742-748.
https://doi.org/10.1161/strokeaha.121.034471
[34] Sperti, M., Arba, F., Acerbi, A., Busto, G., Fainardi, E. and Sarti, C. (2023) Determinants of Cerebral Collateral Circulation in Acute Ischemic Stroke Due to Large Vessel Occlusion. Frontiers in Neurology, 14, Article 1181001.
https://doi.org/10.3389/fneur.2023.1181001
[35] Lu, P., Cui, L. and Zhao, X. (2023) Prominent Veins Sign Is Associated with Malignant Cerebral Edema after Acute Ischemic Stroke. Heliyon, 9, e19758.
https://doi.org/10.1016/j.heliyon.2023.e19758
[36] 刘丽萍, 周宏宇, 段婉莹, 等. 中国脑血管病临床管理指南(第2版) (节选)——第4章缺血性脑血管病临床管理推荐意见[J]. 中国卒中杂志, 2023, 18(8): 910-933.
[37] Faizy, T.D., Kabiri, R., Christensen, S., Mlynash, M., Kuraitis, G., Meyer, L., et al. (2021) Venous Outflow Profiles Are Linked to Cerebral Edema Formation at Noncontrast Head CT after Treatment in Acute Ischemic Stroke Regardless of Collateral Vessel Status at CT Angiography. Radiology, 299, 682-690.
https://doi.org/10.1148/radiol.2021203651
[38] Xia, H., Sun, H., He, S., Zhao, M., Huang, W., Zhang, Z., et al. (2021) Absent Cortical Venous Filling Is Associated with Aggravated Brain Edema in Acute Ischemic Stroke. American Journal of Neuroradiology, 42, 1023-1029.
https://doi.org/10.3174/ajnr.a7039